
Robot Learning - Three case studies in
Robotics and Machine Learning

M. Kaiser, L. Camarinha-Matos, A. Giordana, V. Klingspor
J. del R. Millán, F.G.B. De Natale, M. Nuttin, R. Suárez

ESPRIT Basic Research Action No. 7274
B-Learn II

Contact address:
Prof. Dr.-Ing. R. Dillmann

University of Karlsruhe
Institute for Real-Time Computer Systems & Robotics

D-76128 Karlsruhe, Germany

ABSTRACT

This paper describes methodologies applied and results achieved in the framework
of the ESPRIT Basic Research Action B-Learn II (project no. 7274). B-Learn II is one of
the �rst projects working towards an application of Machine Learning techniques in �elds
of industrial relevance, which are much more complex than the domains usually treated
in ML research. In particular, B-Learn II aims at easing the programming of robots and
enhancing their ability to cooperate with humans.

The paper gives a short introduction to learning in robotics and to the three
applications under consideration in B-Learn II. Afterwards, learning methodologies used
in each of the applications, the experimental setups, and the results obtained are described.

In general, it can be found that providing good examples and a good interface
between the learning and the performance components is crucial for success, so the ex-
tension of the "Programming by Demonstration" paradigm to robotics has become one of
the key aspects of B-Learn II.

1 INTRODUCTION

The application of Machine Learning techniques in real-world applications is
currently a topic gaining a lot of interest. However, the real world often poses much
stronger requirements on the learning methods than problems considered in the Machine
Learning community usually do. Missing or noisy, continuous-valued data, context- or
time-dependent information and system behaviours have proven to be di�cult to handle.
While this is mainly a problem of symbolic learning techniques, the application of sub-
symbolic learning techniques such as neural networks is limited by their lack of ability to
communicate and verify the knowledge that has been built up during the learning process.

Apart from this, it must be noted that real-world problems can usually not sim-
ply be classi�ed as being completely located on the symbolic respectively the subsymbolic
layer. In fact, most complex tasks require some reexive skills, which are usually associated
with a subsymbolic component, as well as planning or reasoning capabilities, typically to
be realized by means of a symbolic module ([145]). This observation results in the natural
demand for a functional integration of these components. In addition to the common prac-
tice of designing an hierarchical control system ([1]) and adding "learning capabilities" as

1

some kind of module, Multistrategy Learning ([93]) and Integrated Learning Architectures

([115]) are currently investigated in order to achieve integration not only with respect
to control but also regarding the learning tasks. Currently, approaches to Multistrategy
Learning are mainly aiming at integrating empirical and analytical learning methods in
order to speed up the empirical learning process ([56], [100], [21]). The integration in
symbolic connectionist systems is usually limited to rule compilation ([149], [53], [148]) or
the mapping of networks into rules ([147]), both closely related to the �eld of fuzzy neural
networks ([17], [63], [50]).

In B-Learn II, the intgeration problem is tackled from both the application and
the machine learning point of view. The conceptual design of the architectures employed
is mainly inuenced by the individual application, while the actual representation mech-
anisms used are selected according to the needs of the learning techniques.

2 LEARNING IN ROBOTICS

Considering the structure of a typical robot system, there are numerous opportu-
nities to learn. They include learning of direct sensor{actor couplings on the lowest level
of robot control as well as the acquisition of knowledge about the robot's environment or
the continuous improvement of the robot's reasoning and planning capabilities, in order
to enable it to handle increasingly complex tasks over time.

However, the traditional hierarchical structure of a robot control system (such as
the NASREM architecture, see [1]) does typically not support the application of learning
techniques on all its levels. Usually, it features distinct handling of object knowledge
and action knowledge, with the latter being represented only implicitely in the form of
executable code. In this implicit representation, knowledge is not learnable1, hence most
work concerning learning deals with the improvement of control knowledge by means of
Neural Networks ([79], [135], [146]) or reinforcement learning ([19], [98], [94], [96], [113]).
Especially the application of symbolic learning in Robotics usually considers only simple
problems or takes place in simulation only (see [152], [77], or [78] for an overview).

The main conclusion that can be drawn from an analysis of the application of
Machine Learning to Robotics is that a successful employment of learning techniques on
all levels of robot control is not possible without deeply revising the design criteria that
are usually underlying the robot control system ([77], [69]). In particular, it is necessary to
identify both the tasks of the learning system and the tasks of the robot �rst and to design
an architecture being able to host both the learning and the performance components
afterwards.

2.1 Learning Tasks
There are numerous learning tasks that can be identi�ed in the framework of

robotics and robot control (see [77] for an overview). Principally, Machine Learning can
be applied to support the following actions during robot development and deployment:

� Initial knowledge acquisition and program generation, i.e., initial robot programming
and world-model acquisition.

� Action and world knowledge re�nement, i.e., acquisition of new knowledge in order to
be able to solve new tasks as well as re�nement and correction of existing knowledge
helping the robot to deal with an uncertain and to adapt to a changing environment.

1This means "learnability" in a practical sense and does not refer to the information theoretic de�nition
of learnability as given in, e.g., [151] or [6].

Considering an hierarchical control system, both activities are located on all levels
of the hierarchy. Also with respect to a functional decomposition of the tasks assigned
to the robot, these activities are part of all functionally independent modules. Therefore,
learning must become an integrated part of the robot control system.

3 THREE CASE STUDIES IN ROBOTICS

The three scenarios chosen for B-Learn II exhibit typical characteristics of robotic
applications. Especially in compliant motion, heavy real-time constraints are posed upon
the performance elements, and stability issues are becoming very important. The monitor-
ing domain mainly deals with the very important problem of error detection and recovery.
Here, the main task is to classify from noisy and continuously changing data. In navi-
gation, the focus is especially on the architectural aspects of the application of Machine
Learning techniques. Apart from solutions to single problems, the main achievement there
is due to the integration of individual learning techniques in a real mobile robot.

3.1 Compliant motion
Compliant motion ([91]) refers to tasks in which a robot manipulates an object

while being constrained by contacts with other objects or the environment in general. The
motion freedom of the manipulated object is limited and contact forces are generated. The
robot has to deal with the constraints and the occuring forces and torques, too.

There are several ways to cope with problems in compliant motion that are caused
by uncertainty. The �rst approach is to reduce these uncertainties by improving the
accuracy of the environment and of the robot. However, the best achievable accuracy
is limited and the costs for such a solution are extremely high. A second approach is to
improve the design of the parts to be assembled, so that the assembly process is simpli�ed.
Although this is a good approach, it is not always possible and rarely su�cient. The
third approach is to use an intelligently designed passive compliance ([163]). Here, the
programmed path of the end-e�ector is not changed by the contact forces, but it is modi�ed
by the deections of a exible structure between the manipulated object and the end-
e�ector: the compliance. In active compliance, the robot actively generates motions based
on the task and the measured reaction forces ([127], [126], [24]). Two classes of active
compliance techniques can be distinguished, namely �ne-motion planning and reactive
control. Experimental results related to both techniques are shown in section 5.

3.2 Machining and Monitoring
CNC machines play an important role in Flexible Manufacturing Systems: they

produce the parts to be assembled. Solving the problem of making products close to
the anticipation of defects will considerably contribute to improve the system's overall
productivity and product quality. Anticipating accidents, wherever and whenever possible,
is a convenient method for preventing intervention. Faults can occur randomly or as
a consequence of internal structural degradation. Little hope exists for the �rst case.
However, the second one opens the �eld for prediction of deviation of quality, enhancing
the commonly used methodologies. Prediction of faults can become an important issue
as an e�ective technique aimed at operating in run time and not based on an a posteriori
analysis of samples ([5], [136]).

To build a suitable model of the machining process, it is necessary to identify a
set of low-level building blocks (process steps). These blocks are commonly called machin-

ing features ([121]). The machining of a speci�c workpiece can therefore be understood as
the execution of a sequence of these blocks in proper order. The machine's behaviour is

mainly determined by the NC instructions it executes. Therefore, it is plausible to expect
a characterization of the machining process based on machining features, independent of
a speci�c workpiece. The machined material must be considered in the model because
it inuences the machine's behaviour, too. For example, machining the same pocket on
plastic, brass, or steel produces di�erent sensor patterns, because the necessary cutting
forces are di�erent. Hence, the basic components involved in the machining process char-
acterization are a set of machining features, a set of NC instructions, a set of speci�c
machines, and a set of materials.

A characterization of a machining process for each machine, machining feature,
and material consists of the speci�cation of the sensorial data pattern captured when
the execution of the related NC instructions takes place. Assuming that there exists a
machining process characterization for some speci�c machine, material, and machining
feature, it is possible to de�ne a monitoring program for pieces involving those machining
features.

In diagnosis and recovery, reasoning about errors is a central activity. Errors can
be described on di�erent levels of abstraction, forming a hierarchy or taxonomy, and can
be divided into three families: system faults, external exceptions, and execution failures.

Cause-e�ect relations between these errors can be established. Typically, exe-
cution failures are caused by system faults, external exceptions or other past execution
failures, although, in general, errors of the three kinds may cause each other. So, if the
taxonomy is the vertical organization of errors, the set of causal relations between them,
forming causal networks at various levels of abstraction, is its horizontal organization.
Determining explanations for detected execution failures can become very complex when
errors are propagated. The proposed approach to modeling errors in terms of taxonomic
and causal links aims at handling this complexity.

3.3 Transportation and Navigation
In addition to actual manufacturing tasks occuring in a factory, transportation of

both raw material and fabricated workpieces is an important issue. Driver-less transport
systems are designed to handle these tasks. However, to achieve exibility and e�ciency
within the typical constraints of a manufacturing process, simple transport systems are
not su�cient, and autonomous mobile robots are to be taken into consideration.

The basic task a mobile robot has to solve is to plan and execute collision-free
motions. Moreover, successful navigation and task execution by a mobile robot in a
partially unknown environment is strongly dependent on the robot's ability to acquire
knowledge about its environment in form of a map or directly object-related information
and to use this acquired knowledge for e�cient navigation and self-localization ([29], [38]).
Therefore, autonomy becomes an important aspect ([28]). Generally, an autonomous
system should provide several advanced features. First of all, the system should be able
to adapt itself to changing conditions in the environment while performing a commanded
task. This indirect adaptation results in slight changes of the system's behaviour in order
to accomplish the given task, even if the a-priori information about the environment is
incomplete or incorrect. Second, the robot should be able to acquire knowledge, both
about itself as about the environment in general. This acquisition should result in a
continuous improvement of the system's capabilities. It is also important to note that
an autonomous system should have at least a limited ability to reason about the status
and the usability of its own knowledge, in order to determine what kind of information
is missing and what knowledge could possibly be acquired by experimentation, retrieved
from a user demonstration, or directly be derived from user-given information.

Obviously, these requirements have a direct inuence on the design of an archi-
tecture for an autonomous system, or, more speci�cally, for an autonomous mobile robot.

Especially the combination of directly task-related activities, long term strategy, and the
incremental generation of knowledge about the world de�nes a complex behaviour that
must be accounted for, both during the design as during the realization phase of such a
system. These aspects give a strong evidence for the necessity of learning components

that must be integrated parts of the system ([119], [34]).
Summarizing, the architecture of an autonomous mobile robot must contain per-

formance components, such as planning modules, but it must also incorporate learning
capabilities such as the incremental generation and improvement of motoric skills, or ex-
traction of symbolic knowledge about the world from sensory data. This combination
of learning and performance components is a typical feature of an integrated learning

architecture ([75], [115]). Additionally, the identi�cation of the learning tasks shows the
need to employ several di�erent learning techniques. Their integration and cooperation is
another important aspect that must be considered and quali�es the developed architecture
as an integrated learning architecture, too.

4 APPROACH AND METHODOLOGIES

In this section, the general approaches and learning methodologies being the
basic tools used in B-Learn II are described. The applicability of a learning technique
with respect to a given task depends on the characteristics of both the task and the
learning techniques. For a detailed description of the individual learning tasks, the learning
techniques, and the classi�cation of both see [44].

Task characteristics that directly inuence the selection of the learning technique
are the kind and amount of learning events, the structure of the examples, and
the amount of available background knowledge. Other restrictions are given by the
representation and intended use of the target knowledge. Additionally, the tasks
may di�er regarding constraints given by the application. Real-time constraints might
be existing, the function evaluating the learning result might require additional
knowledge or can directly be derived from the examples.

The selected learning approach is characterized by themethod (according to the
classi�cation scheme developed in [75]), the representation language, and, of course,
the learning algorithm.

4.1 Example preprocessing
All supervised learning algorithms require the existence of a set of preclassi�ed

examples. Moreover, these examples are often assumed to be noise-free or even discrete
valued. In real-world applications such as robotics, both assumptions do not hold. There-
fore, "intelligent" example preprocessing is crucial for successful applications of machine
learning algorithms. In particular, two cases must be considered:

1. If a continuous function is to be learned, examples must be preprocessed in order to
identify the complexity of the function and the inherent structure of the task.

2. For classi�cation tasks, the important features must be calculated and extracted
from the examples prior to feeding the learning algorithm with the features.

4.1.1 Example generation for learning continuous functions

For the initial design of a robot controller (i.e., for the approximation of a con-
tinuous function), the existence of examples is the main requirement of the proposed
exemplar-based approach. A particular appealing idea is to let a human operator perform
the control task in order to generate examples. This approach is in fact an extension

of a new programming paradigm, namely Programming by Human Demonstration ([31])
respectively Robot Programming by Demonstration (RPD, [55], [107]), to the acquisition
of elementary skills ([9], [25], [32], [66]).

In the robotics community, the concept of skills can be found throughout a num-
ber of di�erent applications. In telerobotics, robots provide the capability to autonomously
execute certain operations and relieve the operator from di�cult control tasks. These in-
dividual capabilities are referred to as skills, the concept itself is also known as shared
autonomy ([23], [52], [58], [137], [164]). In robot programming, SKills-Oriented Robot
Programming (SKORP, see [7]) relies on the existence of a set of skills as the building
blocks of a robot program (see also [37], [55], [69], [107], [131]). The approaches to skill
learning are mainly aiming at identifying a control function for a given task. They can be
found both in the robotics ([9], [25], [32], [87], [125]) and the machine learning community
([49], [84], [89], [133]). In general, all works share the same principal view on skills as
the ability of the robot to safely change the world from a given state to a de�ned one
in the presence of uncertainty, with the individual control functions applied using only
initialization data and direct sensorial information at runtime.

