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Zusammenfassung

Mit zunehmender Integration informationsverarbeitender Systeme in das alltägliche Leben
steigt die Menge verfügbarer Daten. Ein Großteil dieser Daten ist binärer Natur. Sei es
bei der Repräsentation natürlicher Sprache mittels Bag of Words Modellen, der Darstel-
lung von Transaktionen, Likes oder Dislikes in sozialen Netzwerken oder der quantitativen
Analyse von Genexpressionsdaten. Die Repräsentation mittels binärer Datenbanken findet
in vielerlei Hinsicht ihre Bedeutung.

Als beliebte Methode zur Extraktion der zugrundeliegenden Information binärer Daten-
banken hat sich das Frequent Pattern Mining erwiesen. Häufig zusammen vorkommende
Muster sollen die notwendigen Indizien liefern um Aussagen über die zugrundeliegende
Thematik treffen zu können. Redundanz in den auftretenden Mustern macht eine Inter-
pretation der erhaltenen Information jedoch schwierig. Eine Methode zur Filterung der
relevanten Aussagen ist von Notwendigkeit.

In dieser Diplomarbeit sollen die Möglichkeiten zur Auswahl solcher Muster mittels
Code-Tabellen untersucht werden. Eine Code-Tabelle stellt die elementaren Informatio-
nen einer Datenbank in der möglichst kompaktesten und präzisesten Variante zusam-
men. Ihre Qualität bemisst sich in der Fähigkeit den vorliegenden Sachverhalt geeignet
zu komprimieren. Es werden vorhandene Methoden zur Berechnung von Code-Tabellen
analysiert und eine geeignete Erweiterung dieser Methoden besprochen. Die Verbindun-
gen zu anderen bekannten Verfahren, beispielsweise zum Clustering, werden herausgestellt.
Des Weiteren wird eine vollkommen neue Herangehensweise zur Bestimmung der besten
Kodierung, basierend auf Matrix-Faktorisierung vorgestellt. Dies ermöglicht eine Her-
leitung der Kodierung mithilfe bekannter numerischer Methoden.

Die besprochenen Ansätze werden auf realen Datensätzen evaluiert, sowohl in Hinblick
auf Qualität der Code-Tabelle als auch der Performanz entsprechender Algorithmen.
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Chapter 1

Introduction

Basic Patterns, grouped and changed
Sequence frequent, seek and gain
Break, break for narration

– LL Cool J, I need a Beat

Nowadays, we experience an enormous growth of the information that is available. Large
amounts of data are collected and require efficient mechanisms to extract its information.
It arises the question how intrinsic structures, reflecting the important characteristics of a
large data collection, can be derived. One popular method is to summarize the inherent
structure of a dataset by its patterns. Patterns shall reflect particularly interesting or at
least reoccurring parts of the data. As described by Mannila and Toivonen [33] we seek
for the theory of the dataset, represented by the subsets that satisfy a given predicate of
interest.

The most common practice is the frequent pattern mining [1] that identifies the rele-
vance of a pattern with its frequency. The monotonic property of frequent sets, that all
subsets of a frequent pattern are also frequent, induces however a high redundancy be-
tween the returned patterns. In addition, the threshold that denotes the minimal number
of occurrences at which a pattern may be called frequent, is hard to set. Determining this
threshold too high results in an output of a small set of patterns that reveals nothing but
common knowledge. A small decrease is however likely to let the number of issued patterns
literally explode. Mining such an enormous amount of patterns poses the question again
how the information of these patterns can be extracted, which connections or correlations
are given between them.

In this work, we review existing approaches and develop new methods to filter and
summarize the information of a dataset by a simple principle. This principle relies on the
observation that any regularity of the data can be used to compress the data [21] and is
known as the Minimum Description Length (MDL) principle. We discuss the relations
of this approach to other ones that intend to discover the underlying characteristics of
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2 CHAPTER 1. INTRODUCTION

datasets and spot the specific differences. Furthermore, we develop new methods to derive
the models that compress a database by means of numerical optimization. Experiments
on common binary datasets complete the comparison of the regarded endeavors to obtain
a precise summarization of the data.

1.1 Preliminaries

Throughout this work, we assume that we are given a set of n ∈ N items I = {x1, . . . , xn}
and a database D = {t1, . . . , tm} that consists of m ∈ N transactions tj ⊆ I for 1 ≤ j ≤ m.
Let X ⊆ I be an itemset. The cover of X is denoted as the set cov(X) that comprises the
transactions containing the itemset X, i.e.,

cov(X) = {t ∈ D |X ⊆ t} .

The frequency of X is defined as the number of transactions that cover X

freq(X) = | cov(X)|.

The relative frequency supp(X) is denoted as the support that puts the number of occur-
rences in relation to the number of transactions. For a given minimum support threshold
minsup ∈ [0, 1], the set X is called frequent if

supp(X) =
freq(X)

|D|
≥ minsup.

We define F as the set of all frequent patterns.
A database D may also be described by a binary matrix D ∈ {0, 1}n×m, where the

entry Dij is set to one iff the item xi is contained in transaction tj . In this notation, a
transaction tj ∈ D is represented by the column D·j .

We denote by ◦ the boolean matrix product, i.e., for a matrix C ∈ {0, 1}n×m it holds
that C = A ◦B iff

Cij = Ai· ◦B·j =
r∨
s=1

Ais ∧Bsj .

The Hadamard product is referred by ∗, i.e., for matrices A ∈ Rn×m and B ∈ Rn×m it
holds that

(A ∗B)ij = AijBij .

The Frobenius norm is notated by ‖ · ‖ and with | · | we denote the matrix 1-norm, i.e., for
a matrix A ∈ Rn×m the respective norms can be calculated by

‖A‖ =

 n∑
i=1

m∑
j=1

A2
ij

 1
2

|A| =
n∑
i=1

m∑
j=1

|Aij |.
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Throughout this paper all logarithms are to base 2 and by convention we use 0 log 0 = 0.
Further, we denote by X � Y that X is preceding to Y with respect to an order that will
be clear from the context.

1.2 Related Work

First attempts to cope with the overflow of information that is obtained by frequent pat-
tern mining algorithms try to shorten the returned results by a restrictive generation of
closed or maximal frequent itemsets [37, 11, 3]. An itemset X is called closed if there is
no superset of X that has the same support. Therewith, it is possible to describe the set
of frequent patterns losslessly by a subset. The size of this subset is yet sensitive to the
nature of the database, in particular to the length of the frequent patterns, i.e., the cardi-
nality of the itemset, and the density of the database [38]. For this occasion, algorithms
have been developed to mine only the set of maximal frequent patterns. Those are the
frequent itemsets that do not have any frequent superset [11, 3]. In this representation,
the information about the support of many frequent itemsets is however lost.

There are many related approaches to describe a set of frequent or generally interesting
patterns in a compact way. Free frequent itemsets [10], non-derivable itemsets [13] or
sampling frequent itemsets [14] are further examples of this category. However, these
methods focus either on deriving all sets that satisfy a specified property or on finding
a specified subset that shall describe the set of interesting patterns. The constellation of
the returned patterns is thereby not taken into account. None of the approaches above
set the interestingness of a pattern in relation to the set of patterns that has already been
considered to be useful.

That’s why Siebes et al. introduced another idea with Krimp [45] where the most
interesting patterns are selected according to the MDL principle [21]. The patterns are
retained in a dictionary for binary code words that is used to encode the database. The
best set of patterns is identified as the one that yields the best database compression. By
this strategy, the number of returned patterns is reduced drastically, e.g. from billions of
frequent patterns to less than 700 itemsets for the mushroom database, and has a variety
of applications [43, 44, 26]. Krimp has as input a preferable large set of frequent patterns,
i.e., the set of frequent patterns given a small minimum support. These are the code
word candidates, a set that is likely to be orders of magnitudes larger than the input
dataset, due to the aforementioned pattern explosion. Krimp is designed to find the best
compressing selection of patterns from its candidate set by a greedy procedure. Every
candidate pattern is regarded once and added to the set of code words if the inclusion of
the considered pattern improves the compression size. The achieved compression quality
is thus increasing with the number of regarded candidates. However, a generation of all
occurring itemsets in the database is often not possible, referable to time and especially
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to storage limits. The exponential increase of frequent patterns with decreasing minimum
support, poses the difficult problem to find a suitable minimum support that generates
roughly the right amount of candidates.

The algorithm SLIM [41] encounters this problem by a candidate generation that
results directly from the current selection of code words. In every iteration, candidates
are generated and sorted by their estimated compression gain and the first pattern that
actually enhances the compression size is accepted. The estimation of the compression
size requires however an identification of the affected parts of the database and for some
candidates the actual compression size has to be computed as well. These operations are
performed for most of the time and the combinatorial possibilities regarding the candidate
generation are numerous. Thus, an indexing structure that supports these operations
and that gives insight into the consequences of integrating a pattern into the encoding, is
desirable.

With the algorithm SHrimp[23] a tree structure is proposed to facilitate a fast iden-
tification of the interesting parts of the dataset. Therewith, a direct determination of the
consequences that result from a change of the current pattern selection shall be enabled.
In addition, the tree representation can be utilized to visualize the encoding of the dataset
and the dependencies of patterns in certain parts of the database.

As pointed out in [32] the derived patterns composing the set of code words are often
variants on the same theme although redundancy is reduced with respect to the compres-
sion. In this context, Siebes et al. considered a new methodology to derive the set of
code words. They propose to mine the set of the k patterns that compresses the database
best [40]. Their developed algorithm Groei uses a beam search to obtain the desired
patterns, but this procedure is very expensive and only small datasets can be regarded.
Therefore, we will not discuss this approach in detail. However, we will have a look at
another approach that is more suitable to solve this problem definition.

1.3 Outline

We proceed as follows: In Chapter 2 we give a theoretical introduction to the principles of
MDL and related concepts. We present the calculation of the compression size and reflect
the possibilities that are given to derive an optimal encoding. We discuss the relation to
the method of tiling that draws a connection to the task of matrix factorization. Common
methods and applications are summarized that are applied to obtain accurate factorizations
with regard to different constraints.

In Chapter 3 we review and discuss the approaches to derive a suitable encoding by a
code table. Existing algorithms are described and new methods presented. We consider
several contributions to the algorithms. Both in theoretical as well as in algorithmic views.
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The methodology to represent an encoding by a matrix factorization is introduced in this
chapter and two algorithms are proposed that rely on this principle.

The conducted experiments are discussed in Chapter 4. We evaluate the discussed
algorithms with regard to their performance and quality of the returned code table on
seven selected binary databases.

Finally, we conclude our observations in Chapter 5.
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Chapter 2

Compressing a Database and related
Foundations

We explain in the following the terms in that a good encoding of the database can be
derived. We discuss the complexity of the problem and give an introduction to related
variants. In particular, we provide an overview on the task of matrix factorization and
the methods of numerical optimization that can be applied to approximate a matrix by a
factorization.

2.1 The MDL principle

MDL has been introduced by Rissanen et al. [39] as an applicable version of the Kolmogorov
complexity [27]. Given a set of models M, the best model is identified as the one that
minimizes the compression size

L(D,M) = L(D|M) + L(M),

whereby L(D|M) denotes the compression size of the database in bits, assuming that model
M is used for the encoding and L(M) is the description size in bits of the model M itself.

2.1.1 Encoding a Database

We define a coding set CS ⊆ P(I) as a set of patterns that contains at least all singleton
itemsets {{x}|x ∈ I} ⊆ CS. Let code : CS → {0, 1}∗ be a mapping from patterns in the
coding set to a finite, unique and prefix-free code. A code table is denoted by a set of pairs

CT ⊆ {(X, code(X))|X ∈ CS},

or equivalently by a two column table where the patterns are listed on the left column
and the assigned codes on the right. Code tables represent the compressing models in
Krimp and can be interpreted as dictionaries for code words. Once the code function is

7



8 CHAPTER 2. COMPRESSING A DATABASE AND RELATED FOUNDATIONS

CT usageCT (X)

{b, d, e} 4

{a, c} 4

{a, g} 2

{e} 2

{f} 4

{g} 2

D encoding set

a, b, d, e, f, g {b, d, e}{a, g}{f}
a, b, c, d, e, g {b, d, e}{a, c}{g}
a, c, e, f {a, c}{e}{f}

a, b, c, d, e, f {b, d, e}{a, c}{f}
a, c, e, g, f {a, c}{e}{g}{f}
a, b, d, e, g {b, d, e}{a, g}

Figure 2.1: An example code table as it is induced by a coding set is depicted on the left, the
usage of the patterns is stated as well. The database and the corresponding encoding set is shown
on the right.

determined, the coding set induces a code table by itself. We use therefore the term code
table simultaneously to describe a coding set, since the association is given more directly
by the former designation. The problem we want to solve can thus be stated as the task
to find the best compressing coding set of a database. The explicit code function that
transfers the coding set into a set of concrete codes is introduced in Section 2.1.2.

The function encode : P(I) → P(CS) determines the way in that a database is en-
coded. It selects the patterns of a coding set, and with that the code words that are used
to encode a specified transaction. Given a transaction t, the set encode(t) is called the
encoding of transaction t and the items x ∈ X ∈ encode(t) are called encoded by X. The
representation of an encoding of the database, as it is given by the patterns that are used to
constitute its transactions, is called the encoding set. Figure 2.1 shows and example code
table, respectively only the left side of the table that denotes the selection of patterns that
are used for the encoding. The concrete codes can then be deduced by the code function.
The function usageCT (X) calculates the number of occurrences of the pattern X in the
encoding set of the database. This function is discussed more detailed in the next section.
On the right of Figure 2.1, we see the respective database and its encoding set.

2.1.2 Computing the Compression Size

We assume that codes are constructed such that more frequently used codes are smaller
in size. The existence of such a set of codes is guaranteed by Theorem 5.4.1 in Cover &
Thomas [15]. The theorem states that for a given distribution P over a finite set X there
exists an optimal set of prefix-free codes such that the length of the codes measured in the
number of required bits L(code(X)) for X ∈ X is given by

L(code(X)) = − log(P (X)). (2.1)
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Codes that satisfy this property are e.g. the Shannon-Fano or Huffman code. We emphasize
that the derivation of an optimal code table does not require a realization of actual codes.
Throughout this work, we simply assume that codes are given that satisfy Eq. (2.1).

Since we want that more frequently used codes have a smaller size, the probability
distribution that describes how likely a code word is used for the encoding has to be
stated. This is induced as follows. Let CT be a code table, respectively the coding set
that induces the code table, and X ∈ CT an itemset of the code table. We denote with
usageCT (X) the number of transactions that are encoded using X, i.e., usageCT (X) =

|{t ∈ D |X ∈ encode(t)}|. Thus, the probability that X is used for the encoding of the
database is given as

P (X) =
usageCT (X)∑

Y ∈CT usageCT (Y )
.

