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Abstract
Large, high dimensional data spaces, are still a
challenge for current data clustering methods.
Frequent Termset (FTS) clustering is a technique
developed to cope with these challenges. The ba-
sic idea is to first find frequent termsets and then
to transform the resulting directed acyclic graph
into a tree by deleting edges and termsets. While
this technology was originally developed for doc-
ument clustering, it can be applied in many other
scenarios as well. Existing approaches to FTS
clustering apply different heuristics to convert a
set of frequent termsets into a final cluster set. In
this work, we explore another approach. We first
make the desirable properties of an FTS cluster-
ing explicit by stating different objective func-
tions. We then show, how these functions are re-
lated to each other and that, in general, they are
conflicting. This leads directly to the formula-
tion of FTS clustering as a multi-objective opti-
mization problem. We explore the ability of this
approach to produce different, pareto-optimal so-
lutions on a social bookmarking data set.

1 Introduction
Data clustering is a key technology to access large data and
information spaces in a structured way. While significant
progress was made in this area, there are still many open
challenges when facing complex, high dimensional data
spaces, such as text collections. Traditional clustering ap-
proaches, e.g. agglomerative clustering, are not well-suited
for such scenarios. A first issue is that it is hard to find
clusters in a high dimensional data space, as clusters often
only exist in subspaces of this space. In order to cluster
publications in the area of artificial intelligence, only terms
that concern this topic or its subtopics are relevant, other
terms will blur the result. Second, traditional methods of-
ten lead to clusters that are hard to interpret for the user.
Comprehensible results are, however, essential for cluster-
ing, which is in large parts an explorative task. Third, many
traditional clustering approaches require the user to set sev-
eral parameters, a task that is far from being trivial. Finally,
many clustering approaches scale poorly with an increasing
number of data points and dimensions.

These observations led, among others, to several new
clustering approaches, that can be summarized as frequent
termset or itemset clustering (Fung et al. [2003]; Beil et al.
[2002]). The basic idea is to first find frequent itemsets in
the underlying data. This task can be accomplished even on

very large data sets with many dimensions (Agrawal et al.
[1993]). The actual clustering step is then performed on the
resulting frequent itemsets and not on the original data. As
clusters are represented by frequent itemsets, the resulting
cluster structure automatically contains cluster descriptions
that are comprehensible for the user. Also, the resulting
clusters are by definition clusters only in subspaces of the
original data space. This technique has been particularly
applied to text clustering, where the number of dimensions
is extremely high. In this case, frequent itemsets are sets of
terms, that often co-occur in the documents to be clustered.
The resulting clustering is a tree consisting of combinations
of terms arranged according to the subset relation (see fig-
ure 1).

While frequent termset clustering was successfully ap-
plied to different areas, there are still some open points.
Existing approaches use a number of heuristics to derive a
cluster structure from a set of frequent termsets, implicitly
trading-off diverse diserable criteria of such cluster struc-
tures. These criteria include maximal coverage, minimal
overlap, simplicity of the overall structure etc. This im-
plicit, heuristic merging of criteria makes it hard for the
user to control the clustering process. This is particularly
true, as these criteria are often conflicting. The overlap, for
instance, can often be reduced by incorporating additional
clusters in the final cluster structure. This, on the other
hand, makes the final structure more complex and harder to
overlook.

In this work we therefore choose another approach. We
first analyze which properties are desirable for an FTS
clustering and then derive several, partially conflicting ob-
jective functions. Instead of merging them in a heuristic
manner, we first analyze their mutual relations. We then
use a subset of actually conflicting criteria in an explicit,
multi-objective optimization procedure. In general multi-
objective optimization delivers more than one solution, as
several criteria are involved, that may be in conflict with
each other. This gives the user the opportunity to choose a
desired solution from a set of pareto-optimal solutions, in-
stead of having to search a large space of parameters man-
ually in a laborous trial-and-error process.