For the learning procedure itself, preprocessing of the recorded examples is usually
necessary for two reasons. First, there might be di�erences between the values that can
actually be sampled and those that can be used for control afterwards. For instance, it
might be necessary (due to a desired sampling frequency) to directly record the robot's
joint angles. However, for the analyzation phase and the training following afterwards,
it might be better to use the robot's position in cartesian coordinates, hence requiring
an a priori transformation step. The second reason is the generally noisy character of
the sampled signals, which originates from both uncertainties in the sensors and the only
limited "continuous" control that can be provided by a human operator. While the former
can be taken care of by, e.g., low pass �ltering of the recorded data, the latter requires
to eliminate those samples that would become counterproductive during training, such as
those created by "breaks" in the robot's motion due to the slowness of the operator.

4.1.2 Feature calculation and extraction

In most machine learning applications, the features are given. In robot appli-
cations, sensory data are given. This is what the robot perceives from the environment.
However, sensory data are too speci�c to apply to more than one object perceived during
one operation of the robot. Because of this, features have to be calculated from the sensory
data. This feature construction is a di�cult task. Depending on the calculated features,
concept learning may become more or less e�cient. Up to the present, there is no theory
of representation that tells us which features to construct.

An idea similar to the one followed in B-Learn II was proposed by Wrobel as an
answer to symbol grounding problems [162]. In Wrobel's paper, however, learning features
from sensory data was modeled as a direct segmentation task of a stream of real-valued
sensory input. In contrast, we provide the algorithm with more complex calculations
such as, the gradient of two values measured consecutively, or the di�erence of two angles.
However, we do not aim at learning such functions. What is to be learned is the appropriate
degree of granularity of the abstraction result, i.e., which function to choose.

In machining, sensors are selected according to the physical nature of the process
to be monitored. The complexity of the collected data as well as the respective sampling
rate are strongly depending on the selection of low level processing and feature extraction
methods ([27], [33], [76]).

A set of sensor data processing procedures and feature extraction methods were
developed. After getting knowledge about the sensor data behaviour, the sensor processor
model can be implemented. That model includes the representation of the nature of the

low level data processing and the feature extraction method. Also the correlation of the
resulting features and the process status related to the collected data must be evaluated.
After this evaluation decisions can be made about which features are good or not. That
leads us to the selection of a correct feature extraction method. In [117] a tool developed
for feature extraction evaluation is presented. For the FFT case, it can be determined
which subset of harmonics represents the best correlation with the variable class values
([47]). Some results of applying this procedure are also presented in [117] and [10].

Building a map of the environment

Successful autonomous navigation and task execution by a mobile robot in an
unknown environment is strongly dependend on the robot's ability to acquire knowledge of
its environment in form of a map and to use this acquired knowledge for e�cient navigation
and self-localization ([29], [38], [92],[118]). Therefore, mobile systems are usually equipped
with a set of sensors ([82]), used to build and maintain a su�ciently accurate model of
the environment. However, several aspects must be taken care of:

� Due to several factors such as wheel slipping, the knowledge about the robot's posi-
tion and orientation is inaccurate.

� The sensor inputs are noisy.

� The sensor characteristics (esp. when using ultrasonic sensors) might cause addi-
tional uncertainties.

� Positions of objects that are detected in the environment are not known exactly.

Therefore, the task of building a map of the environment can not be seen separately, but
should also comprise methods to deal with the uncertainties with respect to the robot's
position (see, for instance, [120] and [30] for recent developments in this research area).

4.2 Learning of control functions
Following an example-based approach for learning reactive behaviours in general

and control functions mapping sensorial inputs to primitive robot actions in particular,
the basic task that has to be solved is to approximate the optimal control as close as
possible. The machine learning community developed several methods for approximating
continuous numerical functions by means of algorithms which can be trained on data.
The most popular methods are the ones based on Neural Networks ([123], [54]). Many
network topologies have been investigated and many learning algorithms, both one-step
and incremental, have been proposed. In B-Learn II, especially extensions to the classical
backpropagation paradigm ([122]), such as the Time-Delay Neural Network ([154]), have
been under investigation, as well as networks based on local receptive �elds, such as Radial
Basis Function networks ([103]).

From the research community in statistics, another family of function approxima-
tors based on regression trees ([80]) has been proposed. Recently, a growing interest grew
around this alternative approach. However, in comparison to neural networks, regression
trees look less suitable to approximate control functions because the current formalisms
do not allow incremental training. However, the incremental learning capability is a fun-
damental requirement in the kind of applications that are considered here. Finally, a third
proposal, came from the Fuzzy Set community ([165]), i.e. the fuzzy controllers. Since
the initial proposal by Zadeh, a lot of e�ort has been put in the further development of
fuzzy control. Nowadays, fuzzy controllers are a tool which is industrially exploited both
in Japan and in U.S, being easy and cheap to apply in comparison to nonlinear controllers
o�ered by classical control theory.

As well as many kinds of neural networks, fuzzy controllers are universal func-
tion approximators. Both formalisms share many topological characteristics and some of
the training algorithms such as, for instance, the back-propagation algorithm, with neural
networks. Also, fuzzy controllers are to be considered a family more than a unique archi-
tecture, owing to the many variants they show. For instance, considering the architecture
proposed by Berenji ([17]), more similarities to the multi-layer perceptron than to the
classical fuzzy logic approach can be found.

In addition to learning control functions for robots, neural networks are also
employed to solve the basic problem of regulating the intrinsic parametersetting of a
camera. Here, the neural controller's task can be summarized as follows:

1. input data transformation (i.e., acquisition),

2. quality evaluation of the transformed data, and

3. adjustment of the transformation parameters.

Such operations can obviously be iterated until an acceptable average quality of
the current image has been obtained. It must be noted that the reduction of complexity
performed by applying quality functions to images is actually a necessary step which
must be done in order to avoid feeding neural networks directly with images. Concerning
the o�-line training strategy, the error back-propagation technique has been adopted.
Two accelerated implementations have been tested, which feature a good speed-up in
comparison to the basic algorithm ([153], [144]).

4.3 Learning and refinement of reactive behaviours
Reinforcement Learning (RL) is a kind of learning between the supervised and

the fully unsupervised paradigms. It deals with the problem of learning to do prediction
in sequences of interrelated events from a reinforcement signal (reward or punishment)
sent back by the world. A major contribution comes from a family of algorithms based
on temporal di�erences, called TD(�) ([140]). The earliest method based on temporal
di�erences is represented by Samuel's checker player ([124]). Later on, similar methods
have been used by Holland ([60]) in the Bucket Brigade algorithm, by Sutton, Barto and
Anderson ([13]) in the Adaptive Heuristic Critics, and also by Witten ([161]), Booker
([20]), and Hampson ([51]). Moreover, TD methods have also been proposed as a model
of classical conditioning ([14], [142], [41], [105], [74]).

The most popular algorithm for dealing with the prediction problem is Q-learning,
developed by Watkins ([158]). Q-learning is strictly related to TD(0) algorithms, since it
is based on an implicit Markovian model of the world, too. Other strict relations exist
between Q-learning and TD on one hand, and classical Dynamic Programming (DP, [16])
on the other. The fundamental di�erence is that Q-learning and TD do not build an
explicit Markovian model of the prediction process, whereas DP does.

Signi�cant development in the framework of Q-learning are due to Kaelbling
([65]), and to Mahadevan and Connell ([90]), who applied Q-learning to a real robot in
order to learn to react in a box pushing task. Other practical developments are due to
Lin ([84], [85], [86]), who showed the importance of tutoring in structuring the learning
problem into sub-problems in order to speed up a task which is inherently very complex,
and to Singh ([134]), who tackles the problem of complexity by combining solutions of
simple subtasks, too.

One of the most interesting results in the �eld of RL application is the Dyna class
of architectures ([141]). Dyna architectures integrate RL and execution-time planning, and
apply the same algorithm alternately to the world and to a previously learned model of the
world. Particularly appealing versions are Dyna-Q, that uses Q-learning as a RL method,

and Singh's hierarchical Dyna ([132]). Other recent developments in the framework of
Dyna architectures have been carried out by Peng and Williams ([114]), who proposed
improvements in order to speed up the learning process.

Recently an important variant of the TD and Q-learning algorithms has been
proposed by Moore and Atkeson ([104]) with prioritized sweeping. This new algorithm
proved experimentally to be faster than any other on several test cases. However, a
convergency proof as for TD still does not exist.

Further development in the framework of RL comes from authors who work out-
side the main stream of Q-learning, but that are worth to be mentioned. In particular,
Berenji's work on fuzzy controllers, can potentially be very useful: the GARIC architec-

ture ([17]) is an evolution of the ARIC architecture proposed by Anderson ([3], [4]) and
is based on the learning rule proposed by Sutton, Barto and Anderson ([13]). Berenji
proved to be able to learn e�ective heuristics in di�cult control tasks. The GARIC ar-
chitecture is conceptually stricly related to Dyna and other architectures of the main
stream. Finally, in robot navigation, an important contribution comes from Mill�an ([95],
[96], [97], [98], [99]), who proposes an original architecture for combining reactive planning
with high level symbolic planning. In conclusion, the Reinforcement Learning community
proposes an interesting methodology which could potentially solve the problem of on-line
re�nement. Obviously (see, for instance, [143]), Reinforcement Learning tackles problems
that are also closely related to those of adaptive control (e.g., [61]). Formalisms such as
Albus' CMAC ([2]) have already been adopted by the RL community ([83]). Also, Gulla-
palli's work exploits these similarities ([48]). Mill�an ([96]) reviews the use of reinforcement
learning for robot navigation.

4.4 Concept learning
Most often, if all features de�ning a concept are true for an object, it is concluded

that the object is a member of the concept. This means that a concept is completely
determined by its features. Think, for instance, of a representation for the everyday
concept "cup". The at bottom, the concave form, and the handle could be features
of the concept "cup", but features alone are not su�cient to de�ne a cup. A particular
object could be described by these three features without actually being a cup, because you
cannot drink from such a receptacle. Adding additional features to the characterization
of a cup will not solve the problem, because, in an in�nite number of ways, however, a
given receptacle can be such that it is impossible to drink from it. All these ways cannot
be excluded by features in the concept and object descriptions. Presumably, for any list
of features that a cup cannot have, we could construct an additional exceptional feature
which hinders drinking from a receptacle. This is the quali�cation problem.

The quali�cation problem indicates that observational features alone are not ad-
equate. What is most important about a cup is that one can drink from it. Drinking is
a verifying action for a cup. As many ways as there are to disturb the functionality of
a cup, as many exist to preserve its functionality even if the mentioned features are not
existing. A concept description should therefore not only consist of perceptual features
but also of a typical action. If this action is successful for a particular object, it belongs to
the concept. If the action is not successful, it does not belong to the concept. In this way,
actions are integrated into concept descriptions and into their application as recognition
functions.

Perceptual features describe patterns which are perceived while the robot per-
forms an action. Even features that seem to be purely observational without any link to
an action are, in fact, action-oriented. The perception of a at bottom, for instance, is
only possible when looking from a particular angle with respect to the object. Looking
straight down upon the receptacle does not allow to determine whether the bottom is

at or not. A perceptual feature (e.g, at bottom) is constructed with reference to an
action (e.g. looking from the side). Action features, in turn, require perceptual features.
Actions are represented in terms of the following sensor patterns: what is sensed before a
particular action can be performed, what is sensed during successful performance of the
action, and what is sensed as the outcome of the action. Hence, perception and action are
closely interrelated at all levels of abstraction.

4.5 Learning of diagnostic knowledge
The basic input for the inference engine handling diagnostic knowledge are sen-

sory patterns obtained from the machine or the robot to be monitored. Some patterns can
be learned as associated to represent situations of normal or abnormal system behaviour.
Depending on the sensing complexity, more general or more speci�c situations can be ad-
dressed. Related knowledge can be organized and made available for monitoring purposes.
Learning is associated with the following aspects: training concerning adequate feature
selection for the processes to be characterized and generation of real examples associated
with good and bad behaviour.

Richard Forsty ([40]) proposes a general structure for a learning system. The four
components of Forsty's system are: the performer, the rules, the learner, and the critic.
Learning takes place by applying one of the learning paradigms presented in [40], [159],
[108], [64], [59], [12], or [18]. They are summarized in the following categories: black box
methods, learning structural descriptions, and evolutionary learning strategies. The �rst
category comprises arti�cial neural networks, the second one consists of symbolic inductive
methods and decision trees, the latter uses genetic algorithms.

The general framework for the learning system employed in the machining ap-
plication consists of the Machining Process, modelled by the available sensors, and the
Monitoring & Prognostic System, implementing the overall performer. Because of the
complexity of the process, the performer is decomposed into a set of sub-performers called
Speci�c Monitors and the Machine Supervisor. The output of the performers is collected
in the facts database MonitoringResults. In order to enable a starting point for learning
and performance evaluation, the collected sensor data and related features are stored in
the database Sensor Collected Data & Features. These two databases form the input for
the critic and learning processes. The critic and learning processes are human assisted.
Here, the human assistance is done both for criticizing some relevant aspects and also to
evaluate the learned knowledge. The output of the learning process is stored in the knowl-
edge base Learned Rules & Characterizations. This knowledge is organized in order to
relate the machining features and respective CNC program segments to the learned rules.
The Learned Rules & Characterizations knowledge base enables the monitoring program
generation. These programs are the rules and related information necessary for the several
performers to carry out their job for the speci�c machining process that is going to take
place.