The usage of an itemset X ∈ CT is equal to the frequency of code(X) in the encoded
database. In this respect, the compression size of a database D given a code table CT is
computed by

L(D|CT ) =
∑
t∈D

∑
X∈encode(t)

L
(
codeCT (X)

)
= −

∑
X∈CT

usageCT (X) · log
(
P (X)

)
. (2.2)

Formulation (2.2) as a sum over code table elements allows for a faster computation of the
compression size than the formulation above (2.2) suggests. Since the code table contains
assumable much less sets than transactions in the database exist, the sum in Eq. (2.2) is
computed with low expenses if the usage function is computed capably.

A code table CT is represented in terms of the standard code table that provides codes
for singleton itemsets, i.e., for sets {x} with x ∈ I. The patterns of a code table CT are
described by concatenated singleton-codes as provided by the standard code table ST . So,
the description length of the code table is given by

L(CT ) =
∑
X∈CT

(
L
(
codeCT (X)

)
+
∑
x∈X

L
(
codeST (x)

))

= −
∑
X∈CT

(
log
(
P (X)

)
+
∑
x∈X

log
(

supp({x})
))

. (2.3)

We note that the relative usage of codes in the standard encoding is equal to the support
of the respective singleton.

Applying the MDL principle, the total compression size is calculated as the sum of the
description size of the encoded database given the code table CT and the description size
of the model itself:

L(D,CT ) = L(D|CT ) + L(CT )
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The compression size depends therewith mainly on the obtained usage of codes in the
database. That is in turn determined by the applied encoding or more specifically by the
definition of the function encode. The possibilities to define this function are however
numerous. We summarize briefly how complex it actually is to calculate the best possible
encoding.

2.1.3 Complexity of the Encoding

Since there are at most 2| I | − | I | − 1 patterns with a cardinality greater than one, the
number of possible coding sets with k non-singleton itemsets is equal to

(2| I |−| I |−1
k

)
. In

total there are at most
2| I |−| I |−1∑

k=0

(
2| I | − | I | − 1

k

)
possible coding sets [45]. For each of these coding sets, all possible encoding functions
have to be considered to obtain the best compression. Assuming that codes must not
overlap, i.e., the encoding of a transaction is disjunctive, the best compression for a single
transaction can be determined by an order of the code table for this transaction. Since
there are (k + | I |)! possible orders for a coding set with k non-singleton patterns, the
number of possible encodings of a database D is given as

| D |
2| I |−| I |−1∑

k=0

(
2| I | − | I | − 1

k

)
(k + | I |)!.

This number is quite large. That is also why all algorithms known so far tackle this problem
by a heuristic determination of the encoding function by a static order. If overlap of codes
is allowed, the possibilities to define an encoding are even more numerous.

2.2 Tiling

The encoding of a database has also an interpretation as a tiling of the database. A
tiling is a finite set of pairs T = (X,Y ), consisting of a pattern X ⊆ I and a subset of
covering transactions Y ⊆ cov(X), called tiles. A tile describes also a selection of rows
Xr = {i|xi ∈ X} and columns Yc = {j|tj ∈ Y } of the matrix representation D ∈ {0, 1}n×m

of the database. Since all transactions in Y contain the pattern X, extracting the rows
and columns as described by the tile (Dij)i∈X,j∈Y yields a |X| × |Y | matrix full of ones.
If we reorder the columns and rows of D such that the columns of Yc and rows of Xr are
side by side, we obtain a block full of ones in the data matrix D. Consequently, if we order
the rows and columns of a matrix for a given tiling suitably in a way that all rows and
columns of each tile are next to each other, the tiles can be identified as blocks of ones in
the matrix. Those might also be overlapping. Figure 2.2 shows such a transformation of
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1 1 1 1 1

1 0 1 0 1

0 1 1 1 1

1 0 1 0 1




1 2 3 4 5

1

2

3

4

1 1 1 1 0

1 1 1 1 1

0 0 1 1 1

0 0 1 1 1




2 4 3 5 1

3

1

2

4

Figure 2.2: Permutation of rows and columns such that items and transactions of the tiles
T1 = ({1, 3}, {2, 3, 4, 5}) (green) and T2 = ({1, 2, 4}, {1, 3, 5}) (red) are next to each other.

a binary matrix with two tiles from its original representation to the one with permuted
rows and columns that reveals the inherent structure of the tiling.

There are various challenges that can be formulated with respect to tiling [19]. Those
that intend to find a collection of tiles that describes the database are Maximum k-Tiling
and Minimum Tiling. In Maximum k-Tiling, the goal is to find for a specified number of
at most k tiles a tiling that covers as many ones in the database as possible. By contrast,
a Minimum Tiling is a decomposition of the database into as few tiles as possible. In this
respect, the encoding of a database yields also a tiling. An itemset X of a code table
indicates also a pattern of a tile T = (X,Y ) whose respective transactions Y are defined
as the transactions that are encoded by this pattern. The derivation of an encoding that
compresses the database best is thus related to the derivation of a Minimum Tiling. The
difference is that not only as few tiles as possible shall be used, but the assignment of
columns to patterns that denote the usage, shall induce a small compression size. As
pointed out in [41], a Minimum Tiling does not yield good code tables. However, the first
few tiles mined by a greedy procedure, that chooses in every iteration the tile that covers
most of the ones, typically do compress well. The relationship to this kind of problems
indicates also the inherent clustering properties of an MDL related compression as we now
point out.

2.2.1 Relations to Boolean Matrix Factorization

A tiling poses a boolean matrix factorization of the regarded data matrix [34]. That is an
approximation of a binary matrix D ≈ X ◦Y by the boolean matrix product of two factor
matrices X ∈ {0, 1}n×r and Y ∈ {0, 1}r×m of a given rank r ∈ N. As such, the tiling
displayed in Figure 2.2 yields the following factorization.

1 1 1 1 1

1 0 1 0 1

0 1 1 1 1

1 0 1 0 1


 =

1 1

1 0

0 1

1 0


 ◦ 1 0 1 0 1

0 1 1 1 1

( )
= X ◦ Y

We can see that every tile corresponds to the product of a column of X and a row of Y , i.e.,
for T1 = ({1, 3}, {2, 3, 4, 5}) colored in green, the first and third entry of the corresponding
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column in X and the second to the fifth entry of the corresponding row in Y are set to one.
Similarly, a tiling with non overlapping tiles poses a binary matrix factorization (BMF)
D ≈ X · Y with X ∈ {0, 1}n×r and Y ∈ {0, 1}r×m.

The problem of finding a good approximation by a boolean matrix factorization is
also referred to as the Discrete Basis Problem (DBP), which is known to be NP-hard and
NP-hard to approximate [34]. The word basis refers thereby to the interpretation of the
columns of X as basis vectors whose linear combinations denoted by the coefficients in Y
construct the columns of the data matrix D. E.g., the last column of our example matrix
is computed by
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This representation establishes an interpretation of the DBP as a possibly overlapping
clustering of the columns in D. This is justified by the conjunction of Nonnegative Matrix
Factorization and the DBP.

2.3 Matrix Factorization

The most common application in the field of Matrix Factorization is the task of Nonnegative
Matrix Factorization (NMF). It can generally be described as the approximation of a matrix
D ∈ Rn×m with n ∈ N features and m ∈ N observations by the product of two matrices
X ∈ Rn×r+ and Y ∈ Rr×m+ for a given rank r ∈ N. The quality of the factorization is
often measured by the residual sum of squares (RSS), i.e., a small RSS results in a good
factorization. The objective is therefore given as

min
X,Y

F (X,Y ) =
1

2
‖D −XY ‖2. (2.4)

Initially, the differences between NMF and clustering have been emphasized [24]. Further
research affirmed however the inherent clustering properties [29]. In that view, basis vectors
resemble cluster centroids and the coefficient Ysj indicates the degree with that the j-th
observation D·j is associated to the s-th cluster X·s. Binary restrictions on Y ∈ {0, 1}r×m

make the cluster memberships definite. Orthogonality constraints Y TY = I enforce addi-
tionally unique cluster assignments and the corresponding matrix factorization problem is
equivalent to the problem of k-means clustering [18, 17]. If the data matrix D ∈ {0, 1}n×m

is binary, it might be desirable to restrict both matrices X and Y to binary values, at
least to get interpretable results for the cluster centroids [28]. This formulation has also a
reading as a simultaneous clustering of data points and features, also known as biclustering.
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Biclustering is especially applied to identify groups of highly related genes in sample
subsets from gene expression data [6]. Other applications include textmining as a simul-
taneous clustering of words and documents, and collaborative filtering, as a simultaneous
clustering of users and opinions [12]. Similarly, Miettinen et al. consider the DBP with
respect to a topic extraction from documents as it is described for topic models [16, 7].
As evaluated by Zhang et al. [47, 48], Binary Matrix Factorization (BMF) is a favorable
technique that outperforms common biclustering algorithms on synthetic as well as real
world datasets.

We review now common methods of NMF and discuss afterwards how these attempts
can be extended to BMF.

2.3.1 Algorithms for Nonnegative Matrix Factorization

NMF has been introduced by Paatero et al. [36] initially under the name Positive Matrix
Factorization and received much attention since the publication of the easily implementable
multiplicative update algorithm by Lee and Seung [25]. This procedure is sketched in Alg. 1.
For each of the K iterations, the matrices are updated alternating by an elementwise

Algorithm 1 Multiplicative Update NMF
1: procedure MultMF(D, r,K)
2: Initialize X0 ∈ Rn×r and Y0 ∈ Rr×m randomly
3: for k ∈ {1, . . . ,K} do
4: (Xk)is = (Xk)is

(Y Tk D)is
(Y Tk YkXk)is

5: (Yk)sj = (Yk)sj
(DXT

k+1)sj

(YkXk+1X
T
k+1)sj

6: end for
7: return (XK , YK)

8: end procedure

multiplication with respect to one matrix while the other one is fixed. That way, the
generated sequence (Xk, Yk) preserves nonnegativity of the factor matrices and it can be
proven that it is nonincreasing with respect to the objective function values F (Xk, Yk).
Furthermore, the sequence is proven to converge to a critical point [30], but convergence is
slow in practice [31, 4]. By contrast, good convergence rates are obtained by an application
of the Gauss-Seidel scheme, also known as block-coordinate descent. This procedure is
outlined in Alg. 2. In this procedure, the function values are alternatingly minimized
with respect to one matrix while the other one is fixed. The convergence of the generated
sequence (Xk, Yk) is therefore granted, because the objective F of Eq. (2.4) is convex in
X if Y is fixed and the other way round. In this case, a sequence (Xk, Yk) generated by
the scheme above, converges to a stationary or critical point [5]. The limit is however not
necessarily a local minimizer of the objective function and finding the global minimum
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Algorithm 2 Block Coordinate Descent NMF
1: procedure BlockCoordDescentMF(D, r,K)
2: Initialize X0 ∈ Rn×r and Y0 ∈ Rr×m randomly
3: for k ∈ {1, . . . ,K} do
4: Xk ∈ arg minX∈Rn×r+

F (X,Yk−1)

5: Yk ∈ arg minY ∈Rn×r+
F (Xk, Y )

6: end for
7: return (XK , YK)

8: end procedure

is NP-hard [42]. We point out that, whether the subproblems at lines 3 and 6 can be
solved efficiently is crucial to the performance of the algorithm. In general, we could
apply gradient descent to solve these subproblems. This method relies on the first Taylor
approximation of a function. We summarize concisely this basic optimization algorithm.

Gradient Descent Let f : Rn → R be a continuously differentiable function and p ∈ Rn.
According to Taylor’s theorem, it holds that

f(x+ p) = f(x) +∇f(x)T p+ o(‖p‖). (2.5)

Given a scalar α > 0 and p = −α∇f(x), the function value of x decreases in the direction
of −∇f(x)

f
(
x− α∇f(x)

)
= f(x)− α‖∇f(x)‖2 + o(‖α∇f(x)‖)

⇔ f
(
x− α∇f(x)

)
− f(x) = −α‖∇f(x)‖2 + o(α‖∇f(x)‖)

⇔
f(x)− f

(
x− α∇f(x)

)
α‖∇f(x)‖

= −‖∇f(x)‖+
o(α‖∇f(x)‖)
α‖∇f(x)‖

< 0,

if α is sufficiently small. A minimum of a function can thus be approximated by taking
iterative steps that point into the direction of the negative gradient. This procedure is
shown in Alg. 3. For a specified number of maximal iterations, the steps are taken with a
stepsize α (line 8). The algorithm stops if the critical point is approximated sufficiently,
i.e., ‖∇f(xk)‖ ≈ 0 (line 5) or a number of maximal iterations K is reached.

The crucial part of this algorithm is the determination of the stepsize. In the ideal case
it is determined such that the function value is minimized in the direction of the negative
gradient

α∗ = arg min
α>0

f
(
xk − α∇f(xk)

)
.

However, the approximation of this optimal stepsize is too expensive. In practice, a method
is used that determines a suitable stepsize in few iterations. Examples are the Wolfe or
backtracking linesearch [46]. The backtracking linesearch algorithm is denoted in Alg. 4.
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Algorithm 3 Gradient Descent
1: procedure GradientDescent(f, x1, ε,K)
2: k ← 1

3: while k < K do
4: if ‖∇f(xk)‖ < ε then
5: break
6: end if
7: Choose a stepsize αk > 0

8: xk+1 ← xk − αk∇f(xk)

9: k ← k + 1

10: end while
11: return xk

12: end procedure

It is an easily implementable method to derive a stepsize that decreases the function value
and that is perhaps not too small. It starts with a specified stepsize α0 and decreases it for
maximal T iterations by a factor ρ until the sufficient decrease condition (line 4) is fulfilled.
The sufficient decrease condition, also known as Armijo condition, shall guarantee that the
generated sequence of iterates xk does not converge to a non stationary point. This might
happen if the sequence of stepsizes αk → 0 decreases too rapidly. Therefore, the stepsize
is chosen depending on the size of the gradient. If the gradient is large, i.e., a stationary
point is not yet approached, the function value in the descent direction shall also decrease
much more in relation to the stepsize. The sufficient decrease condition is however satisfied
for all sufficiently small stepsizes. That’s why the stepsize is only decreased as much as
necessary, beginning with a possibly high value of α0. The parameters are usually set to
α0 = 1, ρ = 0.5 and c = 10−4.

Algorithm 4 Backtracking Linesearch
1: procedure BacktrackingLS(f, xk, α0, ρ, c, T )
2: t← 0

3: while t < T do
4: if f

(
xk − αt∇f(xk)

)
≤ f(xk)− cαt‖∇f(xk)‖ then

5: break
6: end if
7: αt+1 ← ραt

8: t← t+ 1

9: end while
10: return αt

11: end procedure
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In contrast to the aforementioned Wolfe linesearch, the backtracking linesearch does
not require an evaluation of the gradient at each iteration. It does however compute the
function value in the descent direction for every step. Depending on the complexity of the
function, this procedure might also be very expensive.