This principle has been applied to other clustering tasks
as well. In particular there are several approaches that ap-
ply multi-objective optimization to the task of feature selec-
tion for clustering. Since initial approaches, as Kim et al.
[2000, 2002] or Morita et al. [2003], showed some weak-
nesses, a new sound framework was proposed in Mierswa
and Wurst [2006a]. The proposed criteria trade off the
cluster quality against the similarity of the resulting fea-
ture space to the original one. This approach is denoted as
information preserving feature selection. The rationale be-



hind this idea is, that clustering is basically an explorative
task, that should describe or summarize the given data in
an adequate and unbiased way. Information should only be
omitted if this leads to a better and simpler cluster structure.
The user can then decide in an interactive way, which fea-
tures carry useful information and which of them are noise
by inspecting the set of pareto-optimal solutions. In Mier-
swa and Wurst [2006b] this idea was extended to feature
construction as well.

In this work, we propose a multi-objective framework
for frequent termset clustering as well as several objective
functions for this task. We analyze the mutual relation of
these objective functions and the soundness of the frame-
work on a real world social bookmarking data set. The
work is structured as follows. In section 2 we give a brief
introduction to frequent termset clustering and argue, that
finding an optimal clustering implies finding a trade-off be-
tween different, conflicting criteria. In section 3 we then
give a short introduction to multi-objective optimization.
This is the point of departure for the formulation of sev-
eral, partially conflicting objective functions for frequent
termset clustering and for the analysis of their mutual rela-
tions in section 4. In section 5 we discuss the application
of the approach to the problem of clustering tags in a so-
cial bookmarking system and present empirical results. In
section 6 we summarize the results and point out the future
direction of research.

2 Frequent Termset Clustering
In the following we assume a set of uniquely identified re-
sources R and a set of terms T . We can then define the
notion of a termset C as a set of terms in T , thus C ⊆ T .

We further assume a function g : T×R → N that assigns
term occurrences to resources. In the simplest case, this
function is binary, stating whether the term is assigned to
the resource or not. In general, it can express the relevance
of the term to the resource, as known from the vector space
model.

Note that while this terminology suggests an application
in text clustering applications, frequent termset clustering
can be applied to other areas as well. In this case resources
are general transactions and terms are items.

Based on the function g we define a cover relation ∇ ⊆
R× P(T ) for which the following holds:

r∇C ≡ ∀t ∈ C : g(t, r) > 0 (2.1)

Thus a resource is covered by a termset, if all terms in
the termset are assigned to the resource. The support of a
termset is defined as the fraction of resources it covers.

Algorithms as Apriori (Agrawal et al. [1993]; Agrawal
and Srikant [1994]) or FPGrowth (Han et al. [2000]) al-
low to efficiently find the set of frequent termsets, that
have a support that exceeds a given minimal support. For
an overview on frequent itemset mining refer to Goethals
[2003].

This set of frequent termsets can then be arranged into a
directed acyclic graph (DAG), by using the subset relation.
Such a structure is however often not very well suited to
access and navigate a complex information space. This is
especially true, if the number of frequent termsets is very
high. Several approaches have been proposed to derive flat
or hierarchical cluster structures from frequent termsets. A
first, simple approach to exploit the idea of frequent terms
for clustering is presented in Wang et al. [1999]. While
this algorithm does not make direct use of frequent itemset
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Figure 1: Excerpt from a clustering produced by the methods pro-
posed in Fung et al. [2003]

mining, it exploits the same underlying idea. Clusters con-
sist of resources and are characterized by terms. For each
term, the support within each cluster is calculated. Based
on a threshold value, terms concerning a cluster are sep-
arated into large and small terms. Resources are then as-
signed to clusters in such a way, that each cluster contains
as few small terms as possible and that the overlap of large
terms among clusters is minimized. The complexity of the
clustering is controlled by setting the support parameter ap-
propriately.

A natural extension of this idea is presented in Beil et
al. [2002]. First a frequent itemset algorithm is applied
to identify frequent termsets. Then a subset of this set of
frequent termsets is selected, that minimizes the overlap
among the selected frequent termsets, while covering all
resources. This method is extended to produce hierarchical
clusters by first applying it to all frequent termsets of size
one, then to all corresponding frequent termsets of size two,
and so on.

