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Abstract

The representation formaism as well as the representation language is of great importance for the success of
meachine learning. The representation formalism should be expressive, efficient, useful, and gpplicable. Firg-order
logic needs to be redtricted in order to be efficient for inductive and deductive reasoning. In the field of knowledge
representation term subsumption formaisms have been developed which are efficient and expressive. In this paper,
a learning agorithm, KLUSTER, is described which represents concept definitions in this formaism. KLUSTER
enhances the representation language if this is necessary for the discrimination of concepts. Hence, KLUSTER isa
condructive induction program. KLUSTER builds the most specific generdization and a most generd
discrimination in polynomid time. It embeds these concept learning problems into the overdl task of learning a
hierarchy of concepts.

1 Introduction

Concept learning can be described as inductively forming hypotheses expressed using a hypothesis language such
that they deductively cover observations expressed using an observation language. The choice of an appropriate
formdism for the hypotheses is crucid for the success of learning. On one hand, the representation formaism
should be powerful enough to express at least relations between concepts. On the other hand, it should be efficient
with respect to deductive and inductive inference. Moreover, it should be easily understandable so that experts can
ingpect the results of learning and it should be in the framework of standard representations so that researchers and
practicioners from other fields of computer science can easily gpply the learning system.

Attribute-value representations have been in the focus of interest for severd years as they are easly
understandable and gpplicable. Algorithms for inductive and deductive reasoning in polynomia time have been
investigated (e.g., learning monomids (Kearns, 1990)). The expressive power of such representations, however, is
very redricted. Therefore, first-order logic moved into the foreground. The advantages of firgt-order logic are its
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expressive power, its understandability, and its applicability in the framework of logic programming. The
disadvantage is its complexity. Without regtrictions, firgt-order logic is not efficient - neither for deductive nor for
inductive inference. Deduction even in Horn logic is efficiently computable only if the dauses are programmed in a
programming language with a fixed evauation srategy (eg., Prolog). Induction (e.g., deciding whether there is a
hypothes's consgtent with the examples) is polynomialy computable only for aminima subset of predicate logic
(Kietz, 1992). So, first-order logic has been redtricted in severa ways for its use in machine learning (eg., a
restricted higher-order logic (Emde, et a., 1983; Wrobdl, 1987; Kietz & Wrobd, 1991, Morik, et d., in press) or
datalog (Ceri, et d., 1990) as used by FOIL (Quinlan, 1990) or ij-determinate Horn clauses (Muggleton & Feng,
1990)).

An dterndive restriction of first-order logic has been developed in the field of knowledge representation: term
subsumption formaisms or terminologicd logics (Brachman & Schmolze, 1985). This representation formaism has
a wdl-defined forma semantics. It is a grestest subset of fird-order logic with deduction being dill efficiently
computable (Donini, et a., 1991). The representation of observations and concepts is easily understandable.
Severa concepts can be represented by their relations to each other. The formalism is easly applicable and about
to become a standard in knowledge representation. However, no learning agorithms which use aterm subsumption
formaism have been developed until recently. KLUSTER is the firs sysem which learns within this framework
(Morik & Kietz, 1989).

In this paper, we first describe the term subsumption formaism (section 2). Then we pesent the learning
agorithm (section 3). Its evaluation with respect to related work and in terms of atheoretical assessment is section
4.

2 The Term Subsumption Formalism Used by KLUSTER

Sating with KL-ONE (Brachman, 1977; Brachman & Schmolze, 1985) an increasing effort has been spent in the
development of knowledge representation systems in the framework of term subsumption formaisms (aso called
terminological logic or description logic), eg. NIKL (Moser, 1983), KL-TWO (Vilain, 1985), KRYPTON
(Brachman, et a., 1985), CLASSIC (Borgida, et al., 1989), BACK (Luck, et a., 1987; Peltason, et a., 1989).
Recently, these system have been sucessfully gpplied to a number of red-world applications, cf. (Peltason, et d.,
1991).

The representation formalism corresponds to a rather classica view of concept descriptions, where first a set of
superconcepts is referenced and then distinguishing statements are made. For instance, a motor-cycle is defined as
a vehicle with exactly two parts, that are whedls. A car is defined as a vehicle with at least three and at most four
whedls. The roles of the superconcept venicle are inherited by the sub-concepts which are distinguished by number
regrictions on the part-of role with the concept wheels in its range. The concept representation, i.e. the hypothesis
languege, is cdled TBox. A TBox is a semi-lattice with defined meets. Concepts are classfied within this structure
according to their super-/aub-concept rdaion. The formaism digtinguishes between primitive concepts (concept :<
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conditions), where the conditions are necessary, but not sufficient, and defined concepts (concept := conditions),

where the conditions are necessary as well as sufficient.

The observations are represented in the so-called ABox. The ABox represents assertions about individua terms.
These are dlassified with respect to their concept membership, i.e. by their link with the TBox.

The main inferences supported by term subsumption formaisms are the classfication of concepts and instances
into a concept hierarchy. The classfication process is formalized by the subsumption relation between concepts.
This subsumption goes beyond g-subsumption in thet it respects the overall concept structure. Hence, it issimilar to
generdized subsumption (Buntine, 1988). The subsumption provides for a parttia ordering (generdity) which
corresponds to logic implication within the term subsumption formaism. Term subsumption formaisms offer an
expressveness in the middle of attribute-value representations and first-order logic. They enhance the quantification
of first order logic in that they dlow the specification of the minima and the maximal number of instances for
exigentidly quantified variables. The forma properties of various implementations of term subsumption formaisms
are investigated and work on revisionsin concept structures has been put forward (Nebel, 1990).

KLUSTER uses a formdism built from a sandard set of concept and role forming operators proposed in the
literature (e.g. Nebd, 1990; Donini et d., 1991) for representing hypotheses. The syntax follows the representation
of the BACK system (Peltason, et d., 1989).

<TBox> = <term-proposition> *
<term-proposition> = <term-redriction>

| <term:introduction>
<termtintroduction> = <concept-introduction>

| <role-introduction>
<concept-introduction> ;= <concept-name> : < <concept>

| <concept-name>:= <concept>
<role-introduction> = <role-name> : < <role>

| <role-name>:= <role>
<term-restriction> := dig oint(<concept-name>+)
<concept> = <concept-ref>

| anything

nothing

all(<role-ref> <concept-ref>)
atleast(<integer>,<role-ref>)

atmost(<integer>,<role-ref>)
<concept-name> and <concept-ref>
<role> role-ref>

I
I
I
I
<concept-ref> = <concept-name>
|
=<
|

<role> and <role>
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| domain(<conceptref>)
| range(<concept-ref>)
<role-ref> == <role-name>
| inverse(<role-name>)

The only difference between this syntax and the one of other TBox formdiams is the regtriction in building
complex expressons. Only a concept name or a conjunction of concept names is dlowed in al, domain and
range redrictions. This eases the readability of the concept definitions and helps to avoid problems with
terminologica cycles (Nebd, 1990). It has no effect on the complexity of the concept learning task. Only role
names or the inverse of named roles are dlowed in all, atleast and atmost restrictions. Not alowing complex role
expressons or defined roles guarantees that the basic agorithm can compute a most specific generdization in
polynomid time. If, however, defined roles are needed in order to distinguish between two digoint concepts, they
are introduced via congructive induction. This introduction of defined roles is bounded by parameters such that
only polynomidly many roles are congtructed. So, congtructive induction is our way out of the contradiction
between the two requirements. expressiveness and efficiency (see section 3.5).