We might see that gradient descent is not an appropriate approach to solve the sub-
problems in Alg. 2. The nested determination of optimal values results in a ridiculously
slow performance. As a naive and practical version of Alg. 2 we can perform instead only
a single gradient descent step to decrease the function value. We refer to this method as
the projected gradient descent which is displayed in Alg. 5. For K iterations, the matrices

Algorithm 5 Projected Gradient Descent NMF
1: procedure ProjGradDescentMF(D, r,K, T, F )
2: Initialize X0 ∈ Rn×r+ and Y0 ∈ Rr×m+ randomly
3: for k ∈ {1, . . . ,K} do
4: αk ← BacktrackingLS(F, (Xk, Yk), T )

5: Xk+1 ← P+

(
Xk − αk∇XF (Xk, Yk)

)
6: αk ← BacktrackingLS(F, (Xk+1, Yk), T )

7: Yk+1 ← P+

(
Xk+1 − αk∇Y F (Xk+1, Yk)

)
8: end for
9: return (XK , YK)

10: end procedure

are updated in an alternating fashion by a projected gradient descent step. The function
P+(·) maps thereby negative entries of a matrix to zero. If the function F is equal to the
RSS (2.4), the gradients are given as

∇XF (X,Y ) = (XY −D)Y T

∇Y F (X,Y ) = XT (XY −D).
(2.6)

2.3.2 Algorithms for Binary Matrix Factorization

Considering BMF, few attempts have been made to derive algorithms that solve this kind
of problem. The only algorithms known to me are the ones of Zhang et al. [47, 48]. They
propose two algorithms. The first one has the resulting factor matrices of a NMF as input
and derives a suitable threshold for each of the matrices at which the entries can be rounded
by the heavyside step function θ : R× R→ {0, 1} to one or zero

θ(x, a) =

1 x > a

0 x ≤ a.
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Figure 2.3: Plots of the heavyside function θ and its approximation φ.

We denote by the uppercase Θ : Rn×r×R→ {0, 1}n×r the corresponding function applied
to the entries of a matrix Θ(X, a) = (θ(Xis, a))is. Given two NMF factor matrices X and
Y , the algorithm tries to find the

min
a,b

Fθ(a, b) =
1

2
‖D −Θ(X, a)Θ(Y, b)‖2F

The thresholds are obtained by a gradient descent procedure on a smooth approximation
of the heavyside function φη : R× R→ {0, 1} displayed on the right in Figure 2.3

φη(x, a) =
1

1 + eη(a−x)

with Wolfe or backtracking linesearch. Again, we denote by the uppercase formulation
Φη : Rn×r → {0, 1}n×r, Φη(X, a) = (φη(Xis, a))is the equivalent function applied to a
matrix. Therewith, the objective of the algorithm changes to

min
a,b

Fφ(a, b) =
1

2
‖D − Φη(X, b)Φη(Y, b)‖2.

The minimization of the objective function is drafted in Alg. 6. The matrices X and Y are
initialized by an arbitrary nonnegative matrix factorization algorithm NMF and suitable
thresholds are derived by a common gradient descent procedure. The derivative of Fφ can

Algorithm 6 Threshold BMF
1: procedure ThresholdBMF(D, r,K, T )
2: (X,Y )← NMF(D, r)

3: (a0, b0)← (0.5, 0.5)

4: for k ∈ {1, . . . ,K} do
5: αk ← BacktrackingLS(Fφ, (ak, bk), T )

6: (ak+1, bk+1)← (ak, bk)− αk∇Fφ(ak, bk)

7: end for
8: return

(
Θ(X, aK),Θ(Y, bK)

)
9: end procedure
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Figure 2.4: Plot of the function ω.

be calculated by a simple application of the chain rule. We state here only the derivative
of the function φη which we will need later

∂

∂x
φη(x, a) = φη(x, a)

(
1− φη(x, a)

)
. (2.7)

As evaluated in [48] this algorithm yields good results if the data matrix is sparse. The
second algorithm aims at solving the BMF problem in terms of nonlinear programming.
The function ω : R → R+, ω(x) = 1

2(x2 − x)2 attains its minimum at binary values (see
Figure 2.4) and can be utilized to determine if a matrix is binary

min
X,Y

1

2
‖D −XY ‖2

s.t.
∑
i,s

ω(Xis) = 0

∑
s,j

ω(Ysj) = 0.

Given a weighting parameter λ ∈ R+, this problem can be solved by the introduction of
penalizing terms

min
X,Y

Fω(X,Y ) =
1

2
‖D −XY ‖2 +

λ1

2
‖X ∗X −X‖2 +

λ2

2
‖Y ∗ Y − Y ‖2 (2.8)

= F (X,Y ) + λ1

∑
i,s

ω(Xis) + λ2

∑
s,j

ω(Ysj).

The minimization is performed by alternating multiplicative updates that are equivalent
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to gradient descent steps with the longest stepsize that preserves nonnegativity. An outline
of this procedure is given in Alg. 7. Since no linesearch method is applied, the generated
sequence of function values Fω(Xk, Yk), k ∈ N is not necessarily nonincreasing. Zhang et

Algorithm 7 Penalizing BMF
1: procedure PenalBMF(D, r, λ,K)
2: Initialize X0 ∈ Rn×r and Y0 ∈ Rr×m randomly
3: for k ∈ {1, . . . ,K} do
4: (Xk+1)is = (Xk)is

(DY Tk )is+3λ(Xk)2is
(XkYkY

T
k )is+2λ(Xk)3is+λ(Xk)is

5: (Yk+1)sj = (Yk)sj
(XT

k+1D)sj+3λ(Yk)2sj
(XT

k+1Xk+1Yk)sj+2λ(Yk)3sj+λ(Yk)sj

6: end for
7: return (Θ(XK , 0.5),Θ(YK , 0.5))

8: end procedure

al. pointed out that this algorithm performs superior on rather dense matrices [48]. The
derivative of the function ω is stated as

d

dx
ω(x) = (x2 − x)(2x− 1). (2.9)
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Chapter 3

Algorithms

In this chapter we review existing approaches and develop new views on the derivation
of the best encoding by a code table. First, I describe the heuristic procedures Krimp,
Slim and SHrimp. We will see how a set of frequent patterns can be filtered, how the
contribution of a pattern to the encoding can be estimated and what insights are provided if
we apply a tree data structure to represent the encoding. We discuss how these procedures
might be improved, either in speed or with respect to the quality of the returned result.
Then, we have a look at the representation of an encoding by a matrix factorization. This
introduces a new point of view on Krimp related problems and draws a connection to the
task of clustering.

3.1 Krimp

Krimp [45] is the first algorithm that has been proposed to find the code table that
compresses the database best. To determine a suitable encoding out of the enormous
amount of possible ones (see Section 2.1.3), Siebes et al. indicate to apply an heuristic
fixed order of the coding set in that the items of each transaction are encoded. In a
greedy procedure, every itemset from a pool of candidates is considered once and added to
the coding set if that improves the compression size. To refine the coding set during the
candidate selection, mechanisms of pruning are exerted.

Let’s have a look at the procedure of Krimp as it is stated in Alg. 8. The input is
given by the database D and the frequent patterns of a preferably low minimum support
F . The frequent patterns are sorted in the order in that they are proceeded, the standard
candidate order. That is first decreasing on support, second decreasing on cardinality and
at last lexicographically (line 2). Therewith, the most frequent patterns with the potential
to get shorter codes by a high usage, are considered first. Longer patterns that cover
many items by one code, are preferably regarded under those with equal support. The
code table is initialized to the standard code table (line 3) and revised while the set of

21
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Algorithm 8 Krimp
1: procedure Krimp(D,F)
2: F ← sort(F) . in standard candidate order
3: CT ← StandardCodeTable(D)

4: for X̂ ∈ F \ I do
5: ĈT ← CT ∪ X̂
6: if L(D, ĈT ) < L(D, CT ) then
7: CT ← Pruning(ĈT , CT )

8: end if
9: end for

10: return CT
11: end procedure

candidate patterns is traversed. A candidate is added to the code table if this reduces the
compression size (lines 4-9).

Since the compression size decreases monotonically in the number of regarded candi-
dates, this procedure achieves the best compression if as many candidates as possible are
regarded, i.e., the minimum support is set to 1

|D| . This set of occurring patterns is difficult
to maintain in memory for many databases and in practice, a suitable minimum support
has to be put.

Computing the Usage. To compute the resulting compression size for every candidate
pattern, the corresponding usage function has to be computed. The usage calculation
relies on the method Encode (Alg. 9). It is invoked for every transaction that contains
the currently regarded candidate pattern. Assuming that the code table is sorted by a total
order, the algorithm traverses the code table and selects the first pattern that is contained
in the specified transaction (line 2). The used order for this procedure is called standard
encoding order that is first decreasing on cardinality, second decreasing on support and
at last lexicographically. If the transaction is encoded completely by elements of the code
table, the algorithm stops (line 3), otherwise the procedure is called recursively for the
uncovered part of the transaction (line 6). This procedure is called for every transaction
and each of the numerous candidate patterns in the worst case. An efficient implementation
of this procedure is thus crucial to the performance of the algorithm.

3.1.1 Pruning

The insertion of an itemset to the code table might decrease the usage of other code table
elements. A decrease in the usage results in an increase of the code length. It is therefore
possible that a removal of those patterns with a decreased usage improves the compression
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Algorithm 9 Encoding of a transaction
1: procedure Encode(t, CT )
2: X∗ ← min{X|X ⊆ t ∧X ∈ CT}
3: if t \X∗ ← ∅ then
4: return {X∗}
5: else
6: return {X∗} ∪ Encode(t \X∗)
7: end if
8: end procedure

size. The pruning method Alg. 10 regards all patterns whose usage has been decreased and
decides for each of these patterns if it should be removed. The input of this algorithm is a
code table CT and a modified version ĈT . The set of pruning candidates is denoted by P ,
that is initialized to all patterns that have a lower usage in the modified code table (line 2).
The pruning candidates are regarded in an order such that the ones with the lowest usage
are regarded first. If the removal of a pruning candidate improves the compression, the
candidate is took off and the pruning candidates are extended to the ones whose usage
is decreased by this action (lines 7- 10). This procedure is repeated until all pruning
candidates have been considered. As it has been evaluated for 27 datasets in [45], the

Algorithm 10 Pruning of a Code Table

1: procedure Pruning(ĈT , CT )
2: P ← {X ∈ CT |usage

ĈT
(X) < usageCT (X)}

3: while P 6= ∅ do
4: X̂ ← arg min

X∈ĈT {usageĈT (X)}
5: P ← P \ X̂
6: C̃T ← ĈT \ X̂
7: if L(D, C̃T ) < L(D, ĈT ) then
8: P ← P ∪ {X ∈ C̃T |usage

C̃T
(X) < usage

ĈT
(X)}

9: ĈT ← C̃T

10: end if
11: end while
12: return ĈT

13: end procedure

application of pruning enhances the resulting compression size for all examined datasets
at least a bit. More significant is however the reduction in the number of used code table
elements that can be achieved by pruning, e.g. from 4046 elements to 467 elements for the
Accidents dataset.
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Figure 3.1: Representation of a code table by a list of lists. The vertical array stores pointers to
the lists of code table elements whose cardinality is equal to the number of the cell in the array.

3.1.2 Computational Details

The method Encode as it is displayed in Alg. 9 is easy to implement, but that is not how
the usage should be determined in practice. There are multiple tricks that can be used to
reduce the computation time of the compression size with respect to the candidate code
table. First, an implementation of transactions and patterns as bitvectors with | I | bits
allows for a fast check if a candidate pattern is contained in a transaction. Second, an
implementation of the code table as an array of lists as displayed in Figure 3.1 enables a
fast determination of the insertion point of a candidate set. The array contains at position
i a list with all the code table elements that have a cardinality of i. The elements in the list
are stored decreasingly on their support. Thus, the insertion point of a candidate pattern
is always at the end of the list at the array position which is equal to its cardinality. That
is because candidate patterns are regarded decreasingly on their frequency. Third, for a
transaction t and a candidate pattern X̂ ⊆ t, it should be ascertained first if X̂ is used for
the encoding of t at all. If there is a pattern X ∈ CT that is preceding to X̂ with regard
to the standard encoding order, that is used for the encoding X ∈ encode(t) and that has
a nonempty intersection X ∩ X̂ 6= ∅, then X̂ /∈ encode(t). Otherwise, the changes in the
usage for itemsets that are preceded by X̂ can be determined afterwards.

3.1.3 Complexity

The computational expensive part in Krimp is the determination of the compression size
for each candidate code table. Therefore, the candidate usage function has to be obtained
and the whole code table has to be traversed for every transaction in the worst case.
Checking whether a code table element is used for the encoding of t or not is done in
O(|I|) time by checking if X ⊆ t in Alg. 9. Thus, the computation of the usage function
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given a code table CT takes O(| D ||CT || I |) time. The resulting compression size can
be obtained in O(|CT |) when the database description size is computed by Eq. (2.2).
The overall computation time, regarding all of the candidates F results therewith in a
complexity of

O(|F|| D ||CT || I |).

CT denotes the output code table, which is the largest code table obtained during the
algorithm. If we apply pruning, all elements of the code table have to be reconsidered for
every candidate in the worst case. Taking the time O(|F| log(F)) for sorting the candidates
in the beginning into account, we obtain an overall used time of

O(|F|(log |F|+ | D ||CT |2| I |)),

when CT denotes the set of all candidate patterns that have been accepted during the
runtime of the algorithm.

Siebes et al. state in [45], that the factor | D ||CT || I | can be neglected in the big-O
notation. They argue that for transactions and patterns that are implemented as bitvec-
tors, i.e., as an array of 64 bit integers, a subset check is done in constant time and the
identification of relevant transactions for a candidate pattern takes therefore also constant
time. Further, they indicate that the number of relevant transactions d whose encoding
changes with the integration of a candidate and the number of elements in the code table
are comparably small |CT |, d << | D | << |F| and can thus be regarded as a constant.
These considerations result in a time complexity of O(|F| log |F|+|F|), but the conclusions
are questionable.

A bitvector implementation of a set with at most | I | elements needs still O
(
| I |
64

)
=

O(| I |) operations to make a subsetcheck. Thus, an identification of the relevant transac-
tions needs at least |D| operations and overall, at least O(|F|(|D|+log |F|)) operations are
required. An even more severe issue, that is difficult to handle in practice, is the memory
requirement of Krimp that is dominated by the storage of frequent patterns. The algo-
rithm Slim , discussed in Section 3.2, and the matrix factorization formulations discussed
in Section 3.4 overcome this issue.
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3.2 Slim

Smets et al. propose in [41] the algorithm Slim , that mines the candidate patterns directly
from the current code table. The same heuristic assumptions are made as in Krimp , i.e.,
the encoding of a transaction is determined by the standard encoding order and codes
may not overlap. Candidates are generated by a combination of code table elements and
a heuristic estimation of the compression improvement that induces a candidate to the
code table is applied to determine the next candidate. To reduce the number of considered
combinations, heuristic bounds are applied and only the set of top-k candidates is derived
in each iteration.