In Fung et al. [2003] an alternative method is proposed,
that converts the DAG of frequent termsets into a simpler,
hierarchical cluster structure. First, a frequent itemset min-
ing algorithm is used to identify frequent termsets. These
frequent termsets form an initial clustering by arranging
them according to the subset relation. Each resource (in
this case text documents) is assigned to exactly one fre-
quent termset using a centroid-based approach. Then, in
a bottom-up way, the algorithm selects a parent node for
each frequent termset by calculating a centroid resource of
all resources in a cluster. Both steps aim to minimize the
overlap among nodes on the same level of the cluster tree.
The resulting tree is pruned applying several heuristics, as
to reduce its complexity. Figure 1 shows an example.

While this approach can lead to good results, a general
issue is the use of several heuristic steps that partially con-
tain hidden parameters. These make it unclear which crite-
ria are actually optimized. Also, the user has no influence
on these criteria and on their combination.

In this work we propose a systematic approach to iden-
tify different desirable criteria of frequent termset cluster-
ings. Implicitly, the above approaches aim to achieve the
following:

• Coverage: The number of resources that cover at least
one of the termsets should be as high as possible, be-
cause any resource for which no such termset exists
is not represented in the cluster structure. The ap-
proaches above achieve full coverage, which is how-
ever not suitable in the presence of outliers. Therefore
coverage should be considered a continuous value.

• Overlap: Traditional clustering algorithms, such as k-
means, usually try to make clusters as separated as



possible. This principle is also applied by the FTS
Clustering approaches presented above. We will dis-
cuss in section 5, whether this is always necessary and
desirable.

• Detailedness: The resulting clustering should be as
detailed as necessary, as the task of clustering is to de-
scribe the underlying data set, leaving the exploration
to the user. This usually implies that the cluster tree
should be as deep as possible, allowing fine grained
distinctions.

• Simplicity: The resulting structure should be easy to
navigate and overlook by a human user.

These criteria are clearly in conflict with each other.
Adding additional clusters makes the clustering more com-
plex and harder to navigate, will however usually increase
the coverage and decrease the overlap. A deeper and thus
more complete clustering will usually introduce additional
overlap, etc.

Instead of using heuristic procedures to combine these
criteria, we formalize objective functions that reflect these
properties and apply them in a multi-objective optimization
procedure. This allows to make the trade-off between dif-
ferent criteria explicit and will help to gain insight in the
ways in which the criteria are related.

In the following we give a general definition for a fre-
quent termset clustering. In contrast to Fung et al. [2003]
we do not require the resulting cluster structure to be a tree,
but a DAG.

Definition 2.1. (Frequent Termset-Clustering)
A termset clustering orders a set of (frequent) termset in a
hierarchical way.

• C ⊆ P(T ) is an non-empty, finite set of termsets.
Each termset represents a cluster. C is denoted as the
cluster set.

• The relation ≺: P(T ) × P(T ) defines a hierarchical
order on all clusters in C. For all pairs of clusters
C,D ∈ C the following holds:

C ≺ D ⇔ (C ⊂ D) ∧ (|C| = |D| − 1) (2.2)

We require some additional constraints on a frequent
termset clustering.

Definition 2.2. (Frequent Itemset Clustering Condi-
tions)
A cluster set C ⊆ P(T ) must fulfill the following con-
straints:

∅ ∈ C (2.3a)
∀D ∈ C with D 6= ∅ : ∃C : C ≺ D (2.3b)
∀C ∈ C : ∃r ∈ R : r∇C. (2.3c)

Condition (2.3a) states that the empty set must be con-
tained in each cluster set. Condition (2.3b) ensures that
there is a path from each cluster to the empty set (thus the
cluster set is a connected graph). Condition (2.3c) ensures
that each cluster contains at least one resource.

The set C will denote all possible cluster structures that
can be derived from T , considering only termsets that meet
a certain minimal support.

C = {C | C ⊆ FTS and C valid} (2.4)

where FTS is the set of frequent termsets with a minimal
support of σ.

Based on this definition, we present a multi-objective op-
timization algorithm that selects several cluster sets as sub-
sets of the set of all frequent termsets. These are then pre-
sented to the user. The selection process will be governed
by several optimization criteria that will be presented in
section 4.

3 Multi-objective Optimization
In the last section we argued, that frequent termset cluster-
ing is an inherently multi-objective problem. In the follow-
ing, we will give a more precise definition of this notion.