Some of the experiments in the assembly domain used a typically inductive learn-
ing algorithm, presented in [57] (an application of this algorithm in the area of robot
manipulation of moving objects was also described in this reference). The algorithm is
simple, and has the advantage of dealing with numerical data. Numerical training data are
preprocessed in order to produce discrimination diagrams (a discrimination diagram of an
attribute shows, for each value, the classes that the objects of the training set may have)
([130]). Producing discrimination diagrams from numerical training examples is done in
three steps. The �rst step is to produce histograms for all pairs of classes and attributes.
In the second step, each histogram will be approximated to several well known statistical
distributions. The distribution that matches the histogram best will be selected. The last
step is to apply a rate of signi�cance to the distribution in order to ignore values of the

attribute that do not occur signi�cantly in the objects of the considered class.
The output of this inductive learning algorithm is a decision tree ([116], [150]),

which is generated in two phases. In the �rst phase, a minimal set of attributes is deter-
mined. The best attributes are those with greatest discrimination power and the smallest
computational costs. In the second phase, the tree is recursively created. In each step of
the recursion, considering the discrimination power and the importance of the discrimi-
nated classes, a new attribute is selected for branching. A leaf node is created when there
is only one possible class.

4.6 Learning of planning knowledge
In principle, "planning knowledge" is a term that might refer to a lot of di�erent

things, such as layout planning, assembly planning, motion planning, etc. The next two
sections are, however, explicitely referring to robot motion planning ([62]), as it occurs in
planning of �ne motions for assembly robots and in path planning for mobile robots.

4.6.1 Fine motion planning

The assembly strategies associated to the use of active compliance could be gen-
erated by a human operator, but they are task-dependent and frequently they imply great
skill and e�ort. Consequently, the interest of an automatic �ne motion planner capa-
ble of establishing a sequence of movements that ensures assembly task success despite
uncertainty becomes evident.

The approach described here assumes that the involved objects are polyhedral
and rigid under the forces developed during manipulation. It is valid for a general 6-dof
problem, but it has been developed and implemented in detail for planar movements, i.e.
two translational and one rotational degrees of freedom, such that polyhedral objects can
be considered as polygonal objects moved in a plane parallel to that of the real movement.
It is also assumed that the robot is able to work with an impedance position/force control
and that the movements are slow enough to make inertias negligible. The plan is built by
using information directly available from a CAD database system. The main input data
to the planner are the geometric model of the objects, the initial and the �nal desired
con�gurations of the objects, and the parameters of each uncertainty source.

In order to perform an assembly task with small clearances, the uncertainty
a�ecting the parameters and variables describing objects or objects' behaviour in the real
world must be considered. Uncertainty has been modeled in di�erent ways given rise,
for instance, to probabilistic and worst case models. In this work, a worst case model
has been considered, de�ning the uncertainty of a parameter or variable as the domain
containing all possible actual values for an observed value subject to deviations; thus, the
actual value may be any inside the uncertainty domain with the same probability. The
following table enumerates the uncertainty sources that a�ect an assembly task.

Manufacturing tolerances (a) object shape and size

Geometric Object observation
(b) point position measurement
(c) con�guration determination

Robot related
(d) slipping of the object in the gripper
(e) end e�ector position and orientation

Force
measurement (f) force/torque sensor

Velocity (g) robot control

Deviations (a) through (d) determine the set of con�gurations of possible contact
between the manipulated object and the environment. By merging all these uncertainties

it is possible to establish an uncertainty domain, CUr, of possible con�gurations for the
occurrence of each basic contact. Because the robot itself is used as a sensor to observe
the manipulated object con�guration, uncertainty (e) implies a set of possible sensed
con�gurations for each real con�guration. Considering all the uncertainties (a) through
(e) (i.e. by adding uncertainty (e) to CUr) it is possible to establish an uncertainty domain
of possible sensed con�gurations, CU, for each basic contact. The union of the sets CU of
all possible basic contacts results in a set CcI in which a contact could be detected. CcI
divides the Con�guration Space, C, giving rise to two other sets: ClI, the guaranteed free
space con�gurations set, and CiI, the set of impossible con�gurations. Movements through
ClI can be considered as gross-motion and movements through CcI implies �ne-motion.

For polygonal objects moved in a plane, Basa~nez and Su�arez [15] have modelled
all the geometric uncertainty sources and have merged them to obtain the sets CUr and
CU. An extension of this work was detailed in [111].

Concerning generalized reaction forces, deviations (a) through (d) determine the
real shape of the C-surfaces and therefore the set, FUr, of possible generalized reaction
forces for each basic contact ([39]). When reaction forces are observed, the uncertainty
of the corresponding sensor must be considered. By adding uncertainty (f) to FUr it is
possible to obtain the set of all the possible measured generalized reaction forces, FU, for
each basic contact.

For polygonal objects moved in a plane Su�arez, Basa~nez and Rosell ([139]) have
developed a procedure to determine the sets FUr and FU using dual representation of
forces ([22]). Finally, uncertainty (g) a�ects the robot movements, and therefore it must
be taken into account when the movements to perform the assembly are determined.

4.6.2 Mobile robot path planning

To speed up planning and to be able to take care of di�erent evaluation crite-
ria during the planning process, the planning process takes place on two levels. While a
geometrical planner is responsible for short range planning on the base of known geomet-
rical features of the environment, a topological planner operates on a graph representing
existing subpaths in the environment. By means of a task-dependent cost function, the
topological planner estimates the best possible path. This cost function is subject to adap-
tation due to the robot's experience and reects random disturbances introduced in the
environment as well as a simple exploration strategy to deal with mid-term environmental
changes.

START

GOAL

Figure 1: Example of a topological map with areas associated to locations in the environ-
ment.

Topological planning

The idea of introducing topological graphs (see �gure 1) as a more abstract
way to represent free spaces and existing passages in the environment is very appealing.
The graph representation allows easy access to the existing information, and algorithms
known from graph theory are directly applicable to the problem of �nding the "best"
path. However, an e�cient application of topological maps in a real world requires that
the following aspects are taken into account:

1. The topological map itself might be changing due to changes in the environment.

2. Even if the map itself does not change between the execution of two missions, it is
possible that temporary changes in the environment (e.g., a passage being blocked
by a human) require to use di�erent paths to accomplish the same task.

3. Most of the time, the robot's start and goal position will not directly be located on
the topological map. The selection of good or even optimal points to enter and leave
the associated graph is not straightforward.

4. The cost of moving along an edge of the graph cannot completely be computed
a-priori, since it depends heavily on dynamic features of the environment that inu-
ence, for instance, the security of an edge, or the average speed of the robot on the
corresponding subpaths. Moreover, global constraints can be imposed on the whole
system, changing the criteria an "optimal" path has to ful�ll.

The problem of �nding good entry points to move into and good exit points to
leave the topological map is tackled by incrementally generating a set of possibly over-
lapping areas and connections between these areas. For each pair of areas, the best path
(entry point, topological path, exit point) is known. Individual areas are enlarged or re-
duced according to the experience of the robot. A detailed description of the algorithm,
which is based on incremental methods to build classi�cation structures ([42]), can be
found in [155].

To deal with temporary changes in the environment, the topological planner
realizes a simple exploration strategy, which allows edges that have been found blocked
during operation to be used again in the planning process, if the blocking doesn't occur
too often. The calculation of the cost function is based on a cost model which includes
both static (such as the length of the edge) and dynamic (such as density of obstacles,
security of the edge, special actions that might be required) costs. The dynamic costs are
known after the robot has passed an edge. This information is used to enhance the model
of the cost function and to optimize the prediction of the edge costs at planning time.
Since both the history of the cost function and the function's derivative is important in
a complex environment, an appropriate learning method is temporal di�erence learning
([140]).

The planning strategy itself can be described as follow: After good entry and exit
points have been determined, generate temporary connections between the exact start and
goal position and the entry respectively exit points. Predict the costs of all edges of the
topological map and run a branch and bound algorithm to obtain a path with (estimated)
least overall costs.

Geometrical planning

Paths outside the topological map such as the paths to enter and leave the graph
must be planned geometrically. This geometrical planning is restricted to an area which
is slightly larger than the area that can be perceived by the robot's ultrasonic sensors.

The local model which is used by the geometrical planner integrates a-priori available
information (such as an incomplete description of the environment) with recently acquired
sensorial inputs. The planning algorithm itself is based on the idea of potential distance
�elds ([156]) and is described in more detail in [155].

The integration of the topological and the geometrical planner (and the reactive
module) realizes an adaptive behaviour on several levels. Especially the "experience" of
the geometrical planner is not only altering the structure of the topological map (which
might as well be seen as some sort of preference criterion), but also the prediction of
edge costs and the set of areas that is de�ned over the whole working space of the robot.
Moreover, also the activity of the reactive module, which is primarily responsible for guar-
anteeing collision-free motions, provides another contribution to the estimation of costs
for individual (single-edge) movements, thus adapting the cost estimation means also to
account for the robot's low-level capabilities. On the other hand, both the topological (via
an a posteriori comparison of static costs such as the geometrical length of the edge and
dynamic costs such as the required movement) and the geometrical planner (by detect-
ing suboptimal short range movements) can explicitely request the generation of a new
behaviour, expressed as a new situation-action rule, from the reactive module.

5 EXPERIMENTAL RESULTS

5.1 Test beds
Since the emphasis in B-Learn II is on the application of Machine Learning tech-

niques to real robots and real machines, complex test beds featuring real-world conditions
have been developed. They are shortly described in this section.

5.1.1 Robot Manipulators

For the experiments carried out in B-Learn II, four robot manipulators are avail-
able. At the Katholieke Universiteit Leuven2, a KUKA-IR 361 is installed as a 6 degree
of freedom force-torque and velocity controlled robot. Control programs are developed on
a workstation and downloaded to a transputer cluster directly linked to the robot. The
robot used at the University of Karlsruhe3 is a standard Puma 260 manipulator (made by
Staeubli Unimation). Providing a maximum load of 9 N, this robot is the smallest available
industrial robot featuring six degrees of freedom, hence an ideal choice to perform exper-
iments that involve direct interaction with human users. Is is controlled via a customized
Unimation controller linked to workstations via Ethernet. The experiments taking place
at the Instituto de Cibern�etica de Barcelona4 are carried out on a Puma 560 (Unimation)
with a Mark II controller. This robot is linked to a workstation via a serial connection
and equipped with proximity and tactile sensors in addition to a force-/torque sensor. For
the monitoring application, the Universidade Nova de Lisboa5 is using a SCARA robot
with four degrees of freedom.

5.1.2 Machinery

The experimental setup in the machining application consists of a Dendford
STARTURN 4 lathe machine and a Dendford STARMILL milling machine6. These ma-
chines are semiprofessional NC machines, featuring a 0.5 HP DC permanent magnet spin-

2Contact: Marnix Nuttin (nuttin@mech.kuleuven.ac.be)
3Contact: Michael Kaiser (kaiser@ira.uka.de)
4Contact: Raul Su�arez (suarez@ic.upc.es)
5Contact: Luis Camarinha-Matos (cam@fct.unl.pt)
6Contact: Luis Camarinha-Matos (cam@fct.unl.pt)

dle motor with rotating speeds of 0 to 2000 rpm. The mechanical resolution of the axis is
0.01 mm, with a feed rate range of 0-1200 mm per minute. These machines are equipped
with additional sensors to monitor the machines' working conditions and the resulting
workpiece.

5.1.3 Mobile robots

At the University of Karlsruhe7, the mobile robot PRIAMOS ([36]) is used as
a platform for experiments on perception, navigation, and on the application of both
subsymbolic and symbolic learning techniques for navigation tasks. PRIAMOS is a mobile
system with three degrees of freedom, i.e. motion in longitudinal and transverse direction
and rotation around the center of the vehicle. This is accomplished by the use of four
Mecanum wheels, each one driven separately. Currently, the robot is equipped with 24
ultrasonic sensors, of which three are mounted at each of the robot's sides and three at
each of the robot's edges. The sensor control and processing system is able to process
the input of all 24 sensors up to �ve times per second. Other sensors, such as a stereo
vision system ([157]), can be mounted on the upper cover plate using a exible mounting
system. The Instituto de Cibern�etica de Barcelona8 uses a commercial NOMAD 200 robot
for experiments. This robot has a radius of 9 inches and a height of 30 inches and three
independent motors. The �rst motor translates the three wheels of the robot together.
The second one steers the wheels together. The third motor rotates the turret of the robot.
The robot can only translate along the forward and backward directions along which the
three wheels are aligned. The robot has a zero gyro-radius, i.e. it can steer around its
center. The version of the Nomad 200 in use has three sensory systems, namely tactile,
infrared, and ultrasonic.

5.1.4 The visual sensing system

The visual sensing subsystem has been developed and tested at the Universita di
Genova9 based on a set of indoor images acquired within a computer vision laboratory.
The perceived scenes included various objects, such as doors, computing and disk units,
windows, etc. The lighting conditions have been maintained quite uniform. The training
sets (for both the 'whole-image' and the 'window' mode) have been built by associating
each image to the set of regulation parameters considered optimal by a human expert.
The total amount of training couples is larger than 900. The camera is equipped with a
motorized lens system and it is arranged for an external control of both electronic gain and
black level. The motorized lens system allows the regulation of the focal length (zoom),
the focusing distance, and the aperture diameter (iris).

The control of the objective parameters is accomplished by means of an RS 232
interface. There are three engines for the activation of the parameters, three position
receptors for the control of the exact positioning, and a controller for communications
with the host computer. Regulation is entirely numeric and programmable.

5.2 Data preprocessing
5.2.1 Example preprocessing and training data generation10

Figure 2 shows the forces Fx; Fy; Fz that have been recorded during an insertion
operation performed by a human operator using a 6D joystick and on a KUKA-IR 361,

7Contact: Michael Kaiser (kaiser@ira.uka.de)
8Contact: Jos�e del R. Mill�an (jose.millan@cen.jrc.it)
9Contact: Francesco de Natale (dede@dibe.unige.it)

10Original references: [66], [68], [69]

-30

-25

-20

-15

-10

-5

0

5

0 100 200 300 400 500 600 700

Forces during insertion operation 1

Fx
Fy
Fz

-60

-50

-40

-30

-20

-10

0

10

0 50 100 150 200 250 300 350 400 450

Forces during insertion operation 1

Fx
Fy
Fz

Figure 2: Forces recorded during an insertion operation. Left: recorded from a human
operator. Right: recorded from a working controller.

using a taskframe controller ([126]), respectively. In general, an example E = (~x; ~y)T con-
sists of a sequence of measured inputs ~x1; : : : ; ~xT ; T > 0 and the corresponding measured
outputs ~y1; : : : ; ~yT that are representing the commands applied to the robot. s := dim(~x)
is the number of active sensors during recording time, and a := dim(~y) the number of
measurable outputs. However, in general it cannot be assumed that the measured inputs
at time t contain su�cient information to generate the desired output. Sometimes the
history of the inputs must be taken into account. The analysis that aims at �nding these
complex dependencies takes place during the segmentation of the example. The meaning
of the example, i.e. the knowledge about what the robot has actually been doing while
the example has been recorded, is known to the symbolic system components, since they
are communicating with the user, who acts as the supervising entity.