The assertiond formaism (ABox) is used as the observation language by KLUSTER. Within the ABox it is
expressible that an object belongs to a concept and that two objects are related by arole.

<ABox> = <assertion>+
<assrtion> == <obj ect-description>

| <relation-description>
<object-description> = <concept-name>(<object>)
<relation-description> = <role-name>(<object>,<object>)

KLUSTER's formaism has a sandard modd -theoretic semantics asfollows.
Let D, the domain, be any set and E afunction, mapping objects to eements of D, concepts to subsets of D and
roles to subsets of D" D:

<object>® D
E:Q <conogpt> ® 2°
<roles ® 2° P
E isan extension function of a TBox T, if and only if for al C.T <concept>, R1 <role>, CA T <concept-ref>,
CN1 <concept-name>, RAT <role-ref>:
E(anything) = D
E(nothing) = @

E(C,andC,) = EC,)CE(C,)

E@I(RA,CA) = {xI D|"y:<xy>1 ERA)® y1 E(CA)}
E(atleast(n,RA)) = {xT D|{yT D|<xy>1 E(RA)}|=n}
E(atmost(nRA)) = {xT D|{yT D|<xy>1 E(RA)}|=n}

ER,andR) = ER)CER)
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E(domain(CA)) = E(CA)" D
E(range(CA)) D" E(CA)
E(inver se(RN)) {<xy>1 D" D|<yx>1 E(RN)}
A Par <D,E>, where D isadomain and E is an extenson function, isamodd of aTBox T and an ABox A, if
and only if:

E(CN) | E(C),fordlCN:<C&T

E(CN) = E(C),fordlCN:=CAT
ERN) i E(R)fordlRN:<R&T
ERN) = E(R),fordlRN:=R&T

E(CN) C E(CNJ.) @, for al CN, CN; withi ?j,and1=ij=nina
digoint(CN,,CN,,,...CN )T T.
E(t) =E{t,) « t;=t, foralobjectst,,t,inA
E®) T EC),fordlCt)T A
<E(t)Et)> T ER)fordl Rt )T A

The syntax and the model- theoretic semantics together define alogic. Before we define the inferences performed
by the terminologica reasoners, let us give an example of awel-formed concept definition and its equivaent in firgt-
order logic with equdlity:

motorcycle := vehide and all(base_part, wheel) and atleast(2, base_part) and atmost(2, base_part)

" X (motocycle(x) ® vehide(x) U™ y ( base_part(x,y) ® whedl(y)) U

$yly2 (base part(x,yl) Ubase part(x,y2) Uyl ?y2 U
-$y3 (base_part(x,y3) Uyl?y3Uy2?y3)))
Now, let us precisdy define what we mean by subsumption, equivalence, digointness and incoherence of terms
withinaTBox T, by entailment of assartionsfrom a TBox T and an ABox A and inconsstency of aTBox T and an
ABoOX A.
» WithinaTBox T aterm tis subsumed by aterm t', written t =, t', iff for every model <D,E> of T it holds that
E@M) i E{t).

 WithinaTBox T two termst and t' are equivalent, writtent ™  t', iff for every model <D,E> of T it holds that
E(t) = E(t).

» WithinaTBox T two termst and t' are digjoint, iff for every modd <D,E> of T it holds that
E(t) CE()=9.

» WithnaTBox T aterm tisincoherent, iff for every mode <D,E> of T it holds that E(t) = &.

* An assertion f is entailed by a TBox T and an ABox A, written A |=; f, iff for every model <D,E> of T and A
it holdsthat E(t) T E(C) if f = C(t), or <E(t)).E(t,)> T ER),iff= R(t,.t)-

« A TBox T and an ABox A areinconsistent, iff thereexissno mode <D,E> of T and A.
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Note, that subsumption as defined above is a semantic ration like implication or generdized subsumption

(Buntine, 1988), which takes into account background knowledge. It is not a pure syntactic relation like g-
subsumption (Plotkin, 1970).

In our TBox formdism we can compute the digointness and incoherence using subsumption or equivaence
done

«tT tifft =  tandt = t

* tisincoherent, iff t = nothing

e tandt' are digoint, iff (t and t) =1 nothing

e t=,t,ifft" ; (tandt)

It is known (Donini et a.,1991), that subsumption between two concepts with respect to a TBox T in the
formdism above can be decided in polynomid time, if T does not contain any role introductions and al digoint
redrictions contain only names of primitive concepts (concept names introduced by <concept-name> :<
<concept>). It is aso known, that the formalism cannot be extended without losing the polynomid time decidability

or completenesst. Thus, the learning result of KLUSTER cannot be classfied completely polynomidly, if
congtructive induction has introduced new roles.

3 KLUSTER

In this section, we present the sysem KLUSTER which is an inductive learning system for congtructing a concept
Sructure in the term subsumption formalism presented in the last section. A deductive reasoning sysem (eg.
BACK, CLASSIC) for this term subsumption formalism is assumed to be given.

The overdl learning task of KLUSTER is:

Given a st of assartions in the ABox (the examples), and an empty TBox. If a patidly filled TBox (the
background knowledge) is given, the assartions are assumed to be saturated by entailment. Clearly, ABox and
background knowledge must be consstent.

Goal: A TBox, i.e. a hierarchy of concept definitions, organizing the factua knowledge such thet the concept
definitions of the TBox are true in the minima modd of the ABox. The TBox can be used for inferring by
entailment further descriptions about objects newly entered into the ABox.

We will use a domain of dde-effects of drugs for illustrating our gpproach. The following set of assertions is

given asinput to KLUSTER:

contains(aspirin,asa) contains(anxiolit,oxazepun) contains(placo,nhc)
contains(alka-seltzer,asa) contains(anxiolit,finalin) contains(placo,sugar)
contains(alka-seltzer,nhc) contains(adolorin,phenazetin) affects(asa,headache)
contains(adumbran,coffein) contains(adolorin,prophymazon) affects(oxazepun,stress)

contains(adumbran,oxazepun) contains(adolorin,nhc) affects(finalin,stress)
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affects(prophymazon,headach) anodyne(aspirin) active(phenazetin)
affects(phenazetin,headache) anodyne(alka-seltzer) active(oxazepun)
placebo(placo) anodyne(adolorin) add_on(nhc)
combidrug(anxiolit) sedative(anxiolit) add_on(coffein)
combidrug(adolorin) sedative(adumbran) add_on(sugar)
monodrug(aspirin) active(asa) excitement(stress)
monodrug(alka-seltzer) active(finalin) pain(headache)
monodrug(adumbran) active(prophymazon)

These are the given observations. No background knowledge is provided. Note, that the relation contains iSan
to m reation. The firs gep of KLUSTER is to compute a basc taxonomy which is a hierarchy of primitive
concepts and roles based on set incluson between the known extensions of concepts and roles. The computed
basic taxonomy is used for structuring the overal task of KLUSTER into a set of concept learning problems. The
concepts which KLUSTER tries to define are taken top-down ard breadth-first from the basic taxonomy. This
search drategy is implemented by an agenda of concept learning problems. Each agenda entry is a cluster of
concepts (caled MDC, mutudly digoint concepts) which have the same superconcept and which are mutually
digoint. Thisenables KLUSTER to define concepts not in isolation, but in the context in which they occur.