Definition 3.1. (Multi-objective optimization problem)

max ~f(x) with x ∈ S (3.1)

The set S describes the set of valid solutions. ~f assigns to
each element x ∈ S a solution vector from Rk, where R is
a totally ordered set. Each element of this vector represents
one criterion and k is the number of criteria.

Definition 3.2. (Pareto-dominance)
A solution vector ~u dominates a solution vector ~v (short

~u � ~v), iff:

∀i ∈ {1, ..., k} : ui ≥ vi (3.2a)

as well as

∃i ∈ {1, ..., k} : ui > vi (3.2b)

A solution vector is called non-dominated, if it is not dom-
inated by any other solution vector.

Definition 3.3. (Pareto-optimal set)
For a multi-objective optimization problem, the set of
pareto-optimal solutions is defined as

P ∗ := {x ∈ S| 6 ∃y ∈ S : ~f(y) � ~f(x)} (3.3)

i.e. P ∗ contains only non-dominated solution vectors.

The task of multi-objective optimization is to determine
a set of pareto-optimal solutions.

dominated solutions

f2

f1

non-dominated solutions

Figure 2: The pareto-optimal set is depicted as a black line. This
line is often referred to as the pareto front.

Multi-objective optimization is very powerful, as it al-
lows users to choose from a set of results, instead of a single
result (Zitzler and Thiele [1999]; Coello Coello [1999]).
While it would be in principle possible, to combine two
or more criteria by a linear combination, this would work
only, if these criteria are indeed in a linear relation to each



other. In general, pareto fronts, as the one shown in fig-
ure 2, are highly non-linear and sometimes of very com-
plex shape. The non-linear shape of the pareto front often
guides the user in the process of selecting an appropriate
solution, as it is very easy to visually identify interesting
points, such as “elbows”.

A desirable property of pareto-optimal solutions is that
they should cover the space of possible solutions well, thus
that the dots on a pareto front should be distributed as ho-
mogeneously as possible. This allows the user to choose
from a wide variety of different solutions.

An important prerequisite for achieving such solution
sets is that the criteria are in conflict. If two criteria are
correlated, for instance, the solution set will contain only a
single solution that dominates all other solutions.

4 Multi-objective Frequent Termset
Clustering

4.1 Fitness Criteria for Frequent Termset
Cluster Structures

As described above, the essential step of FTS clustering is
to select the subsets of frequent termsets that are presented
to the user. There are several possible criteria to assess the
quality of each such subset. In general we define the fitness
of a cluster structure in the following way.
Definition 4.1. Fitness of a cluster structure
A cluster structure fitness measure is a function C → R,
that assigns to each valid cluster set C ∈ C a real-valued
quality measure.

In section 2, several criteria were discussed that are im-
plicitly used in most frequent termset clustering algorithms.
These criteria are coverage, overlap, simplicity and de-
tailedness. In the following we will derive formal defini-
tions for these criteria and discuss whether they are well-
suited for deriving comprehensible and complete cluster
structures.

To ease the presentation of the individual criteria, we in-
troduce several properties. The function res : P(P(T )) →
P(R) calculates for a set M of clusters the set of all covered
resources r ∈ R:

res(M) =
⋃

M∈M

{r | r∇M} (4.1)

The function depth : C → N calculates the depth of a
cluster set:

depth(C) = max
C∈C

|C| (4.2)

The term M|i denotes all sets in M that contain i ele-
ments, thus M|i = {M ′ ∈ M | i = |M ′|}, where i ∈ N.

A property that is very popular is overlap. Algorithms
as k-means aim to maximize the inter-cluster dissimilarity
making individual clusters as disjoint as possible. In the
context of ontologies, disjointness of concepts plays an im-
portant role for achieving sound definitions.

In the following we capture the average overlap among
frequent termsets on the same level of a cluster set by the
following expression.
Definition 4.2. (Overlap)
Given a clustering C, then overlap : C → R is defined as

overlap(C) =
1

depth(C)
·
depth(C)∑

i=1

|res(C|i)|∑
C∈C|i

|res({C})|
(4.3)

For depth(C) = 0, we assume overlap(C) = 1.
The function overlap measures the average overlap

among clusters on each level. In the best case, each re-
source in R appears only in one cluster on each level. This
criterion is very much akin to the overlap criterion pro-
posed in Beil et al. [2002]. In section 5 we will argue,
why it is not always desirable to optimize this criterion ex-
plicitely.