Segmentation

Generally, an operation performed on the level of control might not only require
continuous control but also the consideration of the context as given by the history of the
situations that have already been encountered by the robot. This context can be accounted
for in several ways. One possibility is to explicitely handle the history of situations by
designing skills that do not only realize a mapping Sit 7! Act, but a mapping SitT 7! Act,
thus making the action to be taken dependent on the last T situations. This solution
results in high dimensional (s � T) input spaces, complex mappings, and great di�culties
in �nding appropriate training sets ([67]).
Another solution is the segmentation of the operation into di�erent phases. Based on
an example E = (~x; ~y)T a phase is de�ned as an interval P = [ts � 0; te � T] such that
8t1; t2 2 P : ~xt1 =s ~xt2 ! ~yt1 =a ~yt2 , where =s and =a de�ne a measure of similarity for
the situations and the actions, respectively11. Thus, during each of the phases the action
can be considered to be dependent on the current situation only, i.e., the control task can
considered to be Markovian. The advantage of this approach is that the individual skills
as well as the input space are less complex. Thus it becomes easier to generate a su�cient
set of examples. Also, this kind of segmentation results in structural information that is
important for building a symbolic description of the developed skill. On the other hand,
this advantage is reduced by the necessity to detect the phase in order to be able to choose
the appropriate skill.

A second possibility to reduce the complexity of the control function c repre-
senting the rule set associated to each skill is to realize each mapping c : Sit 7! Act,
corresponding to �c : IRs 7! IRa, by a set of functions ci : IR

s 7! IR such that 8s 2 IRs :

11Examples are generated by sampling the inputs and outputs at discrete points (t1; : : : ; tT) in time.
When relating an example to a phase, only those points are considered.

�c(s) = ~y = (y1; : : : ; ya) = (c1(s); : : : ; ca(s)). Considering the application of robot control,
this means that each degree of freedom is controlled individually.

Training data generation

Apart from scaling the sampled input and output values to a range that is accept-
able for the selected learning technique (e.g., to [0; 1]), the generation of an appropriate
training set requires the use of data recorded from several examples. Since each of the
examples consists of a sequence of phases, the task is to �nd and merge corresponding
phases. Correspondancy between phases comprises two di�erent aspects. On the one hand,
skills generated from corresponding phases should essentially realize the same functional-
ity, i.e., "do the same." On the other hand, the combination of both phases should again
be a phase (in the sense de�ned above) in order not to violate the Markov assumption
underlying the individual skills.
Therefore, for each pair p1 = [t11; t12] and p2 = [t21; t22] of phases belonging to examples
E1 = (~x1; ~y1)

T1 and E2 = (~x2; ~y2)
T2, respectively, it must be checked whether the local

goal states (i.e., the situations at the end of the phase) are the same. If this is the case,
and 8t1 2 p1; t2 2 p2 : ~x1t1 =s ~x2t2 ! ~y1t1 =a ~y2t2 , the phases can be merged to a single
one, i.e., they can serve as training data for the same skill.

1 2 3

-60

-50

-40

-30

-20

-10

0

10

0 50 100 150 200 250 300 350 400 450

Forces during insertion operation 1

Fx
Fy
Fz 1 2 3

4

3

1 2

3

4

Figure 3: Mapping of an example to a sequence of states and merging of sequences.

In order to generate the logical structure of the controller, i.e., the skill model, it is
necessary to map the examples to a sequence of states, using the already existing segmen-
tation information. Since it is possible that phases occur several times in a single example
(this might indicate a loop that must be executed several times until a certain condition is
met), an intra example check similar to the one described above for corresponding phases
must be performed (see also [37]).

5.2.2 Feature calculation and extraction12

The data used for feature learning are gathered by the vehicle PRIAMOS of the
University of Karlsruhe while moving through a room. The vehicle is equipped with 24
sonar sensors, all of which are located at the same height all around the vehicle. The aim
is to enable the navigation system to perform high-level tasks such as "pass through the
door, turn left, move to the cupboard" in various environments. This requires learning
of operational concepts such as "pass through door" from several training traces. Each
training trace consists of the following data for each point of time and each sensor:

12Original references: [72], [106]

� trace number and point of time; for identi�cation of the measurement,

� robot position in world coordinates,

� sensor number, its position and orientation; for identi�cation of the sensor,

� measured distance,

� position of the sensed point in world coordinates,

� object and edge number of what is sensed.

Currently, 28 traces, each with at least 21 and up to 54 samples, are used. Thus,
there are 17472 measurements as examples for the learning system. Most paths are move-
ments through a door with di�erent distances from the door frames, di�erent directions
relative to the door frames, and with or without a cupboard at the wall close to the
door. Particular constellations of edges, such as two walls being linked by a right angle,
are gathered. These constellations are called "line", "jump", "concave", and "convex",
respectively.

Building a map of the environment13

Principally, there exist two approaches for modeling a-priori unknown objects.
On the one hand, parameterized models are used where the modeling task is reduced to
an estimation of the object parameters. In a certain sense, this is similar to the object lo-
calization done in PRIAMOS. However, since no a-priori object knowledge is available, the
full uncertainty of the sensor measurement and the robot's position error has to be taken
into account. The second group of approaches is based on two- or threedimensional grids.
Cells in a grid are directly related to parts of the environment, and sensor measurements
can directly be put in the map. However, the mapping measurement 7! cell depends on
the sensor charateristics. Since both approaches have their advantages, a combination is
used in PRIAMOS. On a low level, grids are used to collect sensor measurements. Feature
extraction is performed on the information stored in the grids, the results can serve as a
starting point for object parameter estimation. In order to be able to deal with dynamic
objects and to reduce the complexity of the grid-based representation, we introduce two
enhancements with respect to the traditional approaches. First, we treat the grids locally,
i.e. the grids are assigned to a detected object and can be moved according to the ob-
ject's movements. Second, positive (holding evidence for the non-emptyness of a cell) and
negative (holding evidence for the emptyness of a cell) grids are stored separately, helping
to detect the motion of objects. Additionally, it is necessary to be able to combine grids
that have cells in common. This fusion of grids is done on the base of a standard OR
operator. The fusion of positive and negative grids is done separately. Afterwards, a new
grid is computed by adding the cell values of the corresponding positive and negative grid.

Feature extraction in Machining14

From the CNC laboratory facilities available at the Universidade Nova de Lisboa,
the lathe STARTURN 4 was selected. The experiments undertaken are aiming at assessing
the validity of the adopted approach of correlating the sensorial data patterns to the NC
command under execution and, at evaluating the methods for processing the sensorial
inputs and for the extraction of features. Three sensors where installed in the lathe, in
order to record sound, axis vibrations, and machine main current consumption. They were
developed inhouse using standard transducers available on the market.

13Original references: [81], [70]
14Original references: [117], [11]

Three CNC programs were written in order to activate the machine in the fol-
lowing situations: spindle running at di�erent speeds (100 to 2000 rpm, increments of
50 rpm) without cutting, axis movements (10 to 10 mm/min, increments of 10 mm/min)
without cutting and �nally a machining program (machining of a brass screw). During
the execution of these CNC programs, data from each sensor were collected and stored in
a database. All sensorial data were labeled with the corresponding NC instruction under
execution.

The FFT transform of each sampled data block was computed o� line. The re-
sulting power spectrum was stored in a database. The feature extraction methods were
based on a toolbox for analysis and visualization of sensor data ([117]), which was espe-
cially developed for this kind of application. Basically, the toolbox permits the analysis
of the processed sensorial data in order to identify the most relevant characteristics for
discrimination. Three di�erent algorithms are available for feature evaluation: UniVar,
M-Covar and MinErr. The best performing algorithm for this kind of data is the MinErr
(it is a variant of the Sequential Forward Search (SFS) algorithm described in [33]). The
set of selected features is used as a base for the construction of any kind of identi�er. As
a result the relevant frequency harmonics that present the best correlation to the set of
classes (a class corresponds to an NC instruction) are determined. This way the number
of features as well as the harmonics that should be used to build the feature vector are
found. Feature vectors of only 10 to 20 harmonics give surprisingly good identi�cation
values. That means that the generation of identi�ers and the respective training can be
speeded up.

Similar procedures were done for the data related to the remaining sensors: ma-
chining sound, tool carriage vibrations in the X and Z directions, and the main electrical
current. After examining the results corresponding to the data collected when the machine
was exercised (not cutting), it was found that for this speci�c machine

� The main electrical current sensor is the one that presents the best identi�cation
�gures for spindle speed identi�cation.

� As it was expected, the X and Z accelerometers present the best result �gures for the
axis moving speed identi�cation. For the case of the data collected when machining
the piece, the sensors still present the same previously described behaviour, but dif-
ferent harmonics must be used. That means that the sensor data have changed their
characteristics. These results meet the expectations. In fact, the cutting process
brings new information to the sensors. The cutting forces inuence all sensors: the
sound, the vibrations of axis and also the power consumption.

Those results lead to the conclusion that the approach based on context sensor data
interpretation is plausible and can be used for real time monitoring.

5.3 Learning of control functions
In order to verify the possibility of synthesizing a controller from examples of

correct behaviour, an experiment has been performed using both fuzzy controllers and
TDNNs. The test case has been taken from a real robotic application where a KUKA-
IR 361 was requested to perform the classical peg-into-hole task. The robot was already
operating controlled by a PD-controller using force and torque as inputs and producing
cartesian velocities as output (([126], [128]).

Hence, each example consisted of six inputs (Fx, Fy , Fz , Tx, Ty and Tz) and six
outputs (Vx, Vy, Vz , !x, !y and !z). The learning task itself was posed as in the following:

1. The traces of the signals in input and output corresponding to seven insertion events
have been recorded.

2. Three insertion events have been selected for supplying the learning set to induce a
control procedure.

3. The obtained control procedures have been tested on the other four events in order
to assess the performance achieved.

5.3.1 Learning a Control Procedure using TDNNs15

The di�culty usually encountered in applying a neural network to a learning task
is the determination of a proper network structure. In the case of a TDNN, this means
the proper number of hidden units as well as the number of delays associated to each
neuron. There is no theory supporting this choice and only the empirical experimentation
with di�erent con�gurations can lead to discover a proper setting. Moreover, a second
dilemma to be resolved is whether to use a unique network with many outputs or to use
an independent network for each of the output signals. The �rst solution could lead to
more compact solutions and in principle is more attractive. Nevertheless, the experiments
showed that it was more easy to achieve good results adopting the second strategy.

-8

-6

-4

-2

0

2

4

6

0 500 1000 1500 2000 2500 3000

Vx/Network
Vx/Robot controller

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000

Vy/Network
Vy/Robot controller

-10

0

10

20

30

40

50

60

0 500 1000 1500 2000 2500 3000

Vz/Network
Vz/Robot controller

Figure 4: X,Y, and Z-velocity (test set) of network vs. desired output

The experimentation itself has been performed starting with simple topologies
(i.e., with few hidden units and few delay units), followed by increasing the complexity
as long as a signi�cant increase in the accuracy was obtained. The same approach has
been used trying to synthesize a multi-output network and also a set of six independent
networks (one for each output). The results are reported in table 1, see also �gure 4.

5.3.2 Learning a Fuzzy Controller using SMART+16

The synthesis of a Fuzzy Controller from examples has been posed as a problem
of learning concept descriptions from examples, which can be solved using a symbolic
inductive algorithm. In the speci�c case, SMART+ ([21]) has been used. Looking more
closely at the structure of a fuzzy controller, it can be found that the problem is to learn
the fuzzy sets of the �rst layer, the fuzzy sets of the third layer and the set of rules
representing the mapping from the �rst layer to the third one.

In the experiments described here, the number and the size of the fuzzy sets
in the third layer were chosen a priori. Afterwards, SMART+ had to learn both the
rules and the fuzzy sets in the �rst layer. However, the method for de�ning the third
layer fuzzy sets consisted of simply subdividing the range of the output signal into n

equally spaced intervals each one represented by a triangular fuzzy set, thus the number
n of subdivision was actually the only critical choice a human expert was asked to do.
Afterwards, SMART+ was able to determine the remaining pieces of knowledge. Also in
this case it was necessary to decide whether to have a unique controller with many outputs

15Original reference: [67]
16Original references: [43], [46], [109], [110]

Method Signal Complexity Emax Eavg [%] Signalmax Signalmin

Vx 28 0.882 2.25 4.4 -7.1
Vy 28 0.539 2.02 4.9 -3.6

TDNNs Vz 28 2.469 1.8 54.2 -8.4
!x 28 0.008 6.6 0.036 -0.06
!y 28 0.0039 9.7 0.054 -0.015

Vx 46 1.20 1.49 4.4 -7.1
Vy 85 2.12 1.27 4.9 -3.6

SMART+ Vz 58 54.77 2.12 54.2 -8.4
!x 135 0.0566 4.47 0.036 -0.06
!y 121 0.0437 3.45 0.054 -0.015

Table 1: Comparison of the performance of the controller synthesized using 5 independent
TDNNs and 5 independent FCs induced by SMART+. The component of the angular
velocity along z, !z , doesn't appear because a round peg has been used. The complexity
is evaluated as the total number of neurons for TDNNs and the number of rules for FCs.

or six independent controllers. The experimentation has been done only for this last case,
and the results obtained are described in table 1 as well.