A concept learning problem of KLUSTER s to build discriminating definitions for the concepts of a MDC. A
definition is discriminating if the number of misclassified examplesiis lower or equa than a given threshold (rypc =
e). To test if such a discriminating definition exists, KLUSTER firgt builds most specific generalizations (M SGs)
for dl examples of a concept. If the available concepts and roles are not sufficient for a discriminating
characterization, the representation language is expanded. This means, more complex expressons are only built if
smpler ones are not sufficient. The introduction of new concepts and roles is bounded by two parameters (rlength
and refinement, see section 3.5). As the concept learning god is to find discriminating concept definitions for the
concepts of aMDC, the best (most predictive) definition is the most general discrimination (MGD). Therefore,
KLUSTER generdizes dl discriminating MSGs to MGDs. This two sep gpproach of learning concepts is
preferred to learning MGDs directly, as the M SGs have some useful properties that MGDs do not have:

» The MSG isuniquein our formaism and smple to built (see section 3.3.1).

* If the MSG is not discriminating, then no concept expression covering al postive examplesis discriminating.

» The MSG is useful for a possble extenson of KLUSTER to incrementa learning as msy({04,05,...,0,}) =
msy(...msy(0;,0,)...,0,).

In our example the following concept definitions (MGD's) are learned (see Figure 1):
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Figure 1. Thelearned taxonomy for our example

active = substance and atleast(1, affects)
add_on = substance and atmost(0, affects)
placebo = drug and atmost(0, contains_active)
monodrug = drug and atleast(1, contains_active)

and atmost(1, contains_active)
combidrug = drug and atleast(2, contains_active)
anodyne = drug and all(contains_active, active_1)

and atleast(1, contains_active)
sedative = drug and all(contains_active, active_2)

and atleast(1, contains_active)

The above definitions use the following defined concepts and roles which are introduced by KLUSTER's
condructive induction:
contains_active = contains and range(active)

active_1

active and all(affects, pain)

active_2

active and all(affects, excitement)

The overdl method of KLUSTER is summarized in Table 1.

In section 3.1. we show how KLUSTER aggregates objects into primitive concepts and how the basic
taxonomy of these primitive concepts is built. In section 3.2 we describe the computation of MDCs and the agenda
mechanism. MSGs and the evaluation functions are defined in section 3.3. Section 3.4 presents the generaisation
from characterizations (MSGs) to definitions of concepts (MGD). The congtructive induction of new concepts and
relations for defining a concept is described in section 3.5.
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learn_TBox(e maxrefinement, maxrlength):
begin
compute_basic_taxonomy ; building the basic taxonomy
initialize_agenda
repeat
select_best_active_ MDC(mdc, refinement, rlength)
forall c & mdc
compute_and_store_MSG(c) ;building MSGs
if FMDC(mdc) = e ;evaluating MDC
then set_definable_MDC(mdc)
else if refinement > maxrefinement 0 rlength = maxrlength
then set_undefinable_MDC(mdc)
else build_refinements(mdc, refinement, rlength) ;constructive induction of concepts, roles
until all mdc & agenda: definable_MDC(mdc) D undefinable_MDC(mdc)
for all definable_MDC(mdc)
for all ¢ & mdc
compute_and_store_MSG(c) ;building MSGs with enhanced language
generalize_ MSG_to_MGD(c) ;building MGDs
delete_all_refinements_not_used_in_MGDs

end

Table 1: An outline of the learning dgorithm

31 Building the Basic Taxonomy

As the firgt step of learning, KLUSTER aggregates objects of the ABox into primitive concepts of the TBox.
Objects which occur in the ABox as argument of a one-place predicate are collected as the known extension of a
primitive concept in the TBox named by the predicate symbol. Tuples of objects, which occur in a two-place
predicate of the ABox are interpreted as the known extension of a primitive role in the TBox named by te
predicate symbol. The domains and ranges of the primitive roles are aso determined. The domain of aroleis the
st of objects occurring at the first place of the role. The range of arole isthe set of objects occurring at the second

place of theroles.
Let us dexribe this more formdly. Let ext be an extenson function as defined in section 2,

<objet> ® <objet>
ext: <oonompt> ® 2<object>
<role> ® 2<object>" <object>

where ext_, ;. i the identity function between the objects in the ABox, i.e. the objects of the ABox are the
domain of the interpretation. Then the pair <<object>,ext> is a minima moded of the given TBox and ABo, if
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TBox and ABox are consstent and the ABox is complete with respect to the given TBox. Thisis dways the case if
the TBox isempty, i.e. if no background knowledgeis given.

The system then builds root concepts as the union of dl extensondly overlapping domains and ranges of roles

and primitive concepts. The root concepts are Smilar to the sorts or types which other learning systems (e.g. FOIL
(Quinlan, 1990), GOLEM (Muggleton and Feng, 1990) take as inpui.

Then, the primitive concepts are arranged into a hierarchy based on set inclusion of the extensons. This means,
the subsumption relaionships vaid in the minima mode <<object>,ext> are induced. As subsumption is a partia
ordering, a minima representation consst of the direct subsumptions. KLUSTER uses standard adgorithms to
compute the direct subsumption from subsumption.

Digointness of primitive concepts is dso determined based on the extensons, i.e. dl digoint rdationshipsvaid in
the minima mode <<object>,ext> are induced. As digoint redtrictions are inherited dong subsumption, the system
computes the minimal set of digoint redtrictions, necessary to infer the inherited ones. The digointness of anodyne
and pain for example can be inferred from the digointness of grug and symptom, @S drug SUBSUMES anodyne and
symptom SUBSUMES pain.

In our example, root concepts (the predecessors of anything) and primitive concepts are’:

drug < anything, ext(drug) = {adolorin,adumbran,alka_seltzer,anxiolit,aspirin,placo}
placebo < drug, ext(placebo) = {placo},

monodrug :< drug, ext(monodrug) = {adumbran,alka_seltzer,aspirin},

combidrug :< drug, ext(drug) = {adolorin,anxiolit},

anodyne :< drug, ext(anodyne) = {adolorin,alka_seltzer,aspirin},

sedative  :< drug, ext(sedative) = {adumbran,anxiolit},

substance :< anything, ext(substance)= {asa,coffein,finalin,nhc,o0xazepun,phenazetin,prophymazon,sugar}
active :< substance, ext(active) = {asa,finalin,oxazepun,phenazetin,prophymazon},
add_on :< substance, ext(add_on) = {coffein,nhc,sugar},

symptom < anything, ext(symptom) = {bellyache,headache,stress},

pain < symptom, ext(pain) = {bellyache,headache},

excitement :< symptom, ext(excitement) = {stress}.