A second property of a frequent termset clustering is
coverage. Many existing clusterings algorithms require to
cluster all resources, thus to achieve a full coverage. In ap-
plication areas, in which we can expect a high number of
outliers, this can lead to poor results. It is therefore often
desirable to ignore some resources in the clustering pro-
cess, which however leads to a smaller coverage. There-
fore, as second criterion, we define the coverage of a cluster
set.
Definition 4.3. (Coverage)
Given a cluster set C ∈ C, then the function cover : C →
[0, 1] is defined as follows:

cover(C) =
|res(C|1)|
|R|

(4.4)

Overlap and coverage are usually in conflict with each
other. Given a clustering that does not cover all resources,
additional resources can only be covered by adding more
frequent termsets. In this process the overlap can never de-
crease and is likely to increase, if the set of possible choices
(frequent terms not yet chosen) is limited.

A third criterion is the simplicity of the clustering from a
user perspective. The FTS clustering algorithms presented
above achieve this by optimizing the inner cluster similarity
and by applying heuristic pruning procedures.

We can however capture the simplicity of a cluster tree
from a user perspective in an explicit way. For a flat clus-
tering, the number of clusters should be chosen as small as
possible, while achieving a cluster quality that is as high as
possible. The underlying idea is that inspecting each clus-
ter is connected with certain costs for the user. This idea
can be transferred to hierarchical cluster sets as well. As
such sets are often navigated top-down, we use the number
of child nodes at the root and each inner node as indicator
of the complexity of a cluster set.
Definition 4.4. (Child count)
Given a cluster set C, we define succ : C → P(C) as

succ(C) = {D ∈ C | C ≺ D} (4.5)

and thus the set C′ ⊆ C as

C′ = {C ∈ C | |succ(C)| > 0} (4.6)
Based on this, we can define

childcountmax(C) = max
C∈C′

|succ(C)| (4.7)

Thus the complexity of a cluster structure is given as the
most complex node.

The maximal child count will usually increase with in-
creasing coverage, as to cover more resources, additional
clusters are needed.

Another criterion is the depth of a cluster structure. As
users often navigate a cluster structure top-down, the depth
does not contribute to the complexity of the cluster tree as
does the child count. In contrary, a high depth allows for
more fine grained distictions at a lower level. The depth
should therefore be maximized.

This is captured in the following criterion.



Definition 4.5. (Depth of a cluster set)

Let the set C′ ⊆ C be defined as

C′ = {C ∈ C | @D : C ≺ D} (4.8)

We can then define the following criteria:

depthavg(C
′) =

1
|C′|

∑
C∈C′

|C| (4.9)

depthmax(C′) = max
C∈C′

|C| (4.10)

depthvar(C
′) =

1
|C′|

∑
C∈C′

(|C| − depthavg(C
′)) (4.11)

How is depth related to the other criteria? Per definition,
coverage is mostly independent of the depth of the cluster
tree, as only the resources covered by first level nodes are
regarded. The same holds for child count. Overlap is likely
to increase with increasing depth in many cases, as the dis-
tictions on top-level are stronger than on a more detailed
level. This is also confirmed in our experiments, showing
that if we do not explicitely optimize for depth, the algo-
rithm produces rather shallow cluster structures.

One possibility to solve this problem is to use depth as an
additional criterion in multi-objective optimization. This is
however not fully satisfying, as it makes the optimization
process more complex and as depth is not in strong conflict
with any of the other criteria.

We therefore rather solve this problem by replacing cov-
erage by another concept, namely completeness. The idea
of completeness is, that the selected clusters should repre-
sent the given frequent termsets as good as possible.
Definition 4.6. (Completeness)
Given two cluster sets C and Cref . We assume C ⊂ Cref .
Then the function compl : C×C → R is defined as:

compl(C,Cref ) =
|C |
|Cref |

(4.12)

Thus the more of the original frequent termsets are con-
tained in the final clustering, the higher the completeness.
This combines coverage and cluster depth in one straigh-
forward criterion.

This criterion is in conflict with child count and with
overlap. In section 5 we will analyze empirically, how the
criteria are related to each other.