5.3.3 The Comparison17

By comparing the best results obtained using TDNNs and Fuzzy Controller syn-
thesized by means of SMART+ (see table 1) we can see a substantial similarity in the
performance with respect to the accuracy in approximation the control function. There-
fore, according to this criterion, no speci�c reason for preferring one approach over the
other can be indicated. On the other hand, more substantial di�erences can be distin-
guished by considering the cost and the di�culty of applying the training process, and
by considering the peculiarities of the two approximation techniques. Basically, the learn-
ing machinery necessary for applying the back propagation algorithm to the TDNN is
uncomparably simpler than the one required by symbolic algorithms such as SMART+.
Moreover, the computational cost for 2,000,000 of learning steps for TDNNs is lower than
the one for applying SMART+. In fact, the time required by SMART+ was in average a
couple of hours on a Sparc 10 against half an hour for training a TDNN. Currenty, Radial
Basis Function networks ([103]) are under investigation. The results achieved so far show
that, given a su�cient number of cluster nodes, this type of network is able to meet the
approximation accuracy of both the automatically generated Fuzzy Controller and the
TDNN, while requiring less computational resources.

5.3.4 Control of the automatic vision system18

The automatic vision system (AVS) works as a chain of four processing modules
ranging from acquisition to symbolic description. Since learning capabilities are currently
exploited only in the camera module, the work of the AVS consists of a loop of actions
performed in this �rst module (image acquisition, image quality evaluation, adjustment
of the acquisition parameters). If the quality of the acquired image is satisfactory, the
loop is exited and the data is passed to the upper modules, which generate the symbolic
description. The training set has been built associating quality factors and optimal acqui-
sition parameters for more than 950 images acquired inside the Robot Vision Laboratory

17Original reference: [45]
18Original references: [102], [101]

Figure 5: Upper part of a closed door: a) image acquired with random regulation; b)
resulting edges after processing; c) image acquired after regulation loop (one-shot); d)
�nal processed data.

number of tests number of cycles % of total

success 84 1 89.4

3 2 3.2

fail 7 4 7.4

Table 2: Success rate of the automatic vision system.

of UGE (see �gure 5). The ANN has been fed with these few features instead of pixel
level information which implies a prohibitive implementation. When the AVS is requested
an image, an evaluation-regulation loop is again performed, using the trained network.
Experimental results show that the optimal acquisition parameters are achieved in a few
iterations of the loop: in the 89.4% of the cases one iteration only is needed (one-shot),
two cycles are necessary in the 3.2%, whereas only in 7.4% of cases the ANN could not
give good results after 4 cycles. These last cases correspond to situations where there was
nearly no light in the scene, so a satisfactory acquisition is very di�cult.

Concerning the processing time, which must be carefully taken into consideration
particularly in the context of the activation of the system under direct request, a processing
sequence beginning with the scene acquisition until the edge detection, requires about
2.5 minutes. Even if such a result seems modest, a few observation should be made:
1. No speci�c hardware has been used, 2. The current platform (SUN SparcStation 2)
performance is not leading-edge. 3. The acquisition system (camera and frame-grabber)
is connected to a remote machine, which implies a communication overhead for all image
transfers to the host computer.

acquisition & tuning preprocessing edge extraction edge detection total

min 70s 20s 6s 32s 2m08s

max 83s 38s 12s 46s 2m59s

average 77s 31s 8s 35s 2m31s

Table 3: Time required for invididual processing modules of the AVS.

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Insertion number

Av. quality

0 100 200 300
0

1

2

3

Insertion number

Insertion time [s]

100 200 300 400

0.4

0.6

0.8

1

Insertion velocity [mm/s]

Q
ua

lit
y

0 0.5 1
0

0.5

1

1.5

Learning rate

tim
e:

 [s
];

Q
ua

lit
y:

 [0
,1

]

Figure 6: Simulation results. (a) Top left: evolution of Q1 over consecutive insertion
operations. Q1 is a dimensionless quality measure for the contact forces occuring during
an insertion. The contact forces decrease. (b) Top right: evolution of insertion time (in
seconds). After 300 insertion operations, the insertion time has decreased with a factor
3. (c) Bottom left: Q1 as a function of insertion velocity for (full line) the task frame
controller and for (dots) the RL controller. (d) Bottom right: (full line) insertion time
of the 300th insertion and (dashed line) quality range of Q1 after convergence; both as a
function of the learning rate of the action network.

5.4 Learning and refinement of reactive behaviours19

Reinforcement Learning as described in section 4.3 is used in di�erent contexts
in B-Learn II. In the area of compliant motion, the peg-into-hole task is selected as the
case to be studied. The optimal controller for this task has been proven to be non-linear
([8]).

In addition to the o�-line generation of controllers described in section 5.3, an
on-line learning connectionist controller has been developed to work with a contact force
simulator. The applied learning algorithms are based on the REINFORCE family of
algorithms described in [160]. In the simulation (see [129]), which includes sensor noise
and initial position uncertainty, the manipulator works in 3D with 6 degrees of freedom.
The learning controller must �nd a good control relationship between the measured contact
forces and the controlled cartesian velocities. In a �rst phase, the learning controller is
trained supervised by a suboptimal taskframe controller, developed at the PMA laboratory,

19Original references: [113], [95], [99]

K. U. Leuven ([126]). Afterwards, the reinforcement phase follows. The learning controller
is able to increase the insertion speed without increasing the contact forces. The results
are shown in �gure 6. Also, experimental studies were undertaken to understand the
e�ect of the learning parameters. For example, the �gure shows the e�ect of changing the
learning rate of the action network on the resulting performance, too.

To autonomous robots, reinforcement connectionist learning brings four ben-
e�ts. First, this kind of learning robot can improve its performance continuously and
can adapt itself to new environments. Second, the connectionist network does not need
to represent explicitly all possible situation-action rules as it shows good generalization
capabilities. Third, connectionist networks have been shown to deal well with noisy in-
put data, a capability which is essential for any robot working upon information close to
the raw sensory data. Fourth, connectionist learning rules are well suited to on-line and
real-time learning.

ICB's robot TESEO exhibits all these advantages. In addition, it also overcomes
three critical limitations of basic reinforcement connectionist learning that prevent its ap-
plication to autonomous robots operating in the real world. The �rst and most important
limitation is that reinforcement learning might require an extremely long time. The main
reason is that it is hard to determine rapidly promising parts of the action space where to
search for suitable reactions. The second limitation regards the robot's behaviour during
learning. Learning robots should be operational at any moment and, most critically, they
should avoid catastrophic failures such as collisions. Finally, the third limitation concerns
the inability of \monolithic" connectionist networks |i.e., networks where the knowledge
is distributively codi�ed over all the weights| to support incremental learning. In this
kind of standard networks, learning a new rule (or tuning an existing one) could degrade
the knowledge already acquired for other situations.

TESEO uses three main ideas to overcome the above-mentioned limitations.
First, instead of learning from scratch, TESEO utilizes a �xed set of basic reexes every
time its neural network fails to generalize correctly its previous experience to the current
situation. The neural network associates the selected reex with the perceived situation
in one step. This new reaction rule will be tuned subsequently through reinforcement
learning. Second, TESEO automatically builds modular network with a suitable structure
and size. Each module codi�es a consistent set of reaction rules. That is, each module's
rules map similar sensory inputs into similar actions and, in addition, they have similar
long-term consequences. This procedure guarantees that improvements on a module will
not negatively alter other unrelated modules. Finally, TESEO explores the action space
by concentrating the search around the best actions currently known. This exploration
technique allows TESEO to avoid experiencing irrelevant actions and to minimize the risk
of collisions.

The environment where TESEO has to perform its missions consists of a corridor
with o�ces at both sides. In one of the experiments TESEO is asked to go from inside an
o�ce to a point in the corridor. The �rst time it tries to reach the goal it relies almost all
the time on the basic reexes which make TESEO follow walls and move around obstacles.
In the �rst trial, TESEO enters into a dead-end section of the o�ce (but it does not get
trapped into it) and even it collides against the door frame because its sensors were not
able to detect it. Collisions happened because the frame of the door is relatively thin and
the incident angles of the rays drawn from the sensors were too large resulting in specular
reections.

Thus this task o�ers three learning opportunities to TESEO. The �rst and sim-
plest one is to tune slightly certain sections of the trajectory generated by the basic
reexes. The second opportunity consists of avoiding dead-ends or, in general, of not
following "wrong" walls. The third and most critical opportunity arises in very particular
occasions where the robot collides because its sensors cannot detect obstacles.

Knowledge Base Dynamic System

Encoder
(Fuzzifier)

Decision
Making Logic

Decoder
(Defuzzifier)

Figure 7: Basic architecture of a fuzzy controller.

TESEO solves all these three learning subtasks very rapidly. It reaches the goal
e�ciently and without colliding after travelling 10 times from the starting location to the
desired goal. The total length of the �rst trajectory is approximately 13 meters while
the length of the trajectory generated after TESEO has learned the suitable sequence of
reactions is about 10 meters. This experiment was run several times, and TESEO learned
the suitable motor skills after, at most, 13 trials.

To conclude, in this project we have shown how a goal-directed autonomous
mobile robot can rapidly learn e�cient navigation strategies in an unknown indoor envi-
ronment. Our robot TESEO self-adapts permanently as it interacts with the environment
through reinforcement connectionist learning. TESEO is not only operational from the
very beginning and improves its performance with experience, but also learns to avoid
collisions even when its sensors cannot detect the obstacles. This is a de�nite advantage
over non-learning reactive robots. Finally, TESEO also exhibits incremental learning, high
tolerance to noisy sensory data, and good generalization abilities. All these features make
our robot learning architecture very well suited to real-world applications.

5.5 Manual fuzzy controller design20

Unlike neural network learning techniques, fuzzy logic can also be used as a mean
to describe control knowledge in a user-friendly way. The strength of a fuzzy controller
(FC) is its capability to handle both linguistic knowledge and numerical sensor data. For
the application considered in B-Learn II, fuzzy control is also a means to achieve non-
linear control. The basic fuzzy control architecture is shown in �gure 7. The fuzzi�er
maps continuous numerical sensor data into discretized linguistic descriptions. The rule
matcher maps these discrete values to a set of discrete control values by means of heuristic
rules. The defuzzi�er maps these into continuous numerical control signals. A FC is thus
characterized by its linguistic variables, its rule base and its fuzzi�cation and defuzzi�ca-
tion procedure. Trapezoidal membership functions, that are symmetrical for positive and
negative linguistic variables, were chosen for the experiments.

Rules similar to the Sugeno type ([13]) were used because of real-time constraints.
These rules were observed to be as e�ective despite the fact that their fuzziness is limited
to the antecedent part and their consequent being a numerical value vi = f(X; Y : : :) with
X; Y; : : : being input variables.

The experiments were performed on the KUKA-IR 361, equipped with a force
sensor made at KULeuven/PMA (see also section 5.1.1). The robot task consists of
inserting an eccentrical round peg (peg diameter measures 35 mm) into a hole (hole length
is 70 mm.). The clearance between peg and hole is 0.15 mm. This task is prone to two-
point contact situations because of the eccentricity combined with a very exible end-

20Original reference: [110]

Force (N) Torque (Nmm)
Linguistic variable m1 m2 m3 m4 m1 m2 m3 m4

zero -2 -1 1 2 -12 -3 3 12
low 1 2 4 10 3 12 18 120

medium 4 10 20 40 18 120 180 1200
high 20 40 60 200 180 1200 1800 3000

to in�nity 60 200 350 5000 1800 3000 5000 19000

Table 4: Trapezoidal membership function de�nitions of the fuzzy controller.

point compliance. The FC was implemented in ANSI-C, and was compiled with a Logical
Systems C compiler. A real-time sampling frequency of 150 Hz was attained. To achieve
this frequency, the rules and fuzzi�cation and defuzzi�cation procedures were implemented
as macros. This avoids the time wasted with parameter passing and stack operations due
to function calls.

5.6 Concept learning21

In B-Learn II, concept learning refers especially to the learning of operational
descriptions of objects existing in the environment of a mobile robot ([106], [73], [35]). For
instance, the task might be to learn what it means to pass through a doorway. Consider
a trace where the robot moves through the doorway parallel to the door frames. When
approaching the door, the sensors on the right side perceive the jump caused by the door
frame. Correspondingly, the sensors on the front left side perceive the jump caused by the
left door frame. The sensors at the front constantly measure the back wall of the room.
This is what human inspectors of the sensory data realize. The issue now is to have the
system detect these relations by machine learning. In this application, we learned the
following three types of rules:

� Rules for patterns for single sensors

� Rules for patterns for classes of sensors

� Rules for going through a door in terms of patterns for sensor groups

For learning horn clauses characterizing these perceptions, we used algorithms
with the ability to restrict the hypothesis space, i.e., the space of learnable rules, syntac-
tically, because other learning algorithms could learn too many unusable rules [72]. The
most applicable learning algorithms were RDT ([71]) and a modi�cation of it, GRDT
([72]). Both algorithms are model-based learners, learning instantiations of rule schemata.
They learn from most general rules to more speci�c rules. In contrast to learning algo-
rithms that learn most speci�c generalizations, they learn most general rules that ful�ll
the user given evaluation criterion. In contrast to systems that stop after having found a
good rule, they learn as many most general rules as possible.

The algorithms learn from classi�ed examples. Their Input are instances of the
goal predicate to be characterized and the events used to describe the goal concept. Addi-
tionally, background knowledge like information about the sensor classes, etc., was given.

In a nutshell, the results are as follows. Given 1004 examples for the four sensor
features, 129 rules were learned, covering 87% of the given examples. An example rule
characterizing possible perceptions the robot gets from a "jump" is:

21Original references: [106], [73]

stable(Trace, Orientation, Sensor, Time1, Time2, Grad1) &
incr peak(Trace, Orientation, Sensor, Time2, Time3, Grad2) &
stable(Trace, Orientation, Sensor, Time3, Time4, Grad3)
! s jump(Trace, Sensor, Time1, Time4, parallel).

The rule describes that, �rst, the measured distance of a single sensor must be more or
less stable, then the distance must become much greater and then it must be stable again.