3.2.1 Mining good Candidates

The intuition behind Slim is that the pattern that decreases the compression size most
should be added to the code table in every iteration. The decrease of the compression size
that goes along with the insertion of a candidate pattern X̂ to a code table CT is measured
as the compression gain of the candidate code table ĈT = CT ∪ X̂ and is defined as

∆L(ĈT ,D) = L(CT,D)− L(ĈT ,D)

= ∆L(D |ĈT ) + ∆L(ĈT | D).

The computation of the gain involves the computation of the compression size with regard
to all possible candidates as it is done in Krimp for the frequent patterns. This results in
an algorithm that requires about as many operations as Krimp , but for every iteration
when a pattern is merged to the code table. This is not computationally feasible for many
databases. Hence, the impact that an integrated pattern has on the usage function and
therewith on the compression size, is estimated. Furthermore, the pool of candidates is
restricted to the ones that can be generated by the union of two code table elements. Given
two code table entries X1 and X2, the usage of the candidate pattern X̂ = X1 ∪ X2 is
bounded below by the number of transactions that are encoded by both patterns X1 and
X2

usage(X̂) ≥ |{t ∈ D |{X1, X2} ⊆ encode(t)}|. (3.1)

That is, because the pattern X̂ is preceding to the elements X1, X2 in the encoding order as
it contains more items, and therewith all simultaneous encodings ofX1 and X2 are replaced
by X̂. However, there might also be some transactions that are encoded by a pattern
Y � X1/2 that prevents an encoding by X1/2, but that would however be dominated by
the candidate X̂ � Y . These transactions are not taken into account by the set on the
right size of Eq. (3.1), and the estimation is therefore not exact. The bound can however
be used to estimate the compression improvement that comes in with a candidate pattern.
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Estimating the Compression Gain For a brief notation, we denote in the following by
uCT the usage with respect to a code table CT and by ũ

ĈT
the estimated usage with respect

to the candidate code table. We assume that the usage changes only for the candidate and
the joined patterns

ũ
ĈT

(X) =


|{t ∈ D |{X1, X2} ⊆ encode(t)}| X = X̂

uCT (Xi)− ũĈT (X̂) X ∈ {X1, X2}

uCT (Xj) X ∈ CT \ {X1, X2}.

That way, the cascading effects on the usage of code table elements that are succeeding
to X1 or X2 are not taken into account, but those effects are hard to predict and not
often dramatic [41]. With the uppercase formulations Ũ

ĈT
=
∑

X∈ĈT ũĈT (X) and UCT =∑
X∈CT uCT (X), we denote the sums of the usage of all corresponding code table elements.

The compression gain of the description size of the database is by these assumptions
estimated as

∆L̃(D |ĈT ) = L(D |CT )− L̃(D |ĈT )

= −
∑
X∈CT

uCT (X) log

(
uCT (X)

UCT

)
+
∑
X∈ĈT

ũ
ĈT

(X) log

(
ũ
ĈT

(X)

Ũ
ĈT

)

= −
∑

X∈{X1,X2}

(
uCT (X) log (uCT (X))− ũ

ĈT
(X) log

(
ũ
ĈT

(X)
))

+ ũ
ĈT

(X̂) log
(
ũ
ĈT

(X̂)
)

+ UCT log (UCT )− Ũ
ĈT

log
(
Ũ
ĈT

)
.

(3.2)

Correspondingly, the compression gain of the model description size is estimated by

∆L̃
(
ĈT | D

)
= L(CT | D)− L̃

(
ĈT | D

)
= −

∑
X∈CT

(
log

(
uCT (X)

UCT

)
+
∑
x∈X

log(supp(x))

)

+
∑
X∈ĈT

(
log

(
u
ĈT

(X)

Ũ
ĈT

)
+
∑
x∈X

log(supp(x))

)

= −
∑

X∈{X1,X2}∩ĈT

(
log (uCT (X))− log

(
ũ
ĈT

(X)
))

−
∑

X∈{X1,X2}\ĈT

(
log (uCT (X)) +

∑
x∈X

log(supp(x))

)

+ log
(
ũ
ĈT

(X̂)
)

+
∑
x̂∈X̂

log(supp(x̂))

+ |CT | log (UCT )− |ĈT | log
(
Ũ
ĈT

)
.

(3.3)

The formulation (3.3) describes the changes in the code length of X1 and X2 if the pat-
terns is still used in the encoding by the candidate code table (first line) or the changes
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that take place if one code is not used anymore, which might happen if ũ
ĈT

(X̂) =

min{uCT (X1), uCT (X2)} (second line). The last two lines indicate the description size
of the candidates code and the affects on the sum of the usage.

The Algorithm The algorithm Slim (Alg. 11) is very similar to Krimp , the only dif-
ference is that candidate patterns are obtained dynamically and depending on the current
code table. Therefore, Slim needs as input only the database D and no frequent patterns.
The code table is initialized to the standard code table (line 2) and candidates are accepted
greedily whenever that improves the compression size. The candidates are generated by
unions of code table patterns and selected according to the gain order, i.e., the candidate
that improves the approximate compression size most is examined first (line 3). A candi-
date pattern is added to the code table if that improves the compression size (lines 4-7).
If a candidate is accepted, the method of pruning as described in Section 3.1.1 is applied
(line 6) and the set of candidate patterns is updated.

Algorithm 11 Slim
1: procedure Slim(D)
2: CT ← StandardCodeTable(D)

3: for X̂ ∈ {X1 ∪X2|X1, X2 ∈ CT} do . in gain order
4: ĈT ← CT ∪ X̂
5: if L(D, ĈT ) < L(D, CT ) then
6: CT ← Pruning(ĈT , CT )

7: end if
8: end for
9: return CT

10: end procedure

Determining the best Candidate

The identification of the next best candidate in line 3 is computational expensive. New
candidates have to be generated and sorted by the estimated compression gain after one of
them has been accepted. Since the first few candidates with a high estimated compression
gain are likely to improve the compression size indeed, only the top-k candidates that have
not been regarded for the current code table, are provided in the for loop of line 3. To
discover the top-k candidates in a reasonable time, further heuristics are applied.

The possible patterns X1 ∈ CT are considered descending on usage and candidates
X̂ = X1 ∪X2 are generated by a union with a pattern X2 succeeding to X1 with respect
to its usage, i.e., uCT (X1) ≥ uCT (X2). Therewith, the usage of a candidate u

ĈT
(X̂) ≤

uCT (X2) ≤ uCT (X1) is bounded above by the usage of X1 or X2 and the lower the usage
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of X2 is, the less impact does the insertion of the candidate have on the compression.
This observation is used to determine which combinations of patterns are potential top-k
candidates.

For every pattern X1, it is decided if the usage is large enough to grant a sufficiently
good estimated compression gain. Assuming that all occurrences of X1 or X2 are encoded
by X̂, and that the usage of X2 is maximal uCT (X1) = uCT (X2), an upper bound on the
estimated compression gain of the database description size is approximated by

∆̃L̃(D |CT ∪ {X1}) = −2uCT (X1) log
uCT (X1)

UCT
+ uCT (X1) log

uCT (X1)

UCT − u(X1)
. (3.4)

We note, that this guess on the maximal compression gain is not equal to the estimated
compression gain (3.2) under the above assumptions, since changes of the usage sum are not
reflected. The formula provides however a reasonable estimate on the achievable compres-
sion gain and if this maximal compression gain ∆̃L̃(D |CT ∪ {X1}) < ∆L̃(D, CT ∪ {X̂k})
is less than the estimated compression gain for the the last candidate X̂k of the current
collection of top-k candidates, then the obtained set of top-k patterns is assumed to be
complete and the candidate generation algorithm stops.

A similar threshold is applied to decide whether a candidate X̂ = X1 ∪ X2 can be
excluded from being in the top-k if the usage of X2 is small. Herefore, it is assumed that
all occurrences of X2 are encoded by X̂ and thus the maximal database description gain
is approximated by

∆̃L̃(D |CT ∪ {X1 ∪X2}) = −uCT (X1) log
uCT (X1)

UCT
− uCT (X2) log

uCT (X2)

UCT

+ (uCT (X1)− uCT (X2)) log
uCT (X1)− uCT (X2)

UCT − u(X2)

+ uCT (X2) log
uCT (X2)

UCT − u(X2)
.

(3.5)

The terms of the first row describe the fact that the old codes of X1 and X2 are not used
anymore. The usage of X2 decreases to zero and the usage of X1 decreases by the usage
of X2 while the candidate is introduced with the usage of X2, so the sum of all usages
in the candidate code table is equal to UCT − uCT (X2). The corresponding affects on
the description size by the candidate code table are given in the second (encoding size of
X2) and third line (encoding size of the candidate pattern). Again, the affect on the code
lengths of other codes by a decreased usage sum is not taken into account. Also, the effects
on the compression size of the code table, i.e., on the model description size, are hard to
predict and are also not considered in this estimate.

If the maximal achievable compression gain (3.5) is greater than the lowest estimated
compression size of the top-k candidates ∆̃L̃(D |CT ∪ {X1}) > ∆L̃(D, CT ∪ {X̂k}), the
actual estimated compression size of L̃(D, CT ∪ {X̂}) is calculated and the candidate is
added to the set of top-k patterns depending on the result. Otherwise, the next pattern
X1 and its combinations are regarded.
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3.2.2 Bounding the maximal achievable gain

The code tables of Slim yield superior compressions for many databases in comparison to
the ones of Krimp. However, the algorithm uses several heuristics and heuristic approx-
imations of the used heuristics. Therefore, we derive now an actual upper bound on the
estimated compression gain. Afterwards, we have a look on the differences to the used
heuristic.

3.2.1 Proposition. Given a code table CT and two patterns X1, X2 ∈ CT , we denote
by ĈT = CT ∪ {X̂} the candidate code table that is created by the insertion of a pattern
X̂ = X1 ∪ X2 into CT . Let X ∈ {X1, X2} be one of the joined patterns, the estimated
compression gain of the database description size (3.2) is then bounded above by

∆L̃
(
D | ĈT

)
≤ (UCT−uCT (X)) log

(
UCT

UCT − uCT (X)

)
−uCT (X) log

(
uCT (X)

UCT

)
. (3.6)

Proof. A reformulation of the compression gain in Eq. (3.2), where the logarithm of a
fraction is not calculated by a sum, yields

∆L̃(D |ĈT ) =
∑

X∈CT\{X1,X2}

(
uCT (X)

(
log

(
uCT (X)

Ũ
ĈT

)
− log

(
uCT (X)

UCT

)))

+
∑

X∈{X1,X2}

(
ũ
ĈT

(X) log

(
ũ
ĈT

(X)

Ũ
ĈT

)
− uCT (X) log

(
uCT (X)

UCT

))

+ ũ
ĈT

(X̂) log

(
ũ
ĈT

(X̂)

Ũ
ĈT

)
.

The logarithmic terms in the first line can be shortened by an application of the logarithmic
properties and the sum over all usages excluding X1 and X2, can be calculated by means
of the usage sum UCT . The usage estimations in the argument of the logarithm function
of the second line can be bounded above by uCT (X1) or uCT (X2), such that

∆L̃(D |ĈT ) ≤ (UCT − uCT (X1)− uCT (X2)) log

(
UCT

Ũ
ĈT

)

+
∑

X∈{X1,X2}

(
ũ
ĈT

(X) log

(
uCT (X)

Ũ
ĈT

)
− uCT (X) log

(
uCT (X)

UCT

))

+ ũ
ĈT

(X̂) log

(
ũ
ĈT

(X̂)

Ũ
ĈT

)
.
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Figure 3.2: Plot of the heuristic and the actual bound on the maximal achievable gain if the
usage of one of the joined patterns is given by the values of the x-axis and the overall sum of usages
is equal to 100.

Sorting the logarithmic terms in the first line according to the usage factors yields

∆L̃(D |ĈT ) ≤ UCT log

(
UCT

Ũ
ĈT

)
+ ũ

ĈT
(X̂) log

(
ũ
ĈT

(X̂)

Ũ
ĈT

)

+
∑

X∈{X1,X2}

(ũ
ĈT

(X)− uCT (X)) log

(
uCT (X)

Ũ
ĈT

)

= UCT log

(
UCT

Ũ
ĈT

)

+ ũ
ĈT

(X̂)

log

(
ũ
ĈT

(X̂)

Ũ
ĈT

)
−

∑
X∈{X1,X2}

log

(
uCT (X)

Ũ
ĈT

),

where the last equation is obtained by the fact that the number of transactions that are
not encoded by X1 or X2 is equal to the estimated usage of the candidate ũ

ĈT
(X1/2) −

uCT (X1/2) = ũ
ĈT

(X̂). The following steps are exchangeable for X1 and X2 because the
estimated candidate usage is bounded above by the usage of X1 or X2. Depending on the
chosen bound, the estimated compression gain is bounded in terms of X1 or X2. We bound
the candidate usage that determines the code length of the candidate pattern now by X2

and get

∆L̃(D |ĈT ) ≤ UCT log

(
UCT

Ũ
ĈT

)
− ũ

ĈT
(X̂) log

(
uCT (X1)

Ũ
ĈT

)
.

The estimated usage of the candidate in the sum Ũ
ĈT

= UCT − ũĈT (X̂) and as the factor
of the code length, can then be limited above by uCT (X1) and a summarization of the
terms yields the final upper bound (3.6). �

Figure 3.2 shows the differences between the heuristic bound and the one of Eq. (3.6). The
symmetry of the proven bound reflects the fact that if one of the joined patterns has a
larger usage than half of the overall usage sum, the other pattern must have a respectively
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smaller one. This case might however occur seldom in practice. If the usage of one joined
pattern is smaller than half of the usage sum, the heuristic bound is smaller. The heuristic
bound might therefore be too close and neglect some patterns that are able to improve the
estimated compression gain much more than guessed. The tendencies are however similar
for both bounds. The proof of an actual bound in this setting is solely a first approach to
consolidate the applied heuristics theoretically.
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3.3 SHrimp

Shrimp [23] is an algorithm that uses a different data structure to represent the database
and that aims at enabling an efficient computation of changes in the underlying encoding
for a candidate code table. The database is maintained in a tree that reflects the present
encoding and provides therewith different possibilities to evaluate the impact that the
insertion of a pattern has on the compression size. Furthermore, a visualization of the
encoded database is obtained. This can be used to explore the database in different ways
than it was possible before. The constitution of the database tree is similar to that of the
FP-tree, introduced by Han et al. in the popular FP-Growth algorithm [22]. The nodes of
an FP-tree contain yet single items while sets of items are represented by nodes in SHrimp.
The order of items in the FP-tree is determined by the frequency, similarly the standard
encoding order that is used in Krimp and Slim, induces the placement of the nodes in the
SHrimp -tree.