Beside the criteria presented here, there are many other
possible criteria, such as to what grade the cluster structure
resembles a tree or the number of paths by which a resource
can be reached from the root. These criteria are however
beyond the scope of this presentation.

4.2 Deriving Pareto-optimal solutions
Several algorithms were proposed for multi-objective op-
timization, almost all of them based on evolutionary com-
putation (Coello Coello [1999]; Zitzler and Thiele [1999]).
In this work we use the genetic algorithm NSGA-2 (Deb et
al. [2000]) to approximate the set of pareto-optimal solu-
tions. Individuals are represented as binary vectors, such
that each element of the set of frequent termsets corre-
sponds to one position in the vector. The cluster conditions
are enforced by post-processing each individual.

The algorithm approximates the set C∗ ⊆ C of pareto-
optimal cluster sets.

C∗ = {C ∈ C | @D ∈ C : ~f(D) � ~f(C)} (4.13)

where ~f(D) � ~f(C) states that there is no cluster set D
that pareto-dominates the cluster set C with respect to the
fitness functions ~f . Thus C∗ contains all non-dominated
cluster sets.

C∗ is also referred to as the pareto front. As men-
tioned before the algorithm should produce solutions that
are equally spread across the pareto front.

5 Application and Evaluation
5.1 Social Bookmarking and Automatic Tag

Clustering
Social bookmarking systems allow users to annotate re-
sources on the internet with arbitrary textual descriptions
called tags (Hammond et al. [2005]). These systems are
extremely popular, as assigning tags is very simple (Shirky
[2005]). In contrast to predefined keywords or categories,
tags are very flexible and dynamic, allowing to capture the
views of even rather small niche communities. Based on
the “everything is a link” paradigm, users can navigate the
hypergraph of user ids, tags and resources (Golder and Hu-
berman [2006]).

While this is convenient for few tags and resources, it
quickly becomes chaotic as the number of tags and re-
sources grows. An important challenge is therefore to
transform the user assigned tags into a navigation structure
that is simple to overlook but on the other side reflects as
many of the underlying resources as possible. Such a struc-
ture combines the best of both worlds: the relative simplic-
ity of predefined taxonomies and the flexibility and subjec-
tivity of user assigned tags.

Traditional clustering methods are not well suited for this
task, as the data space is extremely complex and sparse.
Apparently frequent termset clustering is designed to deal
with exactly this kind of data.

There are several approaches that cluster tags as to make
the resulting structure easier to overlook and navigate. In
Hassan-Montero and Herrero-Solana [2006], tags are se-
lected that show a high degree of diversity by applying
a tf/idf -like measure. These tags are then clustered us-
ing Bisecting k-means and Jaccard-Similarity. Begelman
et al. [2006] and Kaser and Lemire [2007] represent tags
as graphs on which they apply graph clustering algorithms
to obtain sets of similar tags. These methods suffer from
the same problem as other traditional clustering algorithms,
namely the extremely high number of dimensions and the
high number of tags to be clustered. Also, by making tag
clusters as dissimilar as possible to each other, they implic-
itly minimize the overlap, which is not always appropriate,
as will argued below. Finally, these approaches include par-
tially complicated parametrization (e.g. the right choice of
a similarity measure, number of clusters, etc.). This leads
to a laborious trial-and-error procedure in practice. This
problem is even more severe, as the resulting tag clusters do
not contain cluster descriptions, making them harder to in-
terpret by the user. In contrast, the parameterization of our
multi-objective clustering is controlled by the optimization
procedure. Instead of trying out different parameter set-
tings, the algorithm directly proposes to the user several
promising results.

An approach that applies frequent itemset mining to tag
structures is described in Schmitz et al. [2006]. The authors
use different kinds of projections to map tag assignments to
transactions. They then use frequent itemset mining to de-
rive association rules. These association rules can then be
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visualized as a cluster tree. The association rules are how-
ever not filtered or post-processed in any way. This, how-
ever was identified as a crucial step that frequent termset
clustering achieves.

5.2 Experimental Results
We applied the approach proposed above to the freely avail-
able social bookmarking data set derived from the Bibson-
omy system (Hotho et al. [2006]). This data set contains
the tag assignments of about 780 users. The number of re-
sources tagged by at least one user is about 59.000. The
number of tags used is 25.000 and the total number of tag
assignments is 330.000.