All concepts are primitive, i.e. they Hill need to be defined. The minimad set of digoint redtrictionsis the following:

disjoint(drug, substance), disjoint(drug, symptom), disjoint(substance,symptom),
disjoint(placebo, monodrug), disjoint(placebo, combidrug), disjoint(monodrug, combidrug),
disjoint(placebo, anodyne), disjoint(placebo, sedative), disjoint(anodyne, sedative),
disjoint(active, add_on), disjoint(pain, stress)

Theroles of the basic taxonomy are:
contains  :< domain(drug) and range(substance), with
ext(contains)={ adolorin,nhc),(adolorin,phenazetin),(adolorin,prophymazon),(adumbran,coffein),

(adumbran,oxazepun),(alka_seltzer,asa),(alka_seltzer,nhc),(anxiolit,finalin),
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Figure 2: The basic taxonomy for our example

(anxiolit,oxazepun),(aspirin,asa),(placo,nhc),(placo,sugar)}
affects :< domain(active) and range(symptom), with

ext(affects) = {(asa,headache),(finalin,stress),(oxazepun,stress),(phenazetin,bellyache),(prophymazon,headache)}

Figure 2 shows the basc taxonomy which is the result of the first step of KLUSTER for our example.

3.2 The Concept Learning Problemsof KLUSTER

Having computed the basic taxonomy, KLUSTER sets up concept learning problems. The concept learning god is
to define primitive concepts preserving the discrimination from their Sster concepts. Sister concepts are the mutudly
digoint subconcepts of a common superconcept. They are caled mutually digoint concepts, MDC. There can
be more than one MDC for a superconcept. Thisisthe case, if aconcept can be speciaized with repect to diverse
aspects. For ingtance, in our example domain, drugs are classified with respect to the combinations of substances
INto monodrugs, Which consist of only one effective substance, combidrugs, Which consist of more than one effective
substance, and placebos, Which consst of no effective substance. These three primitive concepts together form a
MDC. Drugs are dso classified according to the effect they have on the human body into painkillers @nodyne).
Stress removers Eedative), ad piacebos (With no effect a al). These primitive concepts together form another
MDC. Both classfications are gppropriate, i.e. a cross classfication of drugs is desired. Both MDCs are to be
defined. To define concepts of a MDC such that no instance is covered by more than one concept of aMDC isthe
concept learning problem of KLUSTER.

In order to set up concept learning problems, MDCs are first built for each root concept. Pairwise digointnessis
dready computed. Mutud digointness of severa primitive concepts is computed by firg establishing the
complementary ligt of nortdigoint pairs. Then, a lis of dl primitive concepts, which occur in any of the digoint
pairs is split according to the non-digoint pairs. The lig of non-digoint pairs is checked exhaugtively. The lists
resulting from splitting are the MDCs. Computing these maxima sets of mutudly digoint concepts is computetiona
expengve in the worst case. The computationa costs for m MDC ism Iog, m. However, for n conceptsthere arein
theworst case (1 /. ) different MDCs.3
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MDCs are then ordered on an agenda. The agenda determines a top-down, breadth-first order of concepts to
be defined. In terms of the graphic representation of the concept structure, MDCs are set up as concept learning
problems from left to right, one level & atime. In our example, there are two MDCs for grugs, onefor substances

and one for symptoms @ the beginning:
MDC_1: {placebo, monodrug, combidrug}
MDC_2: {placebo, anodyne, sedative}
MDC_3: {active, add_on}
MDC_4: {pain, excitement}

As root concepts are not defined, the concept structure will never consist completely of defined concepts. Most
often, not al of the concept learning tasks are accomplished by KLUSTER. Some concepts remain primitive. They
assg the definition of other concepts without being defined themsdves. The reason for this is that we want to
prohibit circular definitions. Hence, there are dways concepts which are used in ai restrictions of concept definition
but are not defined themsalves. In the graphic representation of our example, these are the right-most concepts.
Only if the right-most concepts are definable using number restrictions, they can be defined avoiding the pitfal of
circular definitions.

33 Characterizing Concepts

The definition of concepts is performed in three steps by KLUSTER. Firdt, concepts are characterized by the
most specific generalization, MSG. Then, the characterization is evauated. Findly, the characterization is further
generdized to become the most general discrimination, MGD, which is the definition of the concept. A
characterization sdects dl rdlevant roles where a definition selects the mogt discriminating ones among the relevant
roles. We first describe the induction resulting in a most specific generdization. Then we describe the evauation of
al concept characterisations of a MDC. Findly (section 3.4), we describe how the acceptable M SGs are further
generdized to amogt generd discrimination.

3.3.1  Building the Most Specific Generalizations (M SG)

The MSG of a concept ¢ isaset of most specific concept expression ce, such that ¢ < ce istruein the minima
model <<object>,ext>, or more formally:

MSG(c) ={ cel <concept> | ext(c) | ext(ce) i

@ $ce,1 <concept>: ext(c) | ext(ce,) 1 ext(ce)}

In our term subsumption formaism there are severa semanticaly equivaent concept expressons, which are not
syntacticaly identicd. Fortunately, there exists a unique normalized concept expression for every equivalence class
in our term subsumption formaism. To determine this unique normaized expresson, let us look at the possble
concept expressions in our formaism. A concept expression is a conjunction énd) of concept names, all-,
atleast-, and atmost-regtrictions. Clearly, the and operator is commutative, associative, and idempotent. This
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means, the order of the redrictions is irrelevant. Now, let us look at the particular restrictions possible in concept
expressions and their normaization:

* Concept names: these are the superconcepts of the concept. Normalization selects the direct predecessors of
the concept in the subsumption partid ordering.

* all-regtrictions: these are the expressions of the form: all(r, ¢; and ...and c,,), wherer is a role name or the
inverse of a named role, and the G are concept names. Two all-redtrictions with the same role r in a concept
expresson: all(r, ¢; and ...and ¢;)) and al(r, G, and ...and C,,), ae normdized to the equivaent
expresson: all(r, ¢, and ...and ¢, and G,,; and ...and C,, ). The ¢, and ...and c,, in all redtrictions are
aso normalized based on the subsumption partiad ordering. If the range of aroler is C, an all(r, C) redtriction
is equivalent to anything and can be dropped.

* atleast-redrictions: these are the expressions of the form: atleast(l,r), wherer isarole name or the inverse of
anamed role. Two atleast-restrictions with the sameroler : atleast(l;,r) and atleast(l,.r), are normaized to

the equivaent expression: atleast(maximum(, l,),r). An atleast(0, r) restriction is equivaent to anything and
can be dropped.

* atmost-redrictions these are the expressons of the form: atmost(m,r), where r isarole name or the inverse
of anamed role. Two atmost-regtrictions with the same role r atmost(m,,r) and atmost(m,,r), are normalized

to the equivalent expresson: atmost(minimum(m;,m,),r). An atmost(O,r) restriction can be dropped, if the
domain of r and a superconcept of the concept under normdization are necessarily digoint.