3.3.1 Utilizing Tree Structures

The lack of insight how code tables can be extended such that the compression size de-
creases, forces the algorithms regarded so far to try different constellations of patterns out
and to preserve the one that encodes best. The algorithm Slim is thereby able to reduce
the number of regarded candidates by 2 orders-of-magnitude [41], but still, the number
of materialized candidates is extremely large in comparison to the amount of accepted
patterns in the code table. Therefore, the underlying changes in the encoding have to
be examined again and again for candidate after candidate. The determination of these
changes includes always an identification of affected parts of the database: the transac-
tions whose encoding changes with an alteration of the coding set, to calculate or estimate
resulting changes in the compression size.

With SHrimp , we examine to what extend the indexing nature of trees can be exploited
in order to identify the parts of a database concerned to a change of the coding set.
Furthermore, we consider next to the representation of the database as a tree, a constitution
of the code table as a tree, reflecting the slightly recursive encoding of codes by the standard
code table in the model description.

The Database Tree

The tree is built such that each branch from the root to a leaf represents a transaction
and provides the information about all possible and the currently applied encoding, given
a code table. We notate nodes and respective sets in the fraktur font. The tree that
represents the database is defined by its constituting nodes as follows.
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3.3.1 Definition (database tree). Given a total order on itemsets �, a database tree
is a tree structure with the following properties

1. The root of the tree is labeled as null.

2. Each node n 6= null is described by a pattern Xn, a set of inactive items inact(n),
a counter use(n) and the pointers to its children children(n) and the parent node
parent(n). use(n) denotes the number of transactions represented by the branch
from the root to that node.

3. For a node n and the parent node p = parent(n) 6= null it holds that

Xp � Xn

The total order that is used to determine the database tree hierarchy is given by the
standard encoding order. In general, it is possible to reflect any way in that transactions
are encoded by the application of different orders. The definition poses that a transaction
is described by the nodes from the root to a node whose counter use is larger than the sum
of all use counters from its children. Nodes that satisfy this property are called leaves,
although these nodes may also have children nodes. Nevertheless, at least one branch ends
at these nodes. We describe now the meaning of the field inact technically.

3.3.2 Definition. Let n be a node with a non-singleton pattern |Xn| ≥ 2 and let anc(n)

denote the ancestor nodes of n. For an item x ∈ Xn it holds that

x ∈ inact(Xn)⇔ ∃a ∈ anc(n) : inact(a) = ∅ ∧ x ∈ Xa.

Items x ∈ Xn that are present in the set inact(n) are called inactive, otherwise active.
Accordingly, nodes that have inactive items are called inactive, otherwise active.

Inactive nodes denote transactions that would use the respective pattern for their encoding
if a subset of the pattern was not already encoded by a preceding code. These nodes
summarize the information about contained singletons, but their presence in the tree may
enlarge the complexity due to the reflection of redundant information. Inactive nodes are
integrated into the tree because they define the consequences of a change in the pattern
selection and enable accordingly an efficient computation of the impacts that the removal
or insertion of patterns have on the encoding.

To illustrate what is said so far, an example database and its depiction as a tree is
displayed in Figure 3.3. The database on the left is encoded with the code table given
in Figure 3.1, containing the patterns {b, d, e} � {a, c} � {a, g} in standard encoding
order besides of singleton itemsets. The resulting encoding of transactions is displayed
at the right column of the table and the corresponding tree representation can be seen
in the picture. The transactions are characterized by the branches up to a leaf, that are
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TID transaction encoding set

1 a, b, d, e, f, g {b, d, e}{a, g}{f}
2 a, b, c, d, e, g {b, d, e}{a, c}{g}
3 a, c, e, f {a, c}{e}{f}
4 a, b, c, d, e, f {b, d, e}{a, c}{f}
5 a, c, e, g, f {a, c}{e}{g}{f}
6 a, b, d, e, g {b, d, e}{a, g}

∅

b, d, e : 4

a, c : 2

a, g : 1

2

f : 1

4

a, g : 2

f : 1

1

6

a, c : 2

a, g : 1

e : 1

f : 1

5

e : 1

f : 1

3

Figure 3.3: The encoding of a database (left table) and the induced tree representation of the
database (right).

annotated with the identifier of the equivalent transaction. Inactive items are greyed out,
which occurs only if one of the items is also present in a preceding active node of the
corresponding branch.

We utilize this structure now to compute the usage function concerning an exemplary
regarded candidate pattern as presented in Figure 3.4. The considered candidate is given
by the pattern {c, e, f} and it holds that {b, d, e} � {c, e, f} � {a, c} � {a, g}. The
computation of emerging usage differences starts with an identification of branches that
would use the designated pattern for their encoding. The search begins at the minimum
child of the root node, i.e. the node with the pattern {b, d, e}. Since the items b and
e of the candidate pattern would be encoded by this node furthermore, the candidate
pattern is not used in this sub-tree. The search proceeds with the right sub-tree, finding
that transactions 5 and 3 would make use of the candidate and the corresponding leaves
containing the singleton {f} are stored. For these branches, the effects on the encoding
resulting from the insertion of the candidate are calculated. It means in this case, that the
pattern {a, c} is not used there anymore, but the node with the pattern {a, g} becomes
active again. If the resulting usage function yields a better compression size, the pattern is
integrated into the tree. Therefore, the branches that contain the candidate pattern but do
not use it for the encoding, have to be identified. These are the branches that contain the
nodes colored in light peach, that determine the insertion of inactive candidate nodes. By
contrast, the nodes that indicate the insertion of an active candidate node have a darker
peach color. The consequent tree is displayed in Figure 3.4 on the right.

The Code Table Tree

The structure of the database tree induces multiple ways in that the usage of a candidate
pattern can be determined. Smets et al. state in [41] that there is no monotonicity or
structure that can be used to find the optimal code table efficiently. Although that is true
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∅

b, d, e : 4

a, c : 2

a, g : 1

2

f : 1

4

a, g : 2

f : 1

1

6

a, c : 2

a, g : 1

e : 1

f : 1

5

e : 1

f : 1

3

∅

b, d, e : 4

c, e, f : 1

a, c : 1

4

a, c : 1

a, g : 1

2

a, g : 2

f : 1

1

6

c, e, f : 2

a, c : 2

a, g : 1

5

3

Figure 3.4: The database tree of Figure 3.3 (left) and the resulting tree when the pattern {c, e, f}
is inserted (right).

CT freq

{b, d, e} 4

{c, e, f} 3

{a, c} 4

{a, g} 4

{f} 4

{g} 4

∅

a : 2

c : 1 b : 1

c : 1

e : 1

f : 1

e : 1

b : 1

d : 1

Figure 3.5: Representation of a code table (left) as a tree (right). Nodes are ordered according
to the frequency of items.

with respect to isolated code tables, the structure of the encoding can at least be used to
estimate the impact of changes to the present code table as it is done for instance in Slim.
With regard to the tree structure, the affected patterns in the code table identify also the
affected nodes in the database tree. Therefore, I propose to receive the patterns in the
code table that are proper subsets of a candidate pattern, first. Every transaction that
would use a designated pattern for their encoding must also contain all subset patterns. If
the subset patterns are available and sorted in the standard encoding order, a top-down
search in the database tree might be conducted more efficiently. The subsets serve as some
kind of checkpoint nodes, whose absence indicates that the candidate is not contained in
the corresponding branch.

Let’s have a look at the representation of our example code table as a tree, ordered in
standard encoding order, i.e., on frequency first and then lexicographically for singleton
itemsets. The code table and the resulting tree are displayed in Figure 3.5. We assume
that the next candidate pattern {a, c, e, f} is given. A top-down search in the code table
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∅

b, d, e : 4

c, e, f : 1

a, c : 1

4

a, c : 1

a, g : 1

2

a, g : 2

f : 1

1

6

c, e, f : 2

a, c: 2

a, g : 1

5

3

Figure 3.6: The database tree of Figure 3.4, nodes that indicate the part of the database where
the candidate pattern {a, c, e, f} would be applied are colored in green.

tree yields that the patterns {a, c} and {c, e, f} are the only code table entries that are
also a subset of the candidate. That is, every branch in the database tree that indicates
affected transactions must contain the nodes {c, e, f} and {a, c} in that order. The search
in the database tree to identify those branches is then proceeded as follows and depicted
in Figure 3.6.

Again, the minimum child of the root with the pattern {b, d, e} is regarded first. This
node reveals yet no indications to the absence or presence of the candidate in this branch,
so the search is proceeded at its children. The first child node contains the checkpoint
pattern {c, e, f}. Thus, the localization of the candidate in the branch with root {b, d, e}
is restricted to the transactions represented by descendant nodes of this checkpoint node.
The only child of this node contains the other checkpoint pattern, which completes the
search of the candidate in the left subtree. The node regarded next is the other child of
the root node, which contains the first checkpoint pattern and that has again the second
checkpoint pattern as its child. This finishes the identification of concerned branches, no
matter how many succeeding children of the root node or of the checkpoint nodes exist.
Therefore, the interesting parts of the tree are likely to be determined much faster this
way.

We note that the code table might also be preserved by any other data structure that
enables a fast subset identification. However, similar to the database tree, the standard
encoding order induces an elegant way to determine the interesting patterns in a tree
efficiently. We regard now the algorithm in a more formal way.

3.3.2 Identifying the affected Parts of the Database

The procedure of SHrimp (Alg. 12) is similar to that of Krimp. In fact, it returns the
same code tables and uses all heuristic assumptions that are also made in Krimp. The
computation of central functions like usage or compression size is however different and
these parts may be adapted to other algorithms like Slim. We describe now exemplary
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the procedure to examine candidates and to calculate the usage function in the Krimp

framework.

The input of SHrimp is the database D and a set of frequent patterns F . The frequent
patterns are sorted in standard candidate order (line 2) and the database respectively code
table tree is initialized (lines 3, 4). Since the code table is initialized by the standard

Algorithm 12 SHrimp
1: procedure SHrimp(D,F)
2: F ← sort(F) . in Standard Candidate Order
3: D ← initTree(D)

4: CT ← initTree(∅)
5: U ← {(x, freq(x))|x ∈ I}
6: for X̂ ∈ F \ I do
7: checkpts← {X ∈ CT |X ⊂ X̂}
8: N← AffectedParts(X̂, root(D), ∅, checkpts)
9: ∆U ← DeltaUsage(X̂,N, D)

10: if L(U ⊕∆U) < L(U) then
11: U ← U ⊕∆U

12: (D,CT,U)← Pruning(D,CT,U,∆U)

13: end if
14: end for
15: return CT,D

16: end procedure

code table, containing only singletons, the initial database tree is equal to the FP-tree.
Accordingly, the usage function is set as the function that maps to each singleton itemset
its frequency (line 5). Candidates are regarded in standard candidate order. For each
of the candidates, the transactions that would use the candidate for their encoding are
computed and stored representative by the corresponding nodes in the set N (line 8). The
differences in the encoding are computed (line 9) and the compression size as defined by
the resulting usage function U ⊕∆U is calculated. The symbol ⊕ denotes hereby a sum of
the assigned usages for each pattern, i.e., (U⊕∆U)(X) = U(X)+∆U(X). If the inclusion
of the pattern improves the compression, the pattern is integrated into the tree (line 12).
The method Pruning can easily be adapted from its original formulation in Alg. 10, using
the mechanisms to identify changes in the usage function and comparing the compression
size afterwards, as presented here. In the end, the algorithm returns the code table and
the database tree (line 15). This way, the set of interesting patterns as well as their actual
composition in the database can be inspected in a compact representation.
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Identifying the Differences of the Encoding

The computation of nodes whose descendant leaves describe the transactions that are
affected by an insertion of the candidate pattern is displayed in Alg. 13. It is a recursive
function, that calls itself for selected children nodes of the specified node n. The set X̂
maintains the items of the candidate pattern that are not contained in any ancestor node
of n. The method is invoked for the first time by Alg. 12 having the candidate X̂, the
root node of the database tree, an empty set of indicating nodes N and the checkpoint
patterns checkpts from the code table tree as arguments. As discussed in Section 3.3.1,

Algorithm 13 Computing the affected Transactions for a Candidate

1: procedure AffectedParts(X̂, n,N, checkpts)
2: for c ∈ {c ∈ children(n)|c � min{checkpts}} do
3: if Xc ∩ X̂ 6= ∅ ∧Xc ≺ X̂ then
4: continue
5: end if
6: X̂ ← X̂ \Xc

7: if X̂ = ∅ then
8: N← N ∪ c

9: else
10: checkpts← checkpts \Xc

11: N← N ∪AffectedParts(X̂, c,N, checkpts)

12: end if
13: end for
14: return N

15: end procedure

only those children that are preceding or equal to the next checkpoint pattern indicate the
branches that might contain the candidate pattern and are therefore regarded (line 2). If
some of the candidate items are encoded by a preceding pattern, the branch is not further
investigated (lines 3-5). Otherwise, the items of the child node are removed from the set
of not yet spotted items of the candidate (line 6). If this set is empty, the branch of the
current child node would contain an active node with the candidate pattern and the child
node is added to the set N (lines 7,8). If this is not the case, the branch has to be traversed
further and the function is therewith called for the child node again (lines 9-12). In the
end, the obtained set of nodes N is returned.

The method DeltaUsage (Alg. 14) identifies the changes in the encoding and there-
with also in the usage that accompany the insertion of a candidate. For each of the nodes
m that are descendant leaves of a change indicating node n ∈ N, the respective changes of
encodings from transactions denoted by that leaf are determined by the function Prec-



40 CHAPTER 3. ALGORITHMS

Algorithm 14 Computing the Usage Differences for a Candidate

1: procedure DeltaUsage(X̂,N, D)
2: for m ∈ {m|∃n ∈ N : m ∈ desc(n),m is a leaf} do
3: (∆U, bound, free)← PrecChanges(m, ∅, {X̂}, ∅, usage(m))

4: end for
5: return ∆U

6: end procedure
7: procedure PrecChanges(m,∆U, bound, free, u)
8: if X̂ ≺ Xm then
9: (∆U, bound, free)← PrecChanges(parent(m), bound, free)

10: end if
11: if inact(m) = ∅ ∧ (bound ∩Xm 6= ∅) then
12: ∆U(Xm)← ∆U(Xm)− u
13: free← free ∪Xm

14: else if (∅ 6= inact(m) ⊆ free) ∧ (bound ∩Xm = ∅) then
15: ∆U(Xm)← ∆U(Xm) + u

16: bound← bound ∪Xm

17: end if
18: return (∆U, bound, free)

19: end procedure

Changes (lines 7-19). This procedure calculates the occurring changes for the ancestor
nodes, by a recursive call for parent nodes up to the first node that is preceding to the
candidate pattern (line 9). Changes may only occur in nodes that are succeeding to the
candidate. The maintained set bound stores items that are encoded by ancestor nodes of
the specified node m, while free contains those items that are in contrast to the current
encoding up to this point not encoded anymore. By means of these sets, it is checked
whether m would change its status of activity, either from active to inactive (line 11) or
the other way round (line 14). Such status changes indicate usage changes for every trans-
action that is represented by the leaf for that the method has been invoked first. The usage
changes therewith by the number of affected transactions u (lines 12,15).
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3.4 Matrix Factorization for Compression

In this section, we conclude the discussion about the relations of the MDL-based approach
to identify the set of patterns that describes the database in the most compressed way, to
clustering methods. We derive a formulation of the compression size in terms of matrix
factorization, that introduces the possibility to gain the best compressing patterns without
making use of any heuristic. Furthermore, the number of obtained patterns in the code
table can be specified.