In order to find a set of frequent tagsets with respect to
some minimal support σ, we must first define our notion of
a tag’s frequency. Although tag frequency can be defined
in several ways, we consider a tag to be frequent if a certain
number of users have assigned it to arbitrary resources.

We performed two experiments. In a first experiment
we tried to optimize the overlap against the coverage of a
cluster structure. This corresponds to the traditional idea of
a cluster structure as being a level-wise disjoint structuring
of entities in a domain of interest.

The resulting pareto front is shown in figure 4.
A more detailed analysis of the individual results shows

the following:

• Cluster sets that fulfill the overlap criterion well are
quite narrow and show a bad coverage.

• Cluster sets that fulfill the coverage criterion well are
very broad and contain a lot of overlap.

• All resulting cluster structures are very shallow, as
neither of the criteria forces the selection of deep clus-
ters. Both, high coverage and low overlap can be
achieved with clusters of level one.

This supports our claim, that optimizing overlap and
coverage leads to not very detailed cluster structures that
often resemble rather a flat partition than a hierarchical
clustering.

There is also another interesting observation. Minimiz-
ing overlap removes the natural heterogeneity from the
data. Some users may for instance have tagged news ar-
ticles with country names (e.g. germany, france) and other
users may have tagged them thematically (e.g. ecology).
Now, if ecology and germany has an overlap that is very
strong, then probably one of both tags will be removed, if
the overlap is minimized. This is however not desirable, as
both tags represent valid access paths to tagged resources.
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Therefore we argue, that at least for tag clustering, mini-
mizing the overlap is not only not an important criterion, it
could even be counter-productive. In many other applica-
tion scenarios, this holds as well.

In a second experiment, we used the two other criteria
proposed in this work, namely maximal child count and
completeness with respect to the frequent termsets. The
corresponding pareto front is depicted in figure 5.

A nearer inspection of the pareto optimal results yields
the following:

• Clusterings with a small maximum child count are
narrow, but deep. This effect can be explained, as deep
clustering yield on average a higher completeness.

• Clusterings with high completeness are broader, but
still deep and contain much of the heterogeneity con-
tained in the original data. They also show a very high
coverage.

In this way we can actually optimize three criteria at
once: the simplicity of the cluster structure, its detailed-
ness in terms of cluster depth and the coverage of resources.
These criteria are furthermore not biased to remove hetero-
geneity from the data, which is essential in many explo-
rative applications.

Figure 3 shows how the different optimization criteria
introduced in this work are related to each other. Figure 6
shows exemplarily the most simple tag structures produced
by overlap vs. coverage and child count vs. completeness
respectively.

6 Conclusion
In this work we presented an approach to frequent termset
clustering that makes use of multi-objective optimization.
This enables the user to choose from a set of promising
results instead of having to search a complex parameter
space in a trial-and-error way or having to rely on heuristic
procedures. It also makes desirable properties of frequent
termset clusterings explicit and allows to explore the rela-
tion among different optimization criteria in a systematic
way.

We applied the algorithm in a social bookmarking sce-
nario. The aim was to simplify the complex structure of
user assigned tags in order to make this structure easier to
navigate. We pointed out, that the overlap criterion applied
by many clustering algorithms is not satisfying in this sce-
nario, as it is likely to destroy the natural heterogeneity
in the underlying data. Optimizing for small complexity
and high completeness with respect to the selected frequent
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Figure 3: These plots show how the different criteria are related to each other.




































 













  
























Figure 6: The simplest tag structures for child-count vs. completeness (on the left) and for coverage vs. overlap (on the right). The
numbers in the nodes denote their depth in the tree. The tree on the left is deeper and better balanced than the tree on the right.



termsets on the other hand led to sound results that implic-
itly optimized other criteria as the cluster tree depth as well.

In our future work we plan to analyze additional criteria
and their relationship. Also, we will explore the suitability
of the approach in other application areas, such as customer
segmentation. High-dimensional, complex data spaces are
still challenging for clustering algorithms. We think that
both, multi-objective optimization and frequent item based
approaches will play an important role to solve these chal-
lenges in the future.
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