It is clear, that any concept expresson normdized as above contains for every role name r a most one all-
restriction, a most one atleast-restriction and at most one atmost-restriction for r and for inver se(r). This means,
that the size of any concept expression in our formaism is polynomialy bound in the number of concept names and
role names and the coding size of the greatest integer used in the TBox.

Another important consequence of the normaization is that there are dways a mogt finitely many concept
expressons not within subsumption order. By definition, the MSG contains only expressons which are not in a
subsumption relaion. So, the MSG contains at most finitely many concept expressions. Suppose, that there would
be two different concept expressons within the MSG. This implies, tha dso the conjunction of both is a
generdization of al examples. Clearly the conjunction of two concepts is more specidized than the concepts it is
built from. This implies, that both are not MSGs, but the conjunction is. As the conjunction can be built, thiswill be
the MSG. This proves that the M SG of a concept is unique (under equivaence) in our term subsumption formdism.

From this it becomes clear how the unique, normaized M SG of a concept c is constructed:

The superconcepts of ¢ are dready computed in the basic taxonomy.

For each role namerr,

If the domain of r is not digoint to a superconcept of ¢ add
al(r,c;and ...and c,), for dl smdlest c,
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whichfulfil { y |(xy) T rUxT ext(c)} I ext(c)
atleast(,r), wherel = minimum( [{ y | (x,y) T ext(r) }|, foral x T ext(c))
atmost(m,r), wherem=maximum( { y | (x,y) T ext(r) }],foral x T ext(c))
tothe MSG of c.

If the range of r isnot digoint to a superconcept of ¢ add
al(inverse(r), ¢, and ...and c,), for dl smallest g,
whichfulfil { y [(y)X)T rUxT ext(c)} I ext(c)
atleast(l,inver se(r)), where | = minimum( { y | (yX) T ext(r) }|, fordl x 1 ext(c) )
atmost(m,inver sg(r)), wherem = maximum( [{ y | (y.x) T ext(r) }|, fordl xT ext(c) )
the MSG of c.
In the example, the characterizations for the concepts are:

MSG(placebo) = drug and all(contains, add_on) and atleast(2,contains) and atmost(2,contains)

MSG(monodrug) = drug and atleast(1,contains) and atmost(2,contains)

MSG(combidrug) = drug and atleast(2,contains) and atmost(3,contains)

MSG(sedative) = drug and atleast(2,contains) and atmost(2,contains)

MSG(anodyne) = drug and and atleast(1,contains) and atmost(3,contains)

MSG(active) = substance and atleast(1, affects) and atmost(1, affects) and
atleast(l,inverse(contains)) and atmost(2,inverse(contains))

MSG(add_on) = substance and atmost (0, affects) and
atleast(1,inverse(contains)) and atmost(2,inverse(contains))

MSG(pain) = symptom and atleast(1,inverse(affects)) and atmost(2,inverse(affects))

MSG(excitement) = symptomand atleast(2,inverse(affects)) and atmost(2,inverse(affects))

3.3.2 Evaluating MSGsin Context

to

The evauation of mogt specific generdizations is performed in the context of the MDC. The purpose of the
evaluation is to accept or rgect a concept characterization. As opposed to decision tree induction or conceptua
clugtering, the evaudtion is not concerned with the selection of the best characterization among other dternatives
because there is dways exactly one MSG for a concept. If aMSG does not get a perfect evaluation, we know that
using the given representationa entities there can be no acceptable generdization. This is the criterion for

introducing new concepts or relaions (see 3.5).
Itisevaluated,

* how wdl the overdl MDC is characterized, i.e. the MDC failure,

* how well aMSG separates a concept from the other concepts of the same MDC, i.e. the MSG failure,

* how much the retrictions of a particular role within the M SGs of the concepts of the MDC contributes to the

separation withinaMDC, i.e. therole failure,
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* how well the restrictions of a particular role within the MSG describe a concept, i.e. the redtrictions failure.
The overdl evauation of characterizations of a MDC, the MDC failure, is smply the sum of al MSG fallures
divided by the number of concepts of the MDC. The MSG failure counts how many instances of a MSG are dso

ingtances of other concepts of the MDC and normaizes this number by dividing it by the number of objects of the
MDC. The formulafor the MSG falureis:

mc

ext(MSG(c)) G | Jext(mc)

FMSG (C, de) — — md mdc,ct me
| ext(nc)

mct mdc

The role falure measures the contribution of a role r to discriminating the concepts of a MDC. It sums up al
redtrictions failures for arole and normdizes this by dividing the sum by the number of objects of the MDC. Hence,
the basis for the role failure is the redtrictions failure. The restrictions failure counts how many objects of another

concept of the MDC are covered by the restrictions in the MSG using only a particular role. This count is then
divided by the number of objects of the MDC. We use thisfor formdizing the redtriction failure :

ext(rr(r,c)) ) [jext(mc)

md mdc,ct mc

[jext(mc)

mct mdc
whererr(r,c) := all(r,vc) and atleast(l,r) and atmost(m,r) within the MSG(c).

In the example, for mpc_1 the extensons of placebo, monodrug, @d combidrug according to their characterization
are;

Fe(r,c,mdc) =

ext (rr( contains, placebo )) = ext(MSG(placebo)) = { placo }
ext (rr(contains, monodrug)) = ext((MSG(monodrug)) = { alka-seltzer, aspirin, adumbran, placo }

ext (rr(contains, combidrug)) = ext(MSG(combidrug)) = {adolorin, anxiolit, alka-seltzer, adumbran, placo}
The underlined objects are intersections with other concepts of mpc 1. They are misclassfied by the
characterization. The redtrictions failures are:

FR (contains, placebo, MDC_1) =Fmsa(placebo,MDC_1) =0
FR (contains, monodrug, MDC_1) =Fpmsg(monodrug,MDC_1) =1/6
FR (contains, combidrug, MDC_1) =FmMsG(combidrug,MDC_1) =3/6

The role failure for contains IS the sum of the regtrictions failures divided by the number of concepts of mpc 1.
Thisisequd to the overdl MDC failure as contains iSthe only role involved:
FrRMDC (contains, MDC_1) = Fyppc (MDC_1) = 4/18

For mpc_2 theextensons of placebo, sedative , @d anodyne according to their characterization are:
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ext (rr( contains, placebo )) = ext(MSG(placebo)) = { placo }

ext (rr(contains, sedative)) = ext(MSG(sedative)) = { adumbran, anxiolit, alka-seltzer, placo }

ext (rr(contains, anodyne)) = ext(MSG(anodyne)) = {adolorin, alka-seltzer, aspirin, adumbran, anxiolit, placo}
Theredrictionsfalures are:

FRr (contains, placebo, MDC_1) = Fpmsg(placebo,MDC_1) =0
FR (contains, sedative, MDC_1) = F) gG(sedative,MDC_1) =2/6
FR (contains, anodyne, MDC_1) = Fpsg(anodyne,MDC_1) =3/6
The role fallure for contains @ well asthe overdl MDC fallure of mpc 2 is:
FrRMDC (contains, MDC_1) = Fpypc (MDC_1) =5/18
These failures are rather high. It shows that the characterizations are not specific enough. But, the most specific
generdizations are dready built. Using the concepts and roles given, there are no more specific characterizations.
Thus, either new concepts and/or roles can be built, which contribute to a better discrimination, or the MDCs must
be marked as undefinable and taken away from the agenda of concept learning tasks. When describing the
introduction of new concepts and relations (3.5), we shall come back to these examples.
mDc_1 uses only one role for its concepts. Thus, the role failure is the same as the MDC failure. mpc_2 ismore
interesting as there are two rolesinvolved in the characterizations of each concept:

ext(RR (affects, active)) ={phenacetin, asa, prophymacon, oxacepun,finalin}
ext(RR (inverse (contains), active)) ={phenacetin, asa, prophymacon, oxacepun,finalin, sugar, coffein, nhc}
ext(RR (affects, add_on)) = {sugar, coffein, nhc}

ext (RR (inverse (contains), add_on)) ={phenacetin, asa, prophymacon, oxacepun, finalin, sugar, coffein, nhc}
Using the role affects gives no misclassfication for active NOr for aga_on. Theredtrictionsfailure is O in both cases.

Characterizing the concepts by the inverse of the role contains, however, makes for a restrictions failure of 3/8 for
active and 5/8 for add_on. The overdl role falure is O for affects and 1/2 for the inverse of contains. As the MSG
failure measures the failure from the conjunction of the restrictions for each concept, it is 0, too, for both active and
add_on. Therefore, aso the MDC failure is 0. From the comparison of the role falure with the MDC failure it
becomes clear that the concepts can be defined without using the relation inverse(contains).

FRMDc (inverse(contains), MDC_2) = 1/2, but

FMDC (MDC_2) =0

Thisinformation will be used by the shift from characterizations to definitions.

34 The Shift from Characterizationsto Definitions or Building the MGD

Definitions of concepts are intended to cover more than the observed objects but no objects that are classfied
into a digoint concept. They are supposed to be as short as possible, and they should al use the same roles, if
possble. Findly, they should not be cydlic.

The generdization of MSGs to MGDs is performed by dropping and generdizing redtrictions as long as the
discrimination is preserved. In our example, the MGDsfor active @d add_on are
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MGD(active) = substance and atleast(1, affects)

MGD(add_on) = substance and atmost(0,affects)

All the redrictions involving the inverse rdaion contains are dropped and for active the atmost-restriction of
affects 1S also dropped.

When no further restriction can be dropped, KLUSTER tries to generdize the redtrictions. all-restrictions are
generaized by generdizing the concept reference, i.e. replacing a concept by its superconcepts or Smply dropping
a conjunct. atleast-restrictions are generaized by decreasing the number, atmost-redtrictions by increasing the
number. KLUSTER generdizes as long as no misclassfication is introduced.

There can be saverd MGDs. In principle, from n relevant redrictions m restrictions are sufficient for
discrimination, i.e. in the worst case there are| o different minimal concept definitions. But, KLUSTER entersthe
first found MGD into the concept structure, instead of looking for the best one. Therefore, no combinatoria
exploson can occur. The agorithm drops a redtriction and checks whether the remaining definition leads to a
misclassfication. If no misclassfication occurs the redtriction is dropped, otherwise it is kept. Then the next
redriction is tested in a Smilar manner. This guarantees that a most generd ill discriminaing generdization is
achieved.

35 Forming New Conceptsand Relations
As is illustrated by the example of piacebos, monodrugs @d combidrugs 8 WEll @ placebos, sedatives and
anodynes, SOmetimes a good MSG cannot be built using the gven concepts and roles. However, if arole or a
concept in all-restrictions can be specialized, the new, specialized roles or concepts can be used for amore specid
characterization. The MDC which was not definable before is marked as waiting 0n the agenda and the new roles
or concepts are put on the agenda.
Specidization is performed using two rules.
* If two concepts (C11 and C12 in fig. 3) of aMDC have the same concepts in the all-restriction of arole (C2
in fig. 3), but the range of the role isin fact digoint for the two concepts, then introduce new subconcepts of
the concept in the all-restriction and describe the all-restrictions in terms of these new concepts.

* If the concept (C2 in fig. 3) in the all-redriction of a role have digoint subconcepts, introduce new relations
that are restricted to these subconcepts and try them for characterization.
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Figure 3: Illugration of the refinement rules.

In the example of monodrug, combidrug, @d placebos, the second rule gpplies. The concept substance has two
digoint subconcepts, active ad add_on. The rdation contains iS gpecidized into contains_active Which relates drugs
and active, and the rlation contains_add_on Which relaes grugs and add_on. Then, the mpc_1 is put back on the
agenda as active , With the counter refinement increased by one. Based one the parameter max_refinement, @ most (|
role | * | concept [)max_refinement diifferent new roles are introduced by the second refinement rule. When mpc 1 is
next selected from the agenda, these new roles are a0 tried for characterization. Thisleads to the following M SGs.

MSG(placebo) = drug and all(contains, add_on) and atleast(2,contains) and atmost(2,contains)
atmost(0,contains_active) and
atleast(2,contains_add_on)and atmost(2,contains_add_on)

MSG (monodrug ) = drug and atleast(1,contains) and atmost(2,contains) and
atleast(1,contains_active) and atmost(1,contains_active) and
atmost(1,contains_add_on)

MSG (combidrug) = drug and atleast(2,contains) and atmost(3,contains) and
atleast(2,contains_active) and atmost(2,contains_active) and

atmost(1,contains_add_on)
The evauation results in a role falure of O for contains_active @d of 1/3 for contains_add_on, the falure for

contains femaning the same as above. Therefore, the MGDs as presented in section 3 are built using uniformly
contains_active. AS the definitions are entered, mpc_1 is marked as definable ..

In the example of monodrug, anodyne, 8Nd sedative, NOW the the first rule gpplies. The concept active Used in the
all-regtriction of the role contains_active Can be specidized into two digoint subconcepts, active_1 ad active_2. The
following extensons are assigned:

ext(active_1) = {finalin,oxazepun},
ext(active_2) = {asa,phenazetin,prophymazon}.

These new concepts form mpc 5. Thisnew vpc_s is put on the agenda as active , and the counter riength (for
role chain length) is set to the one for mpc 2 plus 1l Then mpc 2 is marked on the agenda as waiting for a
definition of mpc_s. Based on the parameter max rlength & most (| role | * | concept [)max_rlength different new
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MDCs can be introduced by the first refinement rule. When mpc_s is seected from the agenda, the built MSGs are
without failure, as the all-restriction of affects IS suffident for discrimination. Therefore mpc s is marked definable
and mpc 2 1S Set o active. The new concepts are then sufficient to discriminate the concepts of mpc 2 based on an
all-redtriction of the role contains_active (seethe MGDsin section 3.0).