For learning sensor group features, we had 956 examples, from which we learned
136 rules. Using the learned rules for sensor features and sensor group features, we got a
coverage of 64%. We present an example rule for sensor group features, too:

s jump(Trace, Sensor1, Start1, End1, parallel) & sclass(Trace, Sensor1, right side)
&
s jump(Trace, Sensor2, Start2, End2, parallel) & sclass(Trace, Sensor2, right side)
&
succ(Start1, Start2) & succ(End1 , End2)
! sg jump(Trace, right side, Start1, End2, parallel).

According to this rule, at least two sensors of the right-side sensors must perceive a
\jump". Additionally, start and end time of the perception of the second sensor must
follow immediately the perception of the �rst sensor.

For the goal concept through door, we had ten examples. We learned three rules,
two of them covering exactly the ten examples, one of them describing that on both sides
of the robot, the robot must perceive a jump:

sg jump(Trace, right side, T1, T2, parallel) &
sg jump(Trace, left side, T1, T2, parallel)
! through door(Trace, T1, T2, both sides, parallel).

The third learned rule was a poor one deriving examples as well as additional facts. But
this rule was not necessary to cover the examples. All in all, the results promise good
further results.

5.7 Learning of diagnostic knowledge22

With respect to diagnosis, the experimental work realized concerns the identi�-
cation of the execution failure. Some failures can easily be identi�ed by simple discrete
sensors. For instance, if the wrong tool is attached to the robot, this can be detected by
one sensor. A part missing in the feeder may as well be detected with little e�ort. Such
kind of knowledge can be easily encoded by hand as rules. In fact, as a result of a �rst
attempt, it seems that it can be more cost e�ective to hand-code rules for monitoring bi-
nary sensors than to devise a costly training strategy suitable for the acquisition of enough
examples to be used by a learning algorithm.

However, how to characterize the situation in which the force pro�le in the robot
wrist is di�erent from normal? Di�erent external exceptions can occur causing execution
failures that manifest through abnormal force and torque pro�les. These pro�les, although
sometimes recognizable by a human, are di�cult to model analytically. Therefore, what
would be desirable is that the system learned to "look" at the force pro�les in order to
identify di�erent situations.

The performed experiments are a �rst step in this direction. In general, when
a failure is detected during the execution of an action, a trace of sensor data, for the
period of time in which that failure occurred, is obtained. The failure should then be
identi�ed using diagnosis knowledge generated manually or automatically. In the case of

22Original references: [11], [88], [26]

the force/torque sensor data, it is not easy to generate that knowledge manually, and so
machine learning algorithms, mainly inductive learning algorithms, are used.

The chosen situation for these �rst experiments was an operation in which the
robot holds a part to be assembled. During the training phase, the operation was executed
many times and several external exceptions were simulated. In most cases an object was
placed in the path the robot had to move along.

The force traces in an interval surrounding each failure were collected, and the
failure classi�cation was associated to it. The length of the trace was 15 samples. After this
phase, the data were analyzed using two very simple statistical variables: the average and
the standard deviation. Diagrams of typical behaviour for each failure were produced.
These diagrams include the lines of average force pro�le, average force plus standard
deviation pro�le and average force minus standard deviation pro�le.

The second step was to prepare the data to be the input to the learning algorithm.
If all numerical values of the forces in the trace, in total 45 values, are given to the learning
algorithm, probably it will run less e�ciently and the knowledge produced will be less
readable and less e�cient to use. On the other hand, when humans look at force pro�les,
they can easily recognize trends and high level features that the learning algorithm will
ignore if the training set is not given to it in terms of the good features. For these �rst
experiments, the raw data for each force were transformed to average force, slope, and
monotonicity, in order to reduce the total number of features, with some of them (slope
and monotonicity) being clearly of a higher level of abstraction.

In our application, 120 classi�ed examples were used. The generated tree has 53
leaf nodes, which means that 53 diagnosis rules are contained in it. About two thirds of
these rules can uniquely identify the class of the object (i.e. the error classi�cation). Most
of the other rules assign a set of two classes to the given error. Only 9 % of the generated
rules assign a set of three or four classes to the error. The algorithm may be parameterized
in order to obtain larger trees, thereby minimizing the number of leaf nodes labeled with
more than one class.

One particularly interesting result is that the attributes selected by automatically
by the algorithm were related to the force in Z-axis. This is knowledge that could not
be anticipated, but which makes sense, since the operation that is being considered is the
approach operation in Z direction.

Complementary to the learning experiments described above, a joint activity with
the Universita di Torino is being carried out. Torino's SMART+ (a multi-strategy learning
system, see [21]) is being investigated as an alternative learning system in the assembly
supervision task. In general, the approach is to evaluate various learning techniques, com-
pare their results and de�ne an architecture where possibly di�erent learning algorithms
can be applied for the various functional blocks and various levels of abstraction in the
monitoring architecture.

5.8 Learning of planning knowledge
5.8.1 Fine motion planning23

The assembly planner must generate a sequence of commands for the robot con-
trol system in order to successfully perform the assembly task. During assembly, the plan
must provide a command for each given arm con�guration in order to correctly continue
the task. This is equivalent to de�ne the robot commands as a function over the Con�gu-
ration Space. Since there are in�nitely many possible con�gurations, two approaches are
possible. One consists of de�ning an algebraic function like, for instance, a potential �eld.

23Original references: [138],[139]

However, in the presence of uncertainty and due to friction forces such a function may be
quite di�cult to determine.

The second way consists of subdividing the function domain into a �nite number
of sets, such that all the con�gurations in each set can be considered as equivalent for
the planning purpose, having the same robot command assigned to them. These sets
must be well de�ned in the presence of uncertainty, in order to clearly determine to which
one a sensed con�guration belongs. In this way it is possible to build a plan to move
from an initial con�guration within an \initial set" to a con�guration within a \goal set"
(unless the goal set is composed of only one con�guration a \goal con�guration" can not
be guaranteed). The general procedure to build a plan is quite simple: look for a sequence
of contiguous sets between the initial and goal ones and determine a command to move
the arm from one set to the next in the sequence. The plan is executed by identifying to
which set the current arm con�guration belongs and executing the corresponding command
afterwards.

Our work follows this approach, but since the direction of the reaction force is
used to reduce uncertainty in the Con�guration Space, the command function depends
not only on the sensed con�guration but also on the sensed reaction force.

We consider a �nite number of task states de�ned according to the contacts
between the objects to be assembled. Each task state can be reached in a set of sensed
con�gurations, called con�guration observation domain, that can be determined a priori
from the nominal object models and the geometric uncertainty domains CU. The sets of
two di�erent states may have a non-empty intersection, and therefore information from
the sensed reaction forces and torques is also processed in order to better identify the
current state during task execution. So, the set of possible observed reaction forces, called
force observation domain, is determined o�-line for each task state by using the domains
FU. The commands to perform transitions between states are characterized by state

transition operators which represent movement directions determined taking into account
the uncertainty in the robot control. The task states, obtained from the nominal model
of the objects, are represented as nodes in a graph, DG-Nom. The plan itself is generated
as follows:

1. Search for a basic solution. First, a path from the initial to the �nal state is selected
in DG-Nom. Then, for each state in the path, a set of state transition operators that
may allow transition to the next state in the path is determined. Finally, all the
states that are not included in the path and may be reached applying the selected
operators are considered. The result is a subgraph, DG-Plan, of DG-Nom, with each
node of DG-Plan having an associated set of state transition operators.

2. Search for a complete solution. This is equivalent to the search for a basic solution,
but considering as initial states the terminal states of DG-Plan di�erent from the
�nal state. This step is repeated until the unique terminal state of DG-Plan is the
�nal state.

3. Final adjustment of the plan. In this step only one state transition operator from
each previously selected set is chosen to be applied during task execution.

Di�erent criteria can be used to guide the search for the sequences of states (for
instance minimizing the number of operator changes or the number of states). The plan
is composed of two main modules. One of them has the information to decide what to
do when the task is in a given state, and the other contains the information to identify
the current state on-line, i.e. the con�guration and the force observation domains of the
states in DG-Plan.

The task execution following the plan consists, basically, of identifying the current
state by matching the sensed con�guration and generalized force with the con�guration

and force observation domains of the possible states, and applying the corresponding state
transition operator afterwards. A more detailed description of the planner as well as an
example describing how it works can be found in [112] and [138].

Inclusion of Learning in the Planner

Some of the described planner basic parts have been implemented for planar
movements using procedural techniques (including friction and di�erent sources of uncer-
tainty). This is not an easy task even for a 3-dof problem. The next step in the work
consist of trying to build the modules of the plan by applying learning techniques to ex-
amples generated from several task executions (guided by a human operator or following
prede�ned strategies) in order to avoid the hard task of analytically determining them.
From another point of view, including learning techniques in the generation of the plan
structure may lead to an important result, too: the improvement of the plan performance
while it is been executed according to a �rst version.

Following these ideas, the module of the plan that performs the identi�cation of
the current state during task execution by using the precomputed con�guration and force
observation domains (CU and FU) is going to be built by learning from examples.

The task will be performed in simulation considering, each time, a random set of
deviations within the corresponding uncertainty range for each uncertainty source. During
contact situations, con�gurations and reaction forces are recorded simultaneously with the
current state. This information is intended to be used to learn some simple rules allowing
current state identi�cation from sensed data during task execution.

5.8.2 Mobile robot path planning24

For the mobile robot path planning, an hierarchical approach has been employed.
Based on the world model, on each level a navigation module decomposes the task which is
given by the next higher level into a set of more simple ones. Using four levels, a location
the robot should reach is transformed into a set of incremental position commands that
are passed to the vehicle position controller. The four planners resp. controllers are a
topological planner, a geometric planner, a reexive control module and �nally the robot
motion controller.

Geometrical planning is restricted to a local area which is slightly larger than
the perceivable range of the robot sensors, as planning is performed in the local geometric
model. The central part of the geometric model is obtained by a fusion process of current
sensor data and a-priori knowledge. Planning in areas further away is mainly a static
procedure and can be performed on layers of higher abstraction. However, due to the
local nature of the local model, the next graph node might not be located within the
area of geometric planning. In such cases special care has to be taken in order to plan
a path which �nally leads to the correct topological node. Path planning itself is based
on the idea of potential distance �elds ([156]). The algorithm described below guarantees
to �nd the shortest collision free path. Its main advantage is its computational e�ciency.
The holonomic driving principle of PRIAMOS o�ers the advantage that no additional
constraints have to be taken into account. Summarizing, planning is done in �ve steps.

� If a topological path node is located outside the local model, a goal at the border of
the local model from where the next topological path node can be reached has to be
computed.

� Obstacles are enlarged by half of the robot width so that further planning can
consider the robot as a point.

24Original references: [156], [155]

� In the third step, a square grid that covers the planning region and which is centered
around the current vehicles position is generated. Each cell of the grid contains
binary information whether this cell is free or covers an obstacle.

� The next step is path planning itself. The cell of the goal position is initialized with a
start-value ('1'). The 4 neighbours of a cell are recursively (beginning with the goal-
cell) given a value: cell value + 1 if they do not cover an obstacle. This procedure
is repeated until the cell which covers the robot position is reached. Starting at the
robot position, a simple gradient algorithm �nds a path by successively moving to
the lowest valued neighbour cell (8 neighbours are considered in this step).

� Finally, a polygon is de�ned by the list of cells. A path is represented by the corner-
points of this polygon.

The complete obstacle transformation and planning procedure is illustrated in
�gure 8.

Figure 8: A geometric planning example. Shown is a ground plan of an o�ce environment
as well as the result of a planning cycle. (#: obstacles; $$: robot position; �lled squares
indicate the path)

The complete planning module provides two di�erent modes of operation. In
MOTION mode a trajectory towards a given goal is planned within the extension of the
current local model. In NO MOTION mode, two positions are speci�ed. In this mode the
planner reads the obstacles known to exist in this area from the database and executes a
planning step in this static model. The NO MOTION mode is necessary to support the
topological planner in �nding the optimal nodes for entering and leaving the topological
graph. This is done by planning paths from the vehicles current position to the preselected
entry nodes, respectively the preselected leaving nodes to the goal. In case of successful
planning the length of a generated path is returned to the topological planner.

6 CONCLUSIONS

The main objective of B-Learn II is to enhance robot programming and robot
autonomy by introducing learning capabilities in order to close the loop between sensing
and action. To reach this aim, it is necessary to build up a thorough knowledge about
both the application area and the machine learning techniques under consideration. The
work described in this paper has served exactly for this purpose. The individual results
that have been achieved are very good, but the real spino� of B-Learn II will become
evident after the pieces are combined.

So far, B-Learn II has proven that given proper expertise both from robotics and
machine learning, the two �elds can cross{fertilize each other very well. Robotics is in fact
a challenging area for machine learning, and machine learning can help in development
and deployment of real robotic systems.

Acknowledgement

This work has been funded by the ESPRIT Basic Research Action No. 7274,
"B-Learn II". It has been performed at the Division of Production Engineering, Machine
Design, and Automation, Prof. Dr. ir. Hendrik Van Brussel, Katholieke Universiteit
Leuven, Belgium, at the Instituto de Cibern�etica, Prof. Luis Basa~nez and Prof. Carme
Torras, Universitat Politecnica de Catalunya, Spain, at the Lehrstuhl Informatik VIII,
Prof. Dr. Katharina Morik, Department of Computer Science, University of Dortmund,
Germany, at the Department of Biophysical and Electronic Engineering, Prof. G. Ver-
nazza, Universita di Genova, Italy, at the Institute for Real-Time Computer Systems &
Robotics, Prof. Dr.-Ing. U. Rembold and Prof. Dr.-Ing. R. Dillmann, Department of
Computer Science, University of Karlsruhe, Germany, at the Departamento de Informat-
ica, Prof. A. Steiger-Garcao, Universidade Nova de Lisboa, Monte Caparica, Portugal,
and at the Dipartimento di Informatica, Prof. Dr. Lorenza Saitta and Prof. Dr. Attilio
Giordana, Universita di Torino, Italy.