While the approaches discussed so far are related to the Minimum Tiling problem, the
task of finding the k patterns that describe the database best is more similar to a Maximum
k-Tiling. The adjustment of the parameter that denotes the number of obtained patterns
makes it also possible to obtain different views on the same database. The description of a
database with a high number of compressing patterns might be more fine grained than one
using only few patterns. Depending on the insights one wants to obtain, a rough overview
can be derived as well as a detailed description of the database.

In the following two subsections, I propose two methods to solve relaxed versions of the
task to obtain the best compressing code table by a matrix factorization. As a standard
technique that is applied to NMF and BMF problems, gradient descent is applied here as
well. The values of the matrices are then rounded by a suitable threshold, to derive the
actual encoding. We begin with a description of the representation of an encoding and
develop the algorithm Pimp. We discuss then a different method to model the encoding
by matrix factorization with the algorithm Mimikri.

3.4.1 Pimp

We recall from Section 2.3 that a matrix decomposition into two factor matrices yields
a description by basis vectors and their coefficients. The coefficients define the linear
combinations of basis vectors that compose the observations, respectively transactions.
Accordingly, we can interpret basis vectors as dictionary entries, or codewords, that put
the transactions as indicated by the coefficient matrix together. In other terms, a binary
matrix can be factorized into a matrix that represents a code table and a matrix that
denotes the usage of the code words.

Let D ∈ {0, 1}n×m denote the binary matrix representation of the given database and
let X ∈ {0, 1}n×r and U ∈ {0, 1}r×m be factor matrices for a given rank r ∈ N, i.e.,
D ≈ XU. Simplifying the notation, we assume for the following descriptions that the
factorization is exact, i.e., D = XU . To understand the synergy between the code table
matrix X and the matrix of usages U more detailed, we take a look at the decomposition
of the j-th transaction D·j into X and U

D·j = X · U·j =
r∑
s=1

UsjX·s.
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We can see how the encoding of the j-th transaction is described by the patterns X·s and
the usage entries Usj for 1 ≤ s ≤ r. A pattern X·s is used for the encoding of D·j iff
Usj = 1, whereas the entries Xis = 1 indicate the items with index 1 ≤ i ≤ n that are
present in the pattern X·s. That way, the usage of a pattern X·s can be computed by the
sum of all entries in Us· that are equal to one

usage(X·s) =

m∑
j=1

Usj = |Us·|. (3.7)

The notation as a sum of absolute values |Us·| in Eq. (3.7) is valid as long it may be
assumed that the entries of U are nonnegative. The compression size of the database (2.2)
can therewith be calculated depending solely on the usage matrix U by the function

LD(U) = −
r∑
s=1

|Us·| log

(
|Us·|
|U |

)
.

Equivalently, we can state the compression size of the model (2.3) by means of the vector
of standard code lengths v = −(log(supp(x1)), . . . , log(supp(xn))) by the function

LM (X,U) = −
r∑
s=1

I|Us·|>0

(
log

(
|Us·|
|U |

)
+

n∑
i=1

Xis log (supp(xi))

)

= −
r∑
s=1

I|Us·|>0

(
log

(
|Us·|
|U |

)
−XT

·sv

)
.

The indicator function I |Us·|>0 models the fact that only used patterns are stated in the
code table and contribute to the model description size.

With these observations, we can describe the originally declared task of finding the
code table that compresses the database best as

Problem 1.

min
X,U

L(X,U) = LD(U) + LM (X,U)

s.t.
1

2
‖D −XU‖2 = 0,

X ∈ {0, 1}n×r,

U ∈ {0, 1}r×m.

(3.8)

We note that algorithms that are designed to solve Problem 1 are not restricted to the
standard encoding order, as any algorithm is known so far. Solving the problem is however
not trivial.

Similar to the Penalizing BMF algorithm [48] which is summarized in Section 2.3.2 we
use penalizing terms to derive an unconstrained formulation of the objective (3.8). Also,
we use the function ω to penalize non-binary values. The objective is given as

min
X,U

Fλ(X,U) =
1

2
‖D −XU‖2 + µL(X,U) + λ

∑
i,s

ω(Xis) + λ
∑
s,j

ω(Ysj), (3.9)
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Figure 3.7: Plots of the functions f(x, y) = −x log
(

x
x+y

)
− y log

(
y

x+y

)
on the left side, and

g(x; y) = −(x+ 1) log
(

x
x+y

)
for increasing values of y ∈ [1, 5] on the right.

for parameters µ, λ ∈ R+. We have now a closer look on this function and discuss its
properties.

The function Fλ(X,U) is nonconvex, in particular it is nonconvex in X and U and is
therefore likely to contain multiple minimums or stationary points in general. The function
LD(U) is concave and has a single minimum at the origin. Its curve progression is depicted
exemplary for a rank of two on the left in Figure 3.7. The values on the x- and y-axis
denote the values of |U·1| and |U·2|. We can see that the function values are rather small
if one of the patterns is not used at all, i.e., |U·i| = 0 for i ∈ {1, 2}. Moreover, the larger
the usage of one pattern is, the stronger increases the function strictly monotonically in
the usage of the other pattern.

The function that takes also the description size of the code table into account is
sketched on the right of Figure 3.7. The values on the x-axis denote the usage of a pattern,
assuming that the usage of other patterns is fixed. The depicted curves belong to different
statically determined usage sums of other patterns that are from 0.5 to 5 assignable from
bottom to top. It is particularly noticeable that the compression size tends to infinity
if the usage of one pattern approaches zero. Although this is negligible in the discrete
setting of the encoding, the continuous representation of the description size has a point
of discontinuity at the origin.

Therefore, the function L(X,U) is not differentiable at matrices X and U where one
pattern is not used at all, i.e., if

U ∈ S := {V ∈ Rr×m+ |∃s ∈ N, s ≤ r : |Vs·| = 0}.

Since the negative gradient is not defined at those points, a different search direction has
to be used. A common method is to use a negative subgradient instead [35]. The negative
subgradient is yet not necessarily a descent direction, since Taylor’s theorem can not be
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applied. Therefore, a line search algorithm is not guaranteed to find a suitable stepsize
and the sequence of obtained iterates Fλ(Xk, Uk) might increase at certain iterations.

Computing the Gradient We derive now the gradient of the function Fλ with respect
to X and U at those matrices where it exists, i.e., U /∈ S. Fλ is composed by a sum of the
functions F (2.4), L describing the compression size and ω. The gradients of Fλ are thus
calculated by

∇XFλ(X,Y ) = ∇XF (X,Y ) +

(
∂

∂Xis
Fλ(X,Y )

)
is

+

(
d

dXis
ω(Xis)

)
is

(3.10)

∇Y Fλ(X,Y ) = ∇Y F (X,Y ) +

(
∂

∂Ysj
Fλ(X,Y )

)
sj

+

(
d

dYsj
ω(Ysj)

)
sj

. (3.11)

The respective derivatives of F and ω are already stated in Section 2.3. It remains to
deduce the gradient of the compression size denoting function. The partial derivative of
L(X,U) with respect to Uŝ̂ ≥ 0 is given as follows:

∂L(X,U)

∂Uŝ̂
= −

r∑
s=1

[
∂

∂Uŝ̂
(|Us·|+ 1)

]
log

(
|Us·|
|U |

)
+ (|Us·|+ 1)

[
∂

∂Uŝ̂
log

(
|Us·|
|U |

)]
(3.12)

= − log

(
|Uŝ·|
|U |

)
−

r∑
s=1

(|Us·|+ 1)

[
∂

∂Uŝ̂
(log |Us·| − log |U |)

]
(3.13)

= − log

(
|Uŝ·|
|U |

)
− |Uŝ·|+ 1

|Uŝ·|
+

r∑
s=1

|Us·|+ 1

|U |
(3.14)

= − log

(
|Uŝ·|
|U |

)
− 1− 1

|Uŝ·|
+ 1 +

r

|U |
(3.15)

= − log

(
|Uŝ·|
|U |

)
− 1

|Uŝ·|
+

r

|U |
(3.16)

We apply the product rule in Eq. (3.12) and use in Eq. (3.13) the properties of the logarithm
and the fact that

∂

∂Uŝ̂
|Us·| =

∂

∂Uŝ̂

m∑
j=1

Usj =

1 if s = ŝ

0 otherwise.

The logarithmic terms are derived in Eq. (3.14) and in Eq. (3.15) we apply that
∑r

s=1 |Us·| =
|U |. Therewith, we obtain the final derivative (3.16). If |Uŝ·| = 0, we choose the partial
subderivative zero.

By contrast, the partial derivative of L(X,U) with respect to Xı̂ŝ ≥ 0 can be calculated
straightforwardly as

∂L(X,U)

∂Xı̂ŝ
=

∂

∂Xı̂ŝ

r∑
s=1

XT
·sv

= vı̂.
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We apply projected gradient descent, as it is stated in Alg. 5 to obtain the approximate
result. We call the resulting algorithm Pimp as it uses penalizing terms to solve the
problem that is tackled by Krimp. For the sake of completeness, we sketch the procedure
in Alg. 15. It uses the method Threshold to round the matrices suitably and that yields
the finally derived encoding of the database. This method is discussed in Section 3.4.3.

Algorithm 15 Pimp
1: procedure Pimp(D, r,K, T,A)
2: Initialize X0 ∈ Rn×r+ and Y0 ∈ Rr×m+ randomly
3: for k ∈ {1, . . . ,K} do
4: αk = BacktrackingLS(L, (Xk, Yk), T )

5: Xk+1 ← P+

(
Xk − αk∇XL(Xk, Yk)

)
6: αk = BacktrackingLS(L, (Xk+1, Yk), T )

7: Yk+1 ← P+

(
Xk+1 − αk∇Y L(Xk+1, Yk)

)
8: end for
9: a← Threshold(XK , YKA, true)

10: return (Θ(XK ; a),Θ(YK ; a))

11: end procedure

3.4.2 Mimikri

Siebes et al. state in [45] that as optimal compression is the goal, it makes intuitive sense
that overlapping elements may lead to shorter encodings, as then fewer itemsets may be
required to describe the data. However, it is not immediately clear how to achieve this in
a fast heuristic, which is why they do not allow overlap.

In this section, we pursue a different approach to model the encoding by a matrix fac-
torization, allowing codes to overlap. For this purpose, we utilize the function Φ introduced
in Section 2.3.2 that approximates the heavyside step function. Here, we overload the no-
tation of the function Φ and set the threshold parameter to one half, i.e., φ(x) = φ(x, 0.5)

and also Φ(X) = Φ(X, 0.5). Applying Φ to the matrices X and U simulates the factor-
ization by binary matrices. The overlap of codes can then be facilitated by an additional
application of the function Φ to the product of the factor matrices. This maps the values
of the factorization that are greater than one, i.e., where multiple codes describe the same
item, near to one. The function that models the quality of the factorization is thereby for
parameters η1, η2 > 0 given as

Fφ(X,U) = ‖D − Φη1

(
Φη2(X)Φη2(U)

)
‖2

Fφi(X,U) = ‖Di· − Φη1

(
Φη2(Xi·)Φη2(U)

)
‖2.
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We state the function that describes the quality of the factorization with respect to a single
row of the data matrix explicitly as the function Fφi. We need this formulation later. The
function Fφ approximates the amount of incorrectly approximated entries. We assume
that items that are not covered by the factorization are appended to the encoding by their
corresponding singleton codes. Similarly, items that are present in the factorization but
do not occur in the original transactions can be removed to make the database description
exact. We imagine a second column of the encoding that contains the codes of items that
have to be removed. Assuming that the patterns described by the matrix X contain more
than one item, the usage of singletons is approximated by the function Fφ. More precisely,
the usage of a singleton {xi} is approximated by the function value Fφi(X,U). For a
shorter notation, we denote the function Φη2 as the function Φ. By this means, we can
model the compression size of the database directly by the functions

LU (X,U) = −
s∑
r=1

|Φ(Ur.)| log

(
|Φ(Ur·)|

|Φ(U)|+ Fφ(X,U)

)

LX(X,U) = −
n∑
i=1

Fφi(X,U) log

(
Fφi(X,U)

|Φ(U)|+ Fφ(X,U)

)
.

The function LU (X,U) models the description size of the database as it is given by the
usage matrix and the function LX(X,U) accounts the addition or removal of singletons to
represent the database exactly. The compression size of the database can thus be calculated
by the function

Lφ(X,U) = LU (X,U) + LX(X,U)

= −
s∑
r=1

|Φ(Ur.)| log |Φ(Ur·)| −
n∑
i=1

Fφi(X,U) logFφi(X,U)

+
(
|Φ(U)|+ Fφ(X,U)

)
log
(
|Φ(U)|+ Fφ(X,U)

)
.