4 EvaluatingKLUSTER

In the following sections, we evauate our approach. First, we describe the theoretica properties of KLUSTER.
Then, we compare KLUSTER with other work on conceptua clustering, learning relationa concept definitions, and
condructive induction.

4.1 Theoretical Evaluation

In the following, we want to evduate KLUSTER theoreticdly. We firs characterize the learning result of
KLUSTER, then indicate the certainty of finding the MSG for a set of facts and the time complexity of the
agorithm.

KLUSTER's learning result consists of root concepts (which correspond to user given sorts of other learning
sysems), severa hierarchies and their interrdations, and newly constructed concepts and roles. Number
restrictions are adso learned. The learning result is represented within a term subsumption formaism, which has a
well-defined semantics. It provides classfication with inheritance. The all-restrictions and the number-restrictions of
the formaism are computable in polynomid time. In this respect, the term subsumption formalism goes beyond the
common redrictions of fird-order logics. In particular, the formalism is not redricted to ij-determinate clauses
(Muggleton & Feng, 1990). It has been shown that the term subsumption formaism is one of the greatest subsets
of firg-order logic with decidability in polynomia time (Donini et d., 1991). Therefore, it is a promisng dternative
to other restrictions of first-order logics. The learning result is easily understandable because the concept structure
correspords to a classcd view of concept definitions. Hybrid representation systems with a TBox in the term
subsumption formdism and facts in the ABox are becoming widdy used. The KLUSTER agorithm can be
incorporated into such hybrid systems in order to make them easer to use.

The redtrictions of the formaism concern truly digunctive concepts and the trangtivity of relaions. Thisincludes
recursve concepts which require a termination condition. So, for example, member Cannot be learned by
KLUSTER. Recursive concepts such as ancestor €an be learned. However, many term subsumption system do not
dlow recursgve concepts (terminologica cycles). These sysems cannot fully use KLUSTER's learning result.
Ancther regtriction of the term subsumption formaism is that it cannot express trangtivity where more than two
variables need be bounded within the same expression. For ingtance, it cannot be stated directly that a drug which
contains a substance which increases blood pressure, also increases blood pressure. In order to express this
information, a new sub-concept of drugs must be defined by its relation to those substances which raise blood
pressure.



Polynomid Induction of Structural Knowledge 20

It is certain that KLUSTER finds a MSG for any concept. This is due to the concept representation in which
exactly one MSG can be congtructed for any set of terms. As was shown in section 3.3. this MSG is constructed
by KLUSTER. If there exists a concept definition which is condstent with the ABox, then KLUSTER will
determine it in polynomid time. If KLUSTER does not find a concept definition, then no hypothesis exigswhich is
congstent with the minima mode of the ABox.

It may happen, however, that the falure of a MSG is greater than the threshold of MSG failure. This means that
the MSG covers dl pogtive instances but dso instances of a digoint concept. In this case, KLUSTER does not
shift from the MSG to the MGD and does not enter a concept definition into the concept structure. The concept is
indicated to be explored but not defined. Three cases can be distinguished. Firgt, the concept cannot be expressed
by a conjunction but is a truly digunctive concept. KLUSTER cannot learn digunctive concepts. Second, the
concept cannot be defined using the given representation language. In this case, the specidization rules may
introduce new concepts or roles which then dlow for defining the concept. However, in contrast with Shapiro's
refinement operator (Shapiro, 1983), KLUSTER's specidization is not complete. Therefore, the third reason for a
concept being undefinable is that its definition lies outside of the hypothesis pace enlarged by the specidization for
introducing new terms.

KLUSTER does not need very many instances for learning. KLUSTER ddlivers dready a MSG for just one
example. In this case, the MSG corresponds to the classfication of instances as performed by term subsumption
formdisms. The time for finding a MSG grows polynomidly in the number of instances (and roles and concepts in
the dl-restriction). Therefore, KLUSTER is able to run on large example sets. The most time-consuming part is the
cdculation of the MDCs. This information, however, needs not be given by the user asis the case for many other
learning systems but is acquired by KLUSTER.

KLUSTER does not require the user to build the background knowledge carefully in order to enable successful
learning. Ingtead, KLUSTER acquires the information which is represented as background knowledge by other
learning systems (e.g. DISCIPLE (Kodratoff & Tecuci, 1989)). As the most specific generdization is exactly
determined with respect to the given examples, incomplete descriptions of objects (e.g., a combidrug which
contains only one active ingtance) prevent KLUSTER from learning the user intended concept definition (e.g.,
combidrugs having more than one active substance). A user who is not content with KLUSTER's learning result
may input additiond facts. In thisway, KLUSTER can be used as an ad in ingpecting data

Computing the basic taxonomy by KLUSTER is of polynomia complexity over the number of facts. The MDCs
are computable in the average case, but in the worst case there are exponentidly many different MDC. It is m j0g,
m to compute , MDCs. But, for n concepts there are at most 1,7, different MDCs. Building the MSG is
polynomia over the number of ingtances, the number of roles, and the number of concepts for the all-redtriction of
a role. It is polynomiad because only named concepts and roles are used for all-redrictions. This is an
incompleteness with respect to the expressability of term subsumption formaisms which dlow more complex
expressons. Asis often the case, incompleteness makes the task solvable in polynomid time. If no named concept

or role can be found for redtricting a role's range, then constructive induction can define such a concept or role by
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specidization. The specidization step is bounded by two parameters. the depth of specidization (i.e. a specidized
concept or role can be further specialized and so on, but there is a specidization which will not be further
specidized) and the number of trids to define a MDC. These bounds prevent the specidization step from

combinatorid explosion. Further work on the trade-off between the formaism's expressability and the complexity
of the concept learning task and on relating this to complexity results of others (eg., (Hausder, 1989)) is planned.
A preliminary sudy is (Kietz, 1992).

4.2 Related Work

The learning result of KLUSTER is a concept structure which is cgpable of expressng cross-classfications,
hierarchies for severa root concepts, and the cardindity of roles. A concept structure of this type is not learned by
any other learning system. Therefore, it is hard to compare KLUSTER with other systems. In the following, we
compare KLUSTER with conceptud clustering agorithms because the overdl task of the sysem is to learn a
hierarchy of concepts. With respect to KLUSTER's concept learning problem, it is compared with other learning
agorithms which acquire structura concept definitions. As KLUSTER introduces new terms into the hypothesis
language, it is dso compared with other congtructive induction agorithms.

421  Conceptual Clustering

The learning god of conceptud clugtering methods as well as that of KLUSTER is a hierarchy o concepts. The
attribute based conceptud clustering methods, eg. COBWEB (Fisher, 1987), UNIMEM (Lebowitz, 1987),
WITT (Hanson & Bauer, 1989) require that dl instances are described dong the same atributes. This approach is
not suitable to describe redly different - but neverthdess related - things like, eg., drugs, substances and
symptoms. The complete attribute vectors are dso akind of segmentation into completely described observations.
Even the rdationa conceptud clustering sysem KBG (Bisson, 1990) needs a segmentation of the input into
observations, and it clusters only the observations and not the objects involved in them. KLUSTER does not
require such a segmentation of the input. KLUSTER does learning from examples ingead of cludtering
obsarvations. It intensonaly defines sets of objects involved in examples. LABYRINTH (Thompson & Langley,
1989), another approach for relationa clustering, aso requires a segmentation into observations. Its main task is to
cluster these observations, but it dso tries to cluster the objects occurring in the observations. LABYRINTH
suffers from combinatoria explosion when trying to find an optima mapping between the different objects involved
in an obsarvation. KLUSTER does not encounter this explosion because it uses the al-redriction ingtead of an
optima mapping of the involved objects.