REFERENCES
(1) J.E. Albus, A.J. Barbera, and R.N. Nagel. Theory and practice of hierarchical control. In Proceed-

ings of the 23rd IEEE Computer Society International Conference, 1981.

(2) J.S. Albus. A new approach to manipulator control: The cerebellar model articulation controller.
Dynamic Systems, Measurement and Control, 1975.

(3) C.W. Anderson. Learning and Problem Solving with Multilayer Connectionist Systems. PhD thesis,
University of Massachusetts, 1986.

(4) C.W. Anderson. Strategy learning with multilayer connectionist representation. Technical Report
TR87-509.3, GTE Laboratory Inc., May 1988.

(5) P. H. Anderson, S. J. Torvinen, and L. Vasek. A concept for maintaining quality in exible pro-
duction. Computers in Industry, 17, 1991.

(6) M. Anthony and N.L. Biggs. Computational Learning Theory: An introduction. Cambridge Uni-
versity Press, 1992.

(7) C. Archibald and E. Petriu. Computational paradigm for creating and executing sensorbased robot
skills. In Proceedings of the 24th International Symposium on Industrial Robots (ISIR `93), 1993.

(8) H. Asada. Teaching and learning of compliance using neural nets: Representation and generation
of nonlinear compliance. In Proceedings of the 1990 IEEE International Conference on Robotics
and Automation, pages 1237 { 1244, 1990.

(9) H. Asada and B.-H. Yang. Skill acquisition from human experts through pattern processing of teach-
ing data. In Proceedings of the 1989 IEEE International Conference on Robotics and Automation,
pages 1302 { 1307, 1989.

(10) M. M. Barata, T. W. Rauber, and A. Steiger-Garcao. Sensor integration for expert cnc machines
supervision. In Proceedings of the ETFA '92, 1992.

(11) M. M. Barata, T. W. Rauber, and A. Steiger-Garcao. Prognostic and monitoring system for cnc
machines. Revue Europ �eenne Diagnostic et Sûret�e de Fonctionnement, 1994.

(12) D. Barschdor� and L. Monostori. Neural networks- their applications and perspectives in intelligent
machining. Computers in Industry, 17, 1991.

(13) A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike elements that can solve di�cult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, pages 835{846,
1983.

(14) A.G. Barto and R.S. Sutton. Landmark learning: an illustration of associative search. Biological
Cybernetics, 42:1{8, 1981.

(15) L. Basa~nez and R. Su�arez. Uncertainty modelling in con�guration space for robotic motion planning.
In Proceedings of the SYROCO'91, 1991.

(16) R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

(17) H. R. Berenji. A reinforcement learning based architecture for fuzzy logic control. Int. Journal of
Approximate Reasoning, 6:267 { 292, 1992.

(18) F. Bergadano, A. Giordana, and L. Saitta. Machine learning: an integrated framework andits
applications. Ellis Horwood, 1991.

(19) K. Berns, R. Dillmann, and U. Zachmann. Reinforcement learning for the control of an autonomous
mobile robot. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems,
Raleigh, NC, 1992.

(20) L.B. Booker. Intelligent Behavior as an Adaptation to the Task Environment. PhD thesis, Univer-
sity of Michigan, 1982.

(21) M. Botta and A. Giordana. SMART+: A multi-strategy learning tool. In Proceedings of the
International Joint Conference on Arti�cial Intelligence (IJCAI '93), Chamberry, France, 1993.

(22) R. C. Brost and M. T. Mason. Graphical analysis of planar rigid-body dynamics with multiple
frictional contacts. In Fifth Int. Symp. of Robotics Research, 1989.

(23) B. Brunner, G. Hirzinger, K. Landzettel, and J. Heindl. Multi-sensory shared autonomy and
telesensor-programming { key issues in the space robot technology experiment ROTEX. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '92),
Yokohama, Japan, 1992.

(24) H. Van Brussel and J. Simons. The adaptable compliance concept and its use for automatic assembly
by active force feedback accommodation. In Proceedings of the 9th International Symposium on
Industrial Robots (ISIR '79), 1979.

(25) S. J. Buckley. Teaching compliant motion strategies. IEEE Transactions on Robotics and Automa-
tion, 5(1), 1989.

(26) L. M. Camarinha-Matos, L. Seabra Lopes, and J. Barata. Execution monitoring in assembly with
learning capabilities. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation, 1994.

(27) W. W. Cooley and P. R. Lohnes. Multivariate Data Analysis. Wiley & Sons, New York, 1971.

(28) I.J. Cox and G.T. Wilfong. Autonomous Robot Vehicles. Springer, Berlin, Heidelberg, New York,
1990.

(29) J.L. Crowley. Dynamic modelling of free space for a mobile robot. In Proceedings of the IEEE/RSJ
Conference on Intelligent Robots and Systems, 1989.

(30) A. Curran and K.J. Kyriakopoulos. Sensor-based self-localization for wheeled mobile robots. In
Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, Georgia,
1993.

(31) A. I. Cypher. Watch what I do { Programming by Demonstration. MIT Press, Cambridge, Mas-
sachusetts, 1993.

(32) N. Delson and H. West. Robot programming by human demonstration: subtask compliance con-
troller identi�cation. In Proceedings of the IEEE/RSJ Conference on IntelligentRobots and Systems,
Yokohama, Japan, 1993.

(33) P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice Hall, 1982.

(34) R. Dillmann. Lernende Roboter; Aspekte maschinellen Lernens. Springer Verlag Berlin, Heidelberg,
1988.

(35) R. Dillmann, M. Kaiser, and V. Klingspor. Incorporating learning capabilities in mobile robots. To
appear.

(36) R. Dillmann, J. Kreuziger, and F. Wallner. PRIAMOS: An experimental platform for reexive
navigation. In Proceedings of the International Conference on Intelligent Autonomous Systems
(IAS '93), 1993.

(37) B. Dufay and J.-C. Latombe. An approach to automatic robot programming based on inductive
learning. In Proceedings of the 1st International Symposium on Robotics Research, 1984.

(38) A. Elfes. A sensor-based mapping and navigation system. In Proceedings of the IEEE International
Conference on Robotics and Automation, 1986.

(39) M. Erdmann. On motion planning with uncertainty. Master's thesis, MIT Arti�cial Intelligence
Laboratory, 1984.

(40) R. Forsty and R. Rada. Machine learning applications in expert systems and information retrieval.
Ellis Horwood, 1986.

(41) A. Gelperin, J.J. Hop�eld, and D.W. Tank. The logic of Limax learning. In Model neural networks
and behavior. A. Selverson, New York: Plenum Press, 1985.

(42) J. H. Gennari, P. Langley, and D. Fisher. Models of incremental concept formation. Arti�cial
Intelligence, 40:11 { 61, 1989.

(43) A. Giordana and C. Baraglio. Automatic synthesis of a fuzzy controller. In Proceedings of the
Second European Workshop on Learning Robots, Torino, Italy, 1993.

(44) A. Giordana, L. Camarinha-Marcos, M. Kaiser, J. del R. Millan, C. Moneta, K. Morik, and M. Nut-
tin. B-Learn II - D 101. B-Learn II - ESPRIT BRA Project No. 7274, 1993.

(45) A. Giordana, M. Kaiser, and M. Nuttin. On the reduction of costs for robot controller synthesis.
In International Symposium on Intelligent Robotic Systems (IRS '94), Grenoble, France, 1994.

(46) A. Giordana, L. Saitta, and C. Baroglio. Learning simple recursive theories. In Methodologies for
Intelligent Systems, Proc. of the 7th International Symposium, ISMIS-93, Trondheim, Norway, June
1993. Springer-Verlag.

(47) D. Guinea. Multi-sensor integration - an automatic feature selection and state identi�cation
methodology for tool wear estimation. Computers in Industry, 17, 1991.

(48) V. Gullapalli. Reinforcement Learning and its application to control. PhD thesis, University of
Massachusetts, Department of Computer and Information Science, 1992.

(49) V. Gullapalli, R.A. Grupen, and A.G. Barto. Learning reactive admittance control. In Proceedings
of the IEEE International Conference on Robotics and Automation, Nice, France, 1992.

(50) M.M. Gupta and D.H. Rao. On the principles of fuzzy neural networks. Fuzzy Sets and Systems,
(61):1 { 18, 1994.

(51) S.E. Hampson. A neural model of adaptative behavior. PhD thesis, Department of Information and
Computer Science, University of California, Irvine, 1983.

(52) T. Hasegawa, T. Suehiro, and K. Takase. A model-based manipulation system with skill-based
execution. IEEE Transactions on Robotics and Automation, 8(5), 1992.

(53) Y. Hayashi. A neural expert system with automated extraction of fuzzy if-then rules and its
application to medical diagnosis. In Advances in Neural Information Processing Systems 3 (NIPS-
3), Denver, Colorado, 1990.

(54) R. Hecht-Nielsen. Neurocomputing. Addison Wesley, Reading, MA, 1990.

(55) R. Heise. Demonstration instead of programming: Focussing attention in robot task acquisition.
Research report no. 89/360/22, Department of Computer Science, University of Calgary, 1989.

(56) G. E. Hinton. Special issue on connectionist symbolic processing. Arti�cial Intelligence, November
1990.

(57) K. Hirota, Y. Arai, and S. Hachisu. Moving mark recognition and moving object manipulation in
a fuzzy controlled robot. Control-Theory and Advanced Technology, 2, 1986.

(58) G. Hirzinger. ROTEX { the �rst robot in space. In Proceedings of the International Conference on
Advanced Robotics (ICAR '93), Tokyo, Japan, 1993.

(59) J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard. Induction processes of inference,
learning, and discovery. The MIT Press, 1987.

(60) J.H. Holland. Escaping brittleness: The possibilities of general purpose learning algorithms applied
to parallel rule based systems. In R.S. Michalski, J.C. Carbonell, and T.M. Mitchell, editors,
Machine Learning: An arti�cial intelligence approach, volume 2. Morgan Kaufmann, 1986. Los
Altos, Ca.

(61) T. C. Hsia. Adaptive control for robot manipulators - a review. In Proceedings of the IEEE
International Conference on Robotics and Automation, 1986.

(62) Y. K. Hwang and N. Ahuja. Gross motion planning { a survey. ACM Computing Surveys, 24(3):219
{ 293, 1992.

(63) J.-S. R. Jang. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on
Systems, Man, and Cybernetics, 23(3), 1993.

(64) M. Junkar, B. Filipic, and I. Bratko. Identifying the grinding process by means of inductive learning.
Computers in Industry, 17, 1991.

(65) L.P. Kaelbling. Learning in embedded systems. PhD thesis, Stanford University, 1990. Technical
report TR-90-04.

(66) M. Kaiser. A framework for the generation of robot controllers from examples. In Proceedings of
the 10th ISPE/IFAC Symposium on CAD/CAM, Robotics, and Factories of the Future, Ottawa,
Canada, 1994.

(67) M. Kaiser. Time-delay neural networks for robot control. Submitted to Symposium on Robot
Control '94 (SYROCO '94), Capri, Italy, 1994.

(68) M. Kaiser, A. Giordana, and M. Nuttin. Integrated acquisition, execution, evaluation and tuning
of elementary skills for intelligent robots. In Proceedings of the IFAC Symposium on Arti�cial
Intelligence in Real Time Control (AIRTC '94), Valencia, Spain, 1994.

(69) M. Kaiser and J. Kreuziger. Integration of symbolic and connectionist processing to ease robot
programming and control. In ECAI'94 Workshop on Combining Symbolic and Connectionist Pro-
cessing, 1994.

(70) M. Kaiser and F. Wallner. Using machine learning for enhancing mobile robots' skills. In Proceed-
ings of the IRTICS'93 workshop on intelligent real-time control systems, Madrid, Spain, 1993.

(71) J.-U. Kietz and S. Wrobel. Controlling the complexity of learning in logic through syntactic and
task-oriented models. In Stephen Muggleton, editor, Inductive Logic Programming, chapter 16,
pages 335 { 360. Academic Press, London, 1992. Also available as Arbeitspapiere der GMD No.
503, 1991.

(72) V. Klingspor. On the application of ILP techniques to robot navigation tasks. In A. Giordana,
editor, Proceedings of the II European Workshop on Learning Robots, Torino, Italy, 1993.

(73) V. Klingspor. Representation of operational concepts. In Proc. of the Workshop on Planning and
Con�guration, 1994. (in german).

(74) A.H. Klopf. A neuronal model of classical conditioning. Technical Report 87-1139, Wright Aero-
nautical Laboratories, OH: Wright-Patterson Air Force Base, 1987.

(75) Y. Kodrato� and R.S. Michalski. Machine Learning: An arti�cial intelligence approach, volume
III. Morgan Kaufmann Publishers, 1991.

(76) T. Kohonen. The self{organizing map. Proceedings of the IEEE, 78, 1990.

(77) J. Kreuziger. Application of machine learning to robotics: An analysis. In Proceedings of the
Second International Conference on Automation, Robotics, and Computer Vision (ICARCV '92),
Singapore, 1992.

(78) J. Kreuziger and S. Cord. Anwendungen symbolischer Lernverfahren in der Robotik, volume 23/92
of Internal research report. Universit�at Karlsruhe, 1992. (in german).

(79) S. Y. Kung and J. N. Hwang. Neural network architectures for robotic applications. IEEE Trans-
actions on Robotics and Automation, 5(5), 1989.

(80) R.A. Olsen L. Breiman, J.H. Friedman and C.J. Stone. Classi�cation and Regression Trees.
Wadsworth and Brooks, 1984.

(81) T. L�angle. Modellierung der lokalen Umgebung unter Ber�ucksichtigung dynamischer Objekte. Mas-
ter's thesis, University of Karlsruhe, 1993. (in german).

(82) J. J. Leonard and H. F. Durrant-Whyte. Directed sonar sensing for mobile robot navigation. Kluwer
Academic Publishers, Boston, London, Dordrecht, 1992.

(83) C.-S. Lin and H. Kim. Use of CMAC neural networks in reinforcement self-learning control. In
Arti�cial Neural Networks (ANN '91), 1991.

(84) L. J. Lin. Programming robots using reinforcement learning and teaching. In Proceedings of the
AAAI '91, 1991.