(3.17)

This function is smooth for real valued matrices X and U . So, we can apply a simple gra-
dient descent procedure to minimize (3.17). The description size of the model is neglected
in this case, since this would introduce points of discontinuity. Furthermore, the reason
why the description size of the model is taken into account originally is to provide some
mechanism against overfitting. In our formulation, the specification of the rank r bounds
the complexity of the model and it is therefore reasonable to ignore the part that describes
the model description size.
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Calculating the Gradient To apply the gradient descent algorithm, we have to infer
the derivative of the objective. The partial derivatives of Fφ are given as

∂Fφ(X,U)

∂Uŝ̂
= −2φ′(Uŝ̂)

n∑
i=1

(Di̂ − φ(Φ(Xi·)Φ(U·̂)))φ
′(Φ(Xi·)Φ(U·̂))φ(Xiŝ) (3.18)

∂Fφ(X,U)

∂Xı̂ŝ
= −2φ′(Xı̂ŝ)

m∑
j=1

(Dı̂j − φ(Φ(Xı̂·)Φ(U·j)))φ
′(Φ(Xı̂·)Φ(U·j))φ(Uŝj), (3.19)

which can be derived by an elementary application of the chain rule. The function φ′ de-
notes thereby the derivative of the function φ in Lagrange’s notation. Less straightforward
is the calculation of the gradient of the objective (3.17). We observe first, that the function
Fφ is decomposable into a sum of respective values of Fφi

n∑
i=1

Fφi(X,U) =

n∑
i=1

‖Di· − Φ(Φ(Xi·)Φ(U))‖2

=

n∑
i=1

m∑
j=1

(Dij − φ(Φ(Xi·)Φ(U·j)))
2

= ‖D − Φ(Φ(X)Φ(U))‖2. (3.20)

The partial derivative with respect to Uŝ̂ can be calculated by

∂L(X,U)

∂Uŝ̂
= −φ′(Uŝ̂) log |Φ(Uŝ·)| − |Φ(Uŝ·)|

φ′(Uŝ̂)

|Φ(Uŝ·)|

−
n∑
i=1

[ ∂

∂Uŝ̂
Fφi(X,U)

]
logFφi(X,U) + Fφi(X,U)

[
∂

∂Uŝ̂
Fφi(X,U)

]
Fφi(X,U)


+

(
φ′(Uŝ̂) +

[
∂

∂Uŝ̂
Fφ(X,U)

])
log
(
|Φ(U)|+ Fφ(X,U)

)
+
(
|Φ(U)|+ Fφ(X,U)

)φ′(Uŝ̂) +
[

∂
∂Uŝ̂

Fφ(X,U)
]

|Φ(U)|+ Fφ(X,U)

(3.21)

= −φ′(Uŝ̂) log
|Φ(Uŝ·)|

|Φ(U)|+ Fφ(X,U)

−
n∑
i=1

[
∂

∂Uŝ̂
Fφi(X,U)

]
log

Fφi(X,U)

|Φ(U)|+ Fφ(X,U)

. (3.22)

The first equation (3.21) describes thereby the application of the product rule, while
Eq. (3.22) summarizes the terms suitably. The rightmost terms of the first two lines
in Eq. (3.21) are canceled out by the term on the last line. To describe the other terms in
a compact way, the properties of the logarithm are applied. We use thereby the decom-
posability of the function Fφ (3.20) to combine the expressions that contain the derivative
of Fφ.
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The partial derivative with respect to X can be calculated accordingly

∂L(X,U)

∂Xı̂ŝ
= −

[
∂

∂Xı̂ŝ
Fφi(X,U)

]
logFφı̂(X,U)− Fφı̂(X,U)

[
∂

∂Xı̂ŝ
Fφı̂(X,U)

]
Fφı̂(X,U)

+

[
∂

∂Uŝ̂
Fφ(X,U)

]
log
(
|Φ(U)|+ Fφ(X,U)

)
+ (|Φ(U)|+ Fφ(X,U))

[
∂

∂Xı̂ŝ
Fφı̂(X,U)

]
|Φ(U)|+ Fφ(X,U)

= −
[

∂

∂Xı̂ŝ
Fφı̂(X,U)

]
log

Fφı̂(X,U)

|Φ(U)|+ Fφ(X,U)
.

The first equation describes again the application of the product rule and the second one
summarizes the result.

We summarize the proceeded steps in Alg. 16. The name Mimikri is chosen as the
objective mimics the factorization of binary matrices by the function φ and also all letters
of the word Krimp are covered, allowing overlappping, except for the letter p which is to
be added by its singleton code in this view. How the final encoding is computed by the

Algorithm 16 Mimikri
1: procedure Mimikri(D, r,K, T,A)
2: Initialize X0 ∈ Rn×r+ and Y0 ∈ Rr×m+ randomly
3: for k ∈ {1, . . . ,K} do
4: αk = BacktrackingLS(Fφ, (Xk, Yk), T )

5: Xk+1 ← Xk − αk∇XF (Xk, Yk)

6: αk = BacktrackingLS(F, (Xk+1, Yk), T )

7: Yk+1 ← Xk+1 − αk∇Y F (Xk+1, Yk)

8: end for
9: a← Threshold(XK , Yk,A, false)

10: return (Θ(XK ; a),Θ(YK ; a),Θ(D −XKYK ; a))

11: end procedure

function Threshold is described in the following section.

3.4.3 Thresholding the Matrices

The description of the database by a factorization is not lossless. If we round the matrix
entries to binary values in the end, the computation of an actual encoding requires that
imperfect representations of transactions are repaired. As described for the algorithm
Mimikri, we can assume that incorrectly represented items can be added or removed by
their singleton codes. The difference between the algorithms Pimp and Mimikri is that
Pimp takes also the description size of the model into account. Depending on the function
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that describes the compression size, we seek for a threshold at which the matrices can be
rounded such that the encoding is minimal in size.

To obtain the threshold at which the entries of X and U can be rounded suitably,
equidistant values between zero and one are tested and the one that yields the smallest
compression size is applied. The compression size of the database is calculated by substi-
tuting the function φ of the objective Fφ used in Mimikri, with the heavyside function θ.

LDθ (X,U ; a) = −
s∑
r=1

|Θ(Ur.; a)| log

(
|Θ(Ur·; a)|

|Θ(U ; a)|+ Fθ(X,U ; a)

)

−
n∑
i=1

Fθi(X,U ; a) log

(
Fθi(X,U ; a)

|Θ(U ; a)|+ Fθ(X,U ; a)

)
.

The function that returns the description size of the model for a threshold a can adequately
be stated as

LMθ (X,U ; a) = −
r∑
s=1

I|Θ(Us·;a)|>0

(
log

(
Θ(|Us·|; a)

Θ(|U |; a) + Fθ(X,U ; a)

)
−Θ(X·s)

T v

)

−
n∑
i=1

IFθi(X,U ;a)>0

(
log

(
Fθi(X,U ; a)

Θ(|U |; a) + Fθ(X,U ; a)

)
− eTi v

)
.

The vector ei denotes thereby the i-th standard basis vector. The procedure that obtains
the best threshold with respect to the description size is outlined in Alg. 17.

Algorithm 17 Obtain the threshold that minimizes the compression size
1: procedure Threshold(XK , YKA, twoPart)
2: a∗ ← 0

3: L∗ ←∞
4: for a ∈ A do
5: L← LDθ (X,U ; a)

6: if twoPart then
7: L← L+ LMθ (X,U ; a)

8: end if
9: if L < L∗ then

10: a∗ ← a

11: L∗ ← L

12: end if
13: end for
14: return a∗

15: end procedure
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3.4.4 Relations to Clustering

The formulation of the problem to derive the shortest possible encoding (3.9) as a con-
strained BMF completes our discussion about the relationship of Krimp to clustering
methods. Since a BMF yields a simultaneous clustering of items and transactions, induc-
ing a small compression size on the encoding that is represented by a BMF has an effect
on the cluster centroids. We recall that a binary matrix factorization D ≈ XU induces a
clustering of the transactions with centroids X·s and cluster assignments Usj . Transposing
the factorization DT ≈ UTXT returns cluster centroids with respect to items Us· and the
assignments Xis.

To derive the connection of the objectives with regard to Problem 1 more explicitly,
we reformulate the term that describes the compression size of the database slightly:

LD(U) = −|U |
r∑
s=1

|Us·|
|U |

log

(
|Us·|
|U |

)
= |U | ·H

(
|U1·|
|U |

, . . . ,
|Ur·|
|U |

)
H denotes thereby the entropy function. The minimization of the database description size
LD(U) minimizes also the overall number of cluster assignments |U | as well as the entropy
of the probabilities Us·

|U | with that an observation is assigned to the a cluster. Thereby,
assuming that all of the r clusters contain at least one data point, clusterings with few
large clusters and multiple clusters that are as tiny as possible are preferably returned by
Krimp.

The view of the rows of U as feature clusters yields that the 1-norm of feature cluster
centroids is comparably large for few centroids and small for most of the other ones.
We further notice that Krimp and Slim return for the regarded databases code tables
that contain at least twice as many code words than items in the database exist [41, 45].
Therewith, the returned code tables are massively overfitting the clustering on the features.

As such, a code table as it is returned by some of the heuristic algorithms discussed so
far, yields a clustering of the data that does not require a specification of the number of
expected clusters.



Chapter 4

Experiments

In this chapter, we discuss the performance and ability to compress the data by the afore-
mentioned algorithms. The used datasets are displayed in Table 4.1, showing basic char-
acteristics like size and density. The description size with respect to the standard code
table is also depicted. All datasets except for the BMS-webview 1 originate from the UCI
Machine Learning Repository1 and have been prepared for itemset mining tasks. The pre-
pared binary datasets are publicly available from the LUCS/KDD data set repository2.
The BMS-webview 1 dataset can be downloaded from the FIMI repository3. It contains

D n m |D|% L(D, ST ) L(D |ST )

BMS-webview 1 497 59602 0.51 1184484 1173962
Chess (k-k) 75 3196 49.33 1083791 1083046
Chess (kr-k) 58 28056 12.07 688180 687120
Connect 129 67557 33.33 17777083 17774814
Ionosphere 157 351 22.29 84170 81630
Mushroom 119 8124 19.3 1113311 1111287
Pen digits 86 10992 19.77 1141982 1140795

Table 4.1: Characteristics of the used datasets. Stated are the number of attributes n, the number
of transactions m, the density and the size of the standard encoding.

clickstream data from an e-commerce website of a legwear and legcare retailer and has
been used in the KDD-Cup 2000 competition. A detailed description of the dataset can
be found in [49].

All experiments are conducted as single threaded RapidMiner4 processes on a Linux
Intel Xeon X7550 machine with 2GHz. RapidMiner is a popular data mining software

1https://archive.ics.uci.edu/ml/index.html
2http://cgi.csc.liv.ac.uk/ frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html
3http://www.cs.rpi.edu/ zaki/Workshops/FIMI/data/
4http://rapidminer.com

51

http://rapidminer.com


52 CHAPTER 4. EXPERIMENTS

written in Java, that is easily extendable by the integration of plugins. I implemented the
algorithms Krimp, SHrimp and the two proposed algorithms based on Matrix Factoriza-
tion, Pimp and Mimikri as operators in RapidMiner. An implementation of the algorithm
Slim is provided in C++5. To mine the frequent patterns that are passed as input to the
algorithms Krimp and SHrimp, we use the FP-Growth implementation of RapidMiner.
The minimum support is adjusted to every dataset such that the set of frequent patterns
does not exceed a storage limit of 50GiB. This parameter is hard to set in practice. As
previously mentioned, a small drop in the minimum support results often in an enormous
increase in the number of obtained patterns.

Parameter settings The parameters of the algorithms that rely on matrix factorization
are adjusted with respect to experiments that have been conducted on smaller datasets.
We summarize briefly the specifications.

The parameters of Pimp are set as follows. The weight of the binary penalizers λ is put
to 1.1, which is also the default value in the Penalizing BMF implementation available by
the Python library nimfa6. A justification of this setting is not given by the authors, but my
own experiments confirmed that this value yields comparably well results. The parameter
µ that determines the impact of the compression size to the objective function is fixed to
0.2. Since the compression size is the lowest if the usage matrix and the code matrix are
equal to the zero matrix, assigning a higher weight to the compression size often returns an
unsatisfactory result with one very sparse matrix. Furthermore, the intermediate increase
of function values at non differentiable points is more likely to occur if the usage matrix
is too sparse. In order to prevent those situations, a weight of µ = 0.2 is appropriate for
most databases.

The parameters η1 and η2 of the algorithm Mimikri are set to η1 = 5 and η2 = 10.
Although the function φη(x) approximates the heavyside function more accurately if the
value of η is high, the convergence rate of the algorithm suffers from such an alignment.
This is due to the factor φ′η(x) = φη(x)(1−φη(x)) in the gradient of the objective function
Fφ. Therewith, if the matrices Φη(X) and Φη(Y ) approach binary matrices as desired, the
gradient is basically zero and the algorithm gets stuck in a stationary point that is not
likely to minimize the compression size.

We discuss now the quality of the obtained code tables and the characteristics of the
used datasets that might induce the observed results. Then we have a look at the per-
formance of the Java implementations of Krimp, SHrimp, Pimp and Mimikri. Finally,
we explore some selected databases more in detail by having a glimpse at the tree that
composes the encoded database.

5http://adrem.ua.ac.be/slim
6http://nimfa.biolab.si/nimfa.methods.factorization.bmf.html
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4.1 Comparing the Compression Quality

We elaborate in this section the differences in the achieved compression of the algorithms.
The quality of the compression is usually measured by the relative compression size. This
sets the compression size attained by the computed model in relation to the compression
size of the standard encoding

%L(D, CT ) =
L(D, CT )

L(D, ST )
· 100.

As Mimikri takes only the description size of the data into account, its relative compression
is measured by %L(D |CT ), putting only the description sizes of the data in relation. The
algorithm SHrimp is excluded from this analysis as it returns the same code tables as
Krimp.

Krimp Slim Pimp Mimikri

D minsup |CT | %L |CT | %L |CT | %L %L

BMS-webview 1 1 · 10−3 217 93.9 965 84.0 20 96.6±0.1 97.3±0.5
5 · 10−5 736 86.2 50

Chess (k-k) 5 · 10−1 110 44.9 292 14.7 20 30.2±2.0 41.2±0.5
9 · 10−2 280 27.3 50 29.0±1.9 36.8±0.5

100 28.5±3.3 34.6±0.5
Chess (kr-k) 1 · 10−4 1740 61.7 1060 57.5 20 99.9±0.0 99.7±0.0

3 · 10−5 1684 61.6 50 97.6±1.8 99.9±0.0
100 91.8±4.6 99.8±0.0

Connect 8 · 10−1 29 54.2 1670 12.3 20 57.1±1.7 50.2±0.8
1 · 10−5 2036 10.9 50 – 48.8±0.2

Ionosphere 2 · 10−1 62 64.7 240 49.7 20 53.4±1.0 54.7±1.2
1 · 10−1 164 61.3 50 53.2±1.6 46.4±0.6

100 49.0±1.0 35.4±0.7
Mushroom 5 · 10−2 524 34.7 340 18.5 20 56.2±3.0 50.2±1.4

1 · 10−4 442 20.6 50 44.3±0.9 44.1±0.7
100 38.8±4.2 41.5±0.4

Pen digits 1 · 10−2 1003 50.9 1347 39.4 20 83.5±0.4 70.4±1.2
9 · 10−5 1247 42.3 50 75.4±1.7 66.2±0.5

100 66.8±1.7 63.4±0.7

Table 4.2: Comparison of the relative compression size %L with respect to the number of main-
tained patterns in the code table for the regarded datasets. |CT | denotes the number of elements
maintained in the code table that are non-singletons.
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Figure 4.1: The relative compression size as it is achieved by the considered algorithms. Different
shades of the barplots indicate different parameter settings, that are stated in Table 4.2. The
compression size of Krimp code tables is depicted in the paler color for the higher minimum
support. The colors denoting the matrix factorization outcomes are paler for a lower rank.