422  Learning Structural Descriptions

KLUSTER is comparable with logica concept learning approaches as, e.g., RLGG (Plotkin, 1970), GOLEM
(Muggleton & Feng, 1990), FOIL (Quinlan, 1990) in that it learns relational concept definitions.

KLUSTER requires both unary and binary relations as input. The quantity and qudity of given examples is
irrdlevant. KLUSTER reflects the quaity of the examples by the output of MSGs that cover the examples. Kietz
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(1992) shows that that learning MSGs (RLGGs) in Horn Logic is in generd intractable. GOLEM'’s regtriction to
depth- bounded determinate Horn clauses is one possibility to come to polynomid learnability. KLUSTER' s MSGs
with the all-redtriction are another possibility of polynomid learnability. The difference is that GOLEM requires dl
objects in the examples to be reachable by determinigtic relations. This is why GOLEM is not gpplicable to our
drug-example as contains IS @ non-determinate relation. A grug contains many substances, SO contains 1S redly a
relation and not a function. If the substances of a drug are encoded as a list (0 tha contains beCOMeES ij-
determinate) then accessing one of the contained substances, necessary for defining anodyne ad sedative, requires
the non-determinate member relation. In contrast, KLUSTER alows non-determinigtic relations (e.g. contains inthe
examples). The nondeterminate relations in the examples are abdtracted into one expression (the all-restriction)
describing the smilarities of al related objects.

The heurigtic learning approach FOIL is dso capable of using non-determinate relations. Running FOIL on our

Sde-effect of drug data gave the following results*:
anodyne(A) :- contains(A,B) & affects(B,C) & pain(C)
sedative(A) :- contains (A,B) & affects(B,C) & excitement(C)
active(A) :- affects(A,B)
add_on(A) :- contains(B,A), placebo(B) with warning that this does not cover all tuples
placebo (A):- not(monodrug(A)) & not(combidrug(A))
combidrug (A):- not(monodrug(A)) & anodyne(A) with warning
monodrug (A) :- not(combidrug(A)) & anodyne(A) with warning

The definitions of monodrug, combidrug, ad placebo cannot be found by FOIL. The rules found are not covering
al pogtive indances. It is eadly seen that the cross classfication leads to some confuson: FOIL tries to use
anodyne for the definition of combidrugs @d monodrugs: This, however, does not lead to forming a MSG. The
learning result of KLUSTER is of a different representation formalism and requires different input than FOIL®. The
main difference between KLUSTER and FOIL, however, concerns the search in the hypothesis space. Whereas
KLUSTER can congruct a conastent MSG if one exists, FOIL‘s search heurigtics cannot guarantee to find a
hypothesis which is consstent with the data The reason is that an encoding of the SAT problem (Garey &
Johnson, 1979) is a possible learning problem of FOIL (cf. Hausder, 1989) but not of KLUSTER. As we know
that SAT isintractable, any equivaent learning problem isintractable as well.

4.2.3  CondgructiveInduction

Approaches to congtructive induction can be structured with respect to the reasons for the introduction of a new
term. KLUSTER's reason for introducing a new term is the need to refer to a particular set of objects. Thisneedis
condtituted by the definition of another concept. KLUSTER aso introduces new reations as was shown in our
example of section 3. The newly introduced terms are specidizations of dready given or learned terms of the

hypothess language.
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The CIGOL system which implements induction as inverse resolution learns literds that can play the role of a
missing premise, given the other premises and the conclusion from a resolution step (Muggleton & Buntine, 1988).
CIGOL introduces new terms into the hypothesis language. The decision whether the newly introduced term should
be kept or removed is l€ft to the user. So, no criterion for the selection of a new term is formalized. Moreover, the
search space for a new literd is 2 -1 given a subgtitution with n elements. In the literature on inverse resolution
there exists no formaized method to focus the search within this space. Findly, CIGOL does not define the newly
introduced predicate. KLUSTER's introductionof a new concept can be viewed as learning amissng premise of a
classfication rule. However, the implemented method is more efficient than inverse resolution because the search
space is limited and the search within it is focused. In KLUSTER, a most nconcepts can be newly introduced,
given n rdevant roles. A new term is only introduced into the hypothess language if KLUSTER is capable of
defining it.

5 Conclusion

KLUSTER is the firgt learning dgorithm which is cgpable of learning a concept structure in the framework of term
subsumption formalisms. Concepts are defined by relations to other concepts which are uniformly represented
within the same concept structure. Thus, a learned concept or role serves for defining another concept. Thereis no
Separation between background knowledge and learned knowledge. Concepts are represented in a structure which
involves severd roots. Cross-classfication or forming subconcepts under diverse aspectsis possblein KLUSTER.
The interrdlatedness of concepts is not only expressed by the concept representation but also by the way concepts
are learned. Concepts are formed in the context of mutualy digoint concepts (MDCs). Refinements of concepts
and roles are made in the course of defining a concept. In this way, he KLUSTER approach represents and
exploits arich concept structure.

KLUSTER learns most specific generdizations (MSGs) as well as most generd discriminations (MGDs). With
respect to a particular representation, it is guaranteed that KLUSTER finds the unigue MSG in polynomid time.
Finding the best MGD would be exponentid. So, KLUSTER takes the firss MGD found. The introduction and
definition of new roles potentially makes classification exponentid. Therefore, defined roles are excluded from the
basic dgorithm. Only some defined roles are introduced if they are redly needed for the distinction between
concepts whose extensons are digoint. Learning new roles is polynomidly bounded by two parameters.
KLUSTER inductivdly learns in polynomid time. The use of KLUSTER's learning results (i.e. the deductive
classfication) cannot be performed completely in polynomia time because of the defined roles.
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For adiscussion of the computational complexity of entailment see Nebel (1990, section 4.5).

% It is the user who names root concepts, the system generates an artificial name such as rootconcept_1. Primitive concepts
are named based on the namesin the ABox.

¥ Computing MDCs from pair wise disjointness of concepts corresponds to the NP-complete problem CLIQUE (Garey &
Johnson, 1979). But, for KLUSTER the inheritance in the basic taxonomy restricts the number of concepts (nodes) in one CLIQUE.
In the example, at most five of all twelve concepts are to be considered as a CLIQUE: the concepts subsumed by drug.

* FOIL has two modes, one with negated and one without negated literals in rule premises. We ran FOIL in both modes and
show the best rules of both runs..

When trying out KLUSTER on the senator votes domain, KLUSTER detected that the democratic senators all voted for south
Africasanctions whereas there was no topic on which the republic senators all gave the same vote.