(85) L. J. Lin. Reinforcement learning for robots using neural networks. PhD thesis, Carnegie Mellon
University, School of Computer Science, 1993.

(86) L. J. Lin. Scaling up reinforcement learning for robot control. In Machine Learning: Proceedings
of the Tenth International Conference, pages 182{189, 1993.

(87) S. Liu and H. Asada. Teaching and learning of deburring robots using neural networks. In Proceed-
ings of the IEEE International Conference on Robotics and Automation, Atlanta, Georgia, 1993.

(88) L. Sebra Lopes and L. M. Camarinha-Matos. Learning in assembly task execution. In Proceedings
of the Second European Workshop on Learning Robots, 1993.

(89) S. Mahadevan. Enhancing transfer in reinforcement learning by building stochastic models of robot
actions. In Proceedings of the International Workshop on Machine Learning, 1992.

(90) S. Mahadevan and J. Connel. Automatic programming of behavior-based robots using reinforcement
learning. Arti�cial Intelligence, 55, 1992.

(91) M.T. Mason. Compliance and force control for computer controlled manipulators. IEEE Transac-
tions on Systems, Man and Cybernetics, 11, 1981.

(92) L. Matthies and A. Elfes. Integration of sonar and stereo range data using a grid-based represen-
tation. In Proceedings of the 26th IEEE Conference on Decision and Control, Los Angeles, CA,
1987.

(93) R. S. Michalski. Special issue on multistrategy learning. Machine Learning, 11, 1993.

(94) J. del R. Mill�an. A reinforcement connectionist learning approach to robot path �nding. Ph.D. thesis,
Dept. de Llenguatges i Sistemes Inform�atics, Universitat Polit�ecnica de Catalunya, Barcelona, 1992.

(95) J. del R. Mill�an. Learning e�cient reactive behavioral sequences from basic reexes in a goal-
directed autonomous robot. In Proceedings of the third International Conference on Simulation of
Adaptive Behavior, 1994.

(96) J. del R. Mill�an. Reinforcement learning for robot navigation. In P. van der Smagt, editor, Neural
Systems for Robotics. Norwood, NJ, forthcoming.

(97) J. del R. Mill�an. Reinforcement learning of goal-directed obstacle avoidance reaction strategies in
an autonomous mobile robot. Robotics and Autonomous Systems, to appear.

(98) J. del R. Mill�an and C. Torras. A reinforcement connectionist approach to robot path �nding in
non-maze-like environments. Machine Learning, 8:363 { 395, 1992.

(99) J. del R. Mill�an and C. Torras. E�cient reinforcement learning of navigation strategies in an
autonomous robot. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems,
1994.

(100) T. M. Mitchell and S. B. Thrun. Explanation-based neural network learning for robot control. In
Advances in Neural Information Processing Systems 5 (NIPS-5), Denver, Colorado, 1992.

(101) C. Moneta and F.G.B. De Natale. Adaptive control in visual sensing. In Proceedings of the IMACS
International Symposium on Signal Processing, Robotics, and Neural Networks, 1994.

(102) C. Moneta, G. Vernazza, and R. Zunino. On the need for integrated approaches to image under-
standing. European Transactions on Telecommunications, 3(4):465 { 478, 1992.

(103) J. Moody and C. Darken. Learning with localized receptive �elds. In T. Sejnowski D. Touret-
zky, G. Hinton, editor, Proceedings of the Connectionist Models Summer School. Carnegie Mellon
University, 1988.

(104) A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with less data and
less time. Machine Learning, 1993.

(105) J.W. Moore, J.E. Desmond, N.E. Berthier, D.E. Blazis, R.S. Sutton, and A.G. Barto. Simulation
of the classically conditioned nictitating membrane response by a neuron-like adaptive element:
Response topography, neuronal �ring and interstimulus intervals. Behavioral Brain Research, pages
143{154, 1986.

(106) K. Morik and A. Rieger. Learning action-oriented perceptual features for robot navigation. In
Attilio Giordana, editor, Proc. of the ECML-93 Workshop on Learning Robots, Vienna, Austria,
1993. Also available as Research Report 3,University of Dortmund, Dept. Computer Science VIII,
D-44221 Dortmund.

(107) S. M�unch, J. Kreuziger, M. Kaiser, and R. Dillmann. Robot programming by demonstration - using
machine learning and user interaction methods for the development of easy and comfortable robot
programming systems. In Proceedings of the International Symposium on Industrial Robots (ISIR
'94), Hannover, Germany, 1994.

(108) K. B. Natajaran. Machine learning: a theoretical approach. Morgan Kaufmann, 1991.

(109) M. Nuttin and C. Baroglio. Fuzzy controller synthesis in robotic assembly: Procedure and ex-
periments. In Proceedings of the Second European Workshop on Learning Robots, Torino, Italy,
1993.

(110) M. Nuttin, H. Van Brussel, C. Baroglio, and R. Piola. Fuzzy controller synthesis in robotic assembly:
Procedure and experiments. In FUZZ-IEEE-94: Third IEEE International Conference on Fuzzy
Systems, World Congress on Computational Intelligence, 1994.

(111) M. Nuttin, A. Giordana, M. Kaiser, and R. Suarez. B-Learn II - D 201. B-Learn II - ESPRIT
BRA Project No. 7274, 1993.

(112) M. Nuttin, A. Giordana, M. Kaiser, and R. Suarez. B-Learn II - D 202. B-Learn II - ESPRIT
BRA Project No. 7274, 1993.

(113) M. Nuttin, J. Peirs, A.S. Soembagijo, S. Sonck, and H. Van Brussel. Learning the peg-into-hole
assembly with a connectionist reinforcement technique. In Submitted to: Symposium on Robot
Control '94 (SYROCO '94), 1994.

(114) J. Peng and R. J. Williams. E�cient learning and planning within the DYNA framework. In
Proceedings of the Second International Conference on Simulation of Adaptive Behaviour, 1992.

(115) E. Plaza, editor. Proceedings of the Workshop on Integrated Learning Architectures (ILA '93),
Vienna, Austria, 1993.

(116) J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81 { 106, 1986.

(117) T. W. Rauber, M. M. Barata, and A. Steiger-Garcao. A toolbox for analysis and visualization of
sensor data in supervision. In Proceedings of the TOOLDIAG '93, 1993.

(118) U. Rembold, R. Dillmann, and P. Levi, editors. 6. Fachgespr�ach autonome mobile Systeme (AMS
6), 1990.

(119) U. Rembold, T. Lueth, and A. H�ormann. Advancement of intelligent machines. In Proc. of the
ICAM JSME International Conference on Advanced Mechatronics, Tokyo, 1993.

(120) W. D. Rencken. Concurrent localization and map building for mobile robots using ultrasonic
sensors. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, Yokohama,
Japan, 1993.

(121) U. Roy and C. R. Liu. Feature-based representational scheme of a solid modeler for providing
dimensioning and tolerancing information. Robotics and Computer Integrated Manufacturing, 4,
1988.

(122) D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Nature, pages 533 { 536, 1986.

(123) D. E. Rumelhart and J. L. McClelland. Parallel Distributed Processing : Explorations in the Mi-
crostructure of Coginition, Parts I & II. MIT Press, 1986.

(124) A.L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of Research
and Development, 1959.

(125) J. G. Schneider and C. M. Brown. Robot skill learning, basis functions, and control regimes. In
Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, Georgia,
1993.

(126) J. De Schutter and H. Van Brussel. Compliant robot motion, a control approach based on external
control loops. International Journal on Robotics Research, 7(4), August 1988.

(127) J. De Schutter and H. Van Brussel. Compliant robot motion, a formalism for specifying compliant
motion tasks. International Journal on Robotics Research, 7(4), August 1988.

(128) J. De Schutter, S. Demey, H. Van Brussel, S. Dutre, W. Persoons, W. Witvrouw, and P. Van De
Poel. Model based and sensor based programming of compliant motion tasks. In Proceedings of the
24th International Symposium on Industrial Robots (ISIR '93), 1993.

(129) J. De Schutter, W. Witvrouw, P. Van De Poel, and H. Bruyninckx. Rosi: a task speci�cation
and simulation tool for force sensor based robot control. In Proceedings of the 24th International
Symposium on Industrial Robots (ISIR '93), 1993.

(130) L. Seabra Lopes. Sistema integrado de inducao. Gr rt-sd-7-91, Universidade Nova de Lisboa, 1991.

(131) A. M. Segre. Machine Learning of Robot Assembly Plans. Kluwer Academic Publishers, 1989.

(132) S. P. Singh. Reinforcement learning within a hierarchy of abstract models. In Proceedings of the
AAAI '92, 1992.

(133) S. P. Singh. Transfer of learning by composing solutions of elemental sequential tasks. Machine
Learning, 8, 1992.

(134) S. P. Singh. Learning to solve markovian decision processes. PhD thesis, University of Mas-
sachusetts, Department of Computer Sciene, 1994.

(135) E.D. Sontag. Some topics in neural networks and control. In Proceedings of the European Control
Conference, 1993.

(136) A. Steiger-Garcao, M. M. Barata, and L. F. S. Gomes. Integrated environment for prognosis and
monitoring system support. In Proceedings of the 1st UNIDO workshop on Robotics and Computer
Integrated Manufacturing, 1989.

(137) M. R. Stein and R. P. Paul. Behavior based control in time delayed teleoperation. In Proceedings
of the International Conference on Advanced Robotics (ICAR '93), Tokyo, Japan, 1993.

(138) R. Su�arez and L. Basa~nez. Fine motion planning in presence of uncertainty. In Proceedings of the
Second European Workshop on Learning Robots, 1993.

(139) R. Su�arez, L. Basa~nez, and J. Rosell. Assembly contact force domains in the presence of uncertainty.
Technical Report IC-DT-9403, Instituto de Cibern�etica (UPC-CSIC), Barcelona, Spain, 1994. also
submitted to SYROCO'94.

(140) R. S. Sutton. Learning to predict by methods of temporal di�erence. Machine Learning, 3:9 { 44,
1988.

(141) R. S. Sutton. Integrated modeling and control based on reinforcement learning and dynamic pro-
gramming. In Advances in Neural Information Processing Systems 3 (NIPS-3), Denver, Colorado,
1990.

(142) R.S. Sutton and A.G. Barto. A temporal-di�erence method of classical conditioning. In Proceedings
of the Ninth Annual Conference of the Cognitive Science Society, pages 355{378, Seattle, WA, 1987.
Lawrence Erlbaum.

(143) R.S. Sutton, A.G. Barto, and R.J. Williams. Reinforcement learning is direct adaptive control.
IEEE Control Systems Magazine, pages 19{22, April 1992.

(144) L. Tollenaere. Supersab: Fast adaptive back propagation with good scaling properties. Neural
Networks, pages 561{573, 1990.

(145) C. Torras. Symbolic planning versus neural control in robots. In F. Cervantes P. Rudomin, M. Ar-
bib, editor, Natural and Arti�cial Intelligence: A Meeting between Neuroscience and AI. 1992.

(146) C. Torras. Neural learning for robot control. In Proceedings of the ECAI '94, 1994.

(147) G. G. Towell and J. W. Shavlik. Interpretation of arti�cial neural networks: mapping knowledge-
based networks into rules. In Advances in Neural Information Processing Systems 3 (NIPS-3),
Denver, Colorado, 1990.

(148) G. G. Towell and J. W. Shavlik. Using symbolic learning to improve knowledge-based neural
networks. In Proceedings of the tenth National Conference on Arti�cial Intelligence (AAAI-92),
pages 177 { 182, 1992.

(149) G. G. Towell, J. W. Shavlik, and M. O. Noordewier. Re�nement of approximate domain theories
by knowledge-based neural networks. In Proceedings of the eighth National Conference on Arti�cial
Intelligence (AAAI-90), pages 861 { 866, 1990.

(150) P. Utgo�. Incremental induction of decision trees. Machine Learning, 4:161{186, 1989.

(151) L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134 { 1142, 1984.

(152) W. Van De Velde. Special issue: Towards learning robots. Robotics and Autonomous Systems,
8(1,2), 1991.

(153) T. P. Vogl. Accelerating the convergence of the back-propagation method. Biological Cybernetics,
1988.

(154) A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme recognition using time-
delay neural networks. IEEE Transactions on acoustics, speech and signal processing, March 1989.

(155) F. Wallner, M. Kaiser, and H. Friedrich. Integrated topological and geometrical planning in a learn-
ing mobile robot. In IEEE/RSJ Conference on Intelligent Robots and Systems, Munich, Germany,
1994.

(156) F. Wallner, T.C. L�uth, and F. Langiniuex. Fast local path planning for a local robot. In Proc. of
the Second International Conference on Automation, Robotics, and Computer Vision, Singapore,
1992.

(157) F. Wallner, P. Weckesser, and R. Dillmann. Calibration of the active stereo vision system kastor
with standardized perspective matrices. In Proceedings of the Second International Conference on
Optical 3D Measurement Techniques, Z�urich, Switzerland, 1993.

(158) C. J. C. H. Watkins. Learning with delayed rewards. PhD thesis, University of Cambridge, 1989.

(159) B. L. Whitehall and S. C. Lu. Machine learning in engineering automation: the present and the
future. Computers in Industry, 17, 1991.

(160) R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, pages 229 {256, 1992.

(161) I.H. Witten. An adaptive optimal controller for discrete-time markov environments. Information
and Control, 34:286{295, 1977.

(162) S. Wrobel. Towards a model of grounded concept formation. In Proc. 12th International Joint
Conference on Arti�cial Intelligence, pages 712 { 719, Los Altos, CA, 1991. Morgan Kaufman.

(163) Y. Xu and R. P. Paul. A robot compliant wrist system for automated assembly. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages 1750 { 1755, 1990.

(164) J. Yang, Y. Xu, and C.S. Chen. Hidden markov model approach to skill learning and its application
in telerobotics. In Proceedings of the IEEE International Conference on Robotics and Automation,
Atlanta, Georgia, 1993.

(165) L. A. Zadeh. Fuzzy sets. Information and Control, 8:338 { 353, 1965.