Table 4.2 shows the results of the conducted experiments. For every algorithm, the
number of entries in the code table that do not belong to singleton itemsets |CT | and
the relative compression size is denoted. For the experiments of Krimp, the parameter
minsup is indicated as well. There are two different values of the minimum support for
every dataset. The first one is used for the Java processes and the second one is the value
that has been used in the experiments with the C++ implementation of the authors 7.
Since items are represented as short integers in the C++ implementation and strings are
used by the RapidMiner FP-Growth operator, the storage capability of the frequent pattern
set is much higher in the first representation. The compression size with respect to the
lower value of the minimum support denotes therewith a bound on the quality that can be
achieved by Krimp.

The parameter |CT | refers for matrix factorization based algorithms to the rank of the
factorization. The obtained compression sizes are averaged over 5 runs for each of the
specified ranks 20, 50 and 100 using 1000 iterations. For the larger databases Connect and
BMS-webview 1, the computation of ranks greater than 20 required more than one week
and have been aborted.

7https://people.mmci.uni-saarland.de/ jilles/prj/krimp/
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With regard to the number of elements that are selected by the algorithms Krimp and
Slim, the databases can roughly be divided into three categories. The first one contains
databases that are described sufficiently using only few codes, let’s say up to 500. Proto-
types of this category are the Chess (k-k), Ionosphere and Mushroom datasets. The second
category consists of databases that require a larger vocabulary and have code tables that
contain more than 1000 code words. To this category belong the datasets Pen digits and
the Chess (kr-k). The Connect dataset is somewhere between those categories, it can be
described acceptably by few codes but extending the set of codes by orders of magnitudes
decreases the compression size significantly. The third category covers the datasets that
are barely compressible, like the BMS-webview 1 dataset.

The obtained compression quality is visualized in Figure 4.1. We can see that Slim

code tables provide the shortest compressions for almost all datasets. The differences
of realized compressions by Krimp and Slim code tables are often not drastic, if the
parameter minsup is sufficiently low. Increasing the minimum support as depicted in
Table 4.2 increases the compression size visibly, but never as extremely as for the Connect
dataset.

The matrix factorizations do not differ in their compression size that much. Depending
on the dataset, one or the other approach is describing the data more suitably. Datasets
that can be expressed by a few hundreds of codes can also be summarized well using much
smaller code tables by Pimp and Mimikri. The Ionosphere dataset attains even its lowest
compression size for 100 non-singleton codes generated by Mimikri. This dataset seems
to have a structure that can much easier be encoded if overlapping is allowed. No other
algorithm achieves such a good compression.

By contrast, an improvement of the compression in relation to that of the standard
code table can barely be observed using only few codes for the BMS-webview 1 and Chess
(kr-k) datasets. This suggests that tilings of those datasets contain multiple smaller tiles,
that do not allow for a compact representation by few submatrices full of ones. The rank
would have to be set much higher to obtain compressions comparable to those of Krimp

and Slim.

The adjustment of the different ranks has a comparably small effect on the Mimikri

factorizations. To understand this phenomenon, we have a look at the convergence plots
for selected datasets.

Exploring the Convergence Figure 4.2 shows the averaged function values with re-
spect to the number of conducted gradient descent steps. On the left, we can see the con-
vergence of the objective function values for Pimp and on the right those of the Mimikri

algorithm. We display these progresses for the Ionosphere, Chess (kr-k) and Mushroom
dataset, since they exhibit apparently different structures. We might notice that the curves
of Mimikri are nonincreasing while especially for a higher rank of 100, the function value



56 CHAPTER 4. EXPERIMENTS

200 400 600 800 1,000

3,500

4,000

4,500

Iterations

F
λ
(X
,U

)

Ionosphere

20
50
100

200 400 600 800 1,000

1.8

2

2.2

2.4

2.6

·104

Iterations
F
φ
(X
,U

)

Ionosphere

20
50
100

200 400 600 800 1,000
4

6

8

·104

Iterations

F
λ
(X
,U

)

Chess (kr-k)

200 400 600 800 1,000

8

8.5

9

·105

Iterations

F
φ
(X
,U

)

Chess (kr-k)

200 400 600 800 1,000
2

2.5

3

3.5

·104

Iterations

F
λ
(X
,U

)

Mushroom

200 400 600 800 1,000

3

3.5

·105

Iterations

F
φ
(X
,U

)

Mushroom

Figure 4.2: Convergence plots of the Pimp (left) and Mimikri (right) algorithm. The displayed
function values with respect to the number of iterations are averaged over two runs on the respective
dataset. The values in the legend denote the specified rank of the factorization.
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Figure 4.3: Runtime in minutes of the algorithms Krimp, SHrimp, Pimp and Mimikri. The
rank of the factorization is given as 20 and the minimum support parameter is specified as denoted
for the Java processes in Table 4.2. The time is displayed on a logarithmic axis.

Fλ increases for some steps of Pimp. The number of 1000 iterations seems to be sufficient
in most cases with regard to Pimp. After 400 iterations, the function values decrease barely
for ranks of 20 or 50.

Concerning the curve progressions of Mimikri, especially for a higher rank of 100,
using more iterations than 1000 is likely to decrease the function value remarkably. The
Chess (kr-k) dataset is the largest of the depicted ones. The convergence rate of this
dataset is rather small and a much higher number of iterations appear to be beneficial to
factorizations of all ranks.

Since the factorization of such a dataset already takes quite its time for lower ranks,
a procedure that chooses the stepsize appropriately and also faster than the expensive
backtracking linesearch algorithm, would be desirable. The possibility to apply alternate
methods depends however strongly on the characteristics of the objective function like
Lipschitz continuity. The compression size, that is derived with the logarithmic function
is however not Lipschitz continuous. Further research is thereby needed to obtain more
accurate results of the Mimikri algorithm

4.2 Runtime Evaluation

We evaluate in the following the performance of the Java implementations of Krimp,
SHrimp, Pimp and Mimikri. We focus especially on the comparison of the efficiency of
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the tree-based algorithm SHrimp to its role model Krimp. Figure 4.3 shows the overall
runtime on a logarithmic scale. This includes the generation of frequent patterns for the
algorithms Krimp and SHrimp and the thresholding of the matrices with respect to 100
equidistant values between zero and one for Pimp and Mimikri. We observe that the run-
time of the matrix factorizations depends solely on the size of the database, while different
criteria hold for the heuristic algorithms. The calculation of a factorization requires for the
large dataset BMS-webview 1 several days. On the smallest dataset Ionosphere, a factor-
ization can be derived in 10 minutes. The computation of a factorization by Pimp takes
for all datasets a noticeably longer time. This indicates that the linesearch requires more
iterations to derive a suitable stepsize than in the smooth case of the algorithm Mimikri.

To have a closer look at the performances of Krimp and SHrimp we display in Fig-
ure 4.4 the required time to compute the usage and the integration of a pattern into the
code table. We select six out of the seven databases to be examined in this view. It is eye-
catching that SHrimp has an exceptionally shorter runtime on the Chess (k-k), Connect
and Mushroom datasets. By contrast, for the BMS-webview 1, Chess (kr-k), Ionosphere
and Pen digits datasets, Krimp performs superior.

The latter datasets are also not very well compressible. In fact, we observe a strong
correlation between the minimal achievable relative compression size and the performance
of SHrimp in comparison to Krimp. The datasets that have a minimal compression size
of less that 20% are also the ones that are depicted on the right of Figure 4.4, where
SHrimp is able to decide about the contribution of a pattern to the encoding much more
efficiently. Ionosphere has a minimal relative compression size of 35%, obtained by the
algorithm Pimp. With respect to the heuristic encoding, the best compression size is given
by about 50%. Chess (kr-k) and BMS-webview 1 have at least a relative compression size
of about 60% and Krimp is accordingly eminently faster.

This observation is also reasonable since the compression size is dependent on the sum
and entropy of usages as discussed in Section 3.4.4. Having a small sum of usages means
also that less codes are used to describe a transaction. Therewith, there are also less active
nodes in a branch from the root to the leaves in the database tree and the tree can be
traversed more efficiently. A low entropy in the usage of codes is transferable to a high
usage for few codes and small usages for as few codes as possible. This means also that
the nodes of codes with a high usage summarize likely many transactions in one branch
and the tree is less ramified.

To picture these thoughts, excerpts of the database trees are depicted for the excep-
tionally well compressible Connect dataset an the barely compressible BMS-webview 1
dataset in Figure 4.5. The two branches with the highest usage of the root nodes children
are displayed up to a depth of four. The information of the nodes is summarized to the
number of inactive and active items and the usage of the node.
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Figure 4.4: Runtime for Krimp (blue quadratic marks) and SHrimp (orange circle marks) in
relation to the percentage of examined patterns for the different datasets.
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Figure 4.5: A sample of the database tree from the BMS-webview 1 (above) and the Connect
dataset (below). Nodes are depicted up to a depth of 4 and the branches of the root nodes children
with the highest usage are selected. Every node contains the cardinality of active items (black)
and inactive items if existing (grey). The number after the colon denotes the usage of the node.

It is striking how branched the tree of the BMS dataset appears in relation to the
Connect database tree. The usage of the nodes on top of the tree is also indicative.
The node with the highest usage in the Connect dataset tree is the one depicted in the
left branch with a usage of 54,782. That means that the encoding of about 55,000 from
the less than 70,000 transactions in the Connect dataset is determined by this node that
contains a quite long pattern of 15 items.

The usage of nodes in the BMS-webview 1 dataset is on the contrary more evenly
distributed. The node with the highest usage has a usage of 69, while the BMS dataset
contains also about 60,000 transactions. The contained patterns have also remarkably less
items, up to 6. Considering these observations, it is understandable why SHrimp performs
better on well compressible datasets.
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Conclusion and further Work

In this work, we had a look at the challenges that arrive with large amounts of binary
data. A binary database is like a cryptic document that has to be deciphered if one wants
to extract its information. We regarded this information in terms of patterns that describe
the database in a compact, probably non-redundant way. Code tables are the utilized
objects that yield a description of the database, like a dictionary of the vokabulary in that
a document is expressed. The (code-)words with that the database can be phrased are
determined such that the representation, the encoded database, is as short as possible.
This methodology is embodied by the MDL principle.

In this work, I investigated the different approaches that derive the desired informa-
tion by code tables. Existing techniques include Krimp, Slim and the recently proposed
algorithm SHrimp. These algorithms rely on heuristic procedures to face the problem of
the exponentially many possibilities to encode a database.

With regard to Krimp we went through the multiple technical details that make an im-
plementation of this algorithm efficient. The applied techniques often rely on fundamental
insights on the nature of the used encoding. Those provide a more profound view on this
procedure. While Krimp tries to reduce the enormous amount of patterns by a suitable
selection, we have also seen how a code table can be created by a successive integration
of the patterns that make a good contribution to the current modeling with Slim. For
the heuristic determination of the patterns with the greatest potential, we have obtained a
theoretical justification. This has been achieved by the derivation of a bound that provides
a lower threshold on the contribution of a pattern to the encoding. With the algorithm
SHrimp we explored the representation of an encoding by a tree. In this representation,
the calculation of the contribution of a pattern to the encoding required further insights
on the underlying mechanisms of encoding. Especially the modeling of the code table as a
tree made an efficient identification of the affected parts of the encoded database possible.

A completely new approach to determine an encoding of a database has been intro-
duced by the application of matrix factorization. This approach is not restricted to any
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heuristic assumptions, but introduces parameters that have to be specified by the user.
In this variant, objective functions have been formulated that describe the quality of the
compression in the space of real numbers. The objectives can be minimized using common
methods of numerical optimization.

I proposed two different versions in that the objective function can be formulated.
The first one is based on nonlinear programming, where we used penalizing terms to
solve the problem description. This is the Pimp algorithm. The second one allows for
overlapping codes and approximates the obtained compression size by the value of the
objective function. We called this procedure the Mimikri algorithm.

The conducted experiments on 7 popular datasets for pattern mining tasks with dif-
ferent characteristics affirmed that Slim yields a superior compression. We have seen that
SHrimp has an exceptionally better performance for well compressible datasets in relation
to Krimp. The utilization of the properties that are induced by the standard encoding in
a tree structure, might also be beneficial applicable to Slim. Determining the estimated
compression gain by patterns that are created by a join of two nodes is likely to speed up
the calculation of top-k compressing patterns.

The approaches relied on matrix factorization were capable to compress the datasets
in a similar order of magnitude as Slim and Krimp , sometimes even better, using much
fewer itemsets. We saw that the convergence rate of Mimikri can be rather slow for larger
datasets. By contrast, Pimp suffers from its discontinuous properties. There are multiple
ways in that the convergence of these algorithms might be improved. First it might be
worthwhile investigating how Pimp performs using a systematically decreasing stepsize,
e.g. αk = 1

k as it is often performed for subgradient methods [46]. Although this will not
improve the convergence rate, such a stepsize strategy reduces the costs of the linesearch.
We have seen that particularly for higher ranks, a stepsize can often not be derived that
decreases the function value. Determining the stepsize in a more static way enables us to
take more (subgradient descent) steps in fewer time.

Another approach to minimize a nonsmooth and nonconvex function by alternating
updates has been introduced by Bolte et al. [9]. They apply the proximal operator to
obtain the exact minimum of a linearized version of the objective function. This method
requires however the analytical derivation of the proximal operator, which is not trivial for
the rather complicated function that describes the compression size.

With regard to larger databases, one has to pose the question how they can be com-
pressed efficiently. Especially for sparse databases, which often go along with a large size,
no encoding is able to yield a good performance as we have seen for the BMS-webview 1
dataset. The possibility to reflect the encoding by a matrix factorization offers yet mul-
tiple possibilities to encode the database. As we have seen for the Mimikri algorithm, a
modular construction system where one can add and remove codes for every transaction is
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also possible. This might be the key idea to describe sparse datasets that inhibit a noisy
structure.

Further applications that might make use of compressing patterns include for instance
the field of collaborative filtering. In this area of recommender systems, biclustering is ap-
plied to cluster users and opinions simultaneously. Recommendations can then be obtained
by an assignment of new observations to the respective cluster by a nearest neighbour pro-
cedure [20]. As we have seen that the compression of a database exhibits strong relations
to biclustering, the use of compressing patterns in this area might offer new opportunities.

Another research area that makes use of biclustering algorithms is the field of textmin-
ing. Biclusters identify the vocabulary that is used with respect to groups of documents.
The identification of correlating words and documents finds its interpretation in the broad
field of topic modeling [8]. The state of the art algorithm to extract the topics of a docu-
ment collection is the Latent Dirichlet Allocation [7]. This is a generative approach that
assumes that documents are generated by an underlying distribution. The aim of related
algorithms is to discover the parameters of this distribution. A different view on the en-
coding by MDL is therefore given if one assumes that the probability function as defined
by the usage generates a database. As the algorithms that rely on the estimation of the
underlying probability distribution yield superior results to the ones that are obtained by
matrix factorization approaches until now [2], investigating this approach with regard to
Krimp seems very interesting.
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