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Abstract

For many learning tasks, where data is collected
over an extended period of time, one has to cope
two problems. The distribution underlying the data
is likely to change and only little labeled training
data is available at each point in time. A typical
example is information filtering, i. e. the adaptive
classification of documents with respect to a par-
ticular user interest. Both the interest of the user
and the document content change over time. A fil-
tering system should be able to adapt to such con-
cept changes. Since users often give little feedback,
a filtering system should also be able to achieve a
good performance, even if only few labeled train-
ing examples are provided. This paper proposes a
method to recognize and handle concept changes
with support vector machines and to use unlabeled
data to reduce the need for labeled data. The
method maintains windows on the training data,
whose size is automatically adjusted so that the es-
timated generalization error is minimized. The ap-
proach is both theoretically well-founded as well
as effective and efficient in practice. Since it does
not require complicated parameterization, it is sim-
pler to use and more robust than comparable heuris-
tics. Experiments with simulated concept drift sce-
narios based on real-world text data compare the
new method with other window management ap-
proaches and show that it can effectively select an
appropriate window size in a robust way. In order
to achieve an acceptable performance with fewer
labeled training examples, the proposed method ex-
ploits unlabeled examples in a transductive way.

1 Introduction
Machine learning methods are often applied to problems,
where data is collected over an extended period of time. In
many real-world applications this introduces the problem that
the distribution underlying the data is likely to change over
time. For example, companies collect an increasing amount
of data like sales figures and customer data to find patterns
in the customer behaviour and to predict future sales. As
the customer behaviour tends to change over time, the model

underlying successful predictions should be adapted accord-
ingly.

The same problem occurs in information filtering, i.e. the
adaptive classification of documents with respect to a partic-
ular user interest. Information filtering techniques are used,
for example, to build personalized news filters, which learn
about the news-reading preferences of a user or to filter e-
mail. Both the interest of the user and the document content
change over time. A filtering system should be able to adapt
to such concept changes. A second problem in many real
world applications is that only little labeled training data is
available. This also applies to the information filtering do-
main. Since users often give only partial feedback, a filtering
system should also be able to achieve a good performance,
even if only few labeled training examples are provided.

This paper proposes a method for detecting and handling
concept changes with support vector machines extending the
approach described in [Klinkenberg and Joachims, 2000] by
using unlabeled data to reduce the need for labeled data. The
approach has a clear theoretical motivation and does not re-
quire complicated parameter tuning. After reviewing other
work on adaptation to changing concepts and shortly de-
scribing inductive and transductive support vector machines,
this paper explains the new window adjustment approach and
evaluates it in three simulated concept drift scenarios on real-
world text data. The experiments show that the approach ef-
fectively selects an appropriate window size and results in
a low predictive error rate when given complete feedback.
When the amount of feedback is reduced and no unlabeled
data is used, the performance of the system decreases. Since
empirical results (see e.g. [Nigam et al., 2000], [Joachims,
1999b], [Lanquillon, 2000]) show that unlabeled data can
help to significantly improve the performance of text clas-
sifiers, especially in case of few labeled examples, the use of
unlabeled data can also be expected to improve the perfor-
mance of the proposed information filtering approach and to
let its performance drop more gracefully for reduced amounts
of feedback. As pointed out in [Joachims, 1999b], it is well
known in information retrieval that words in natural language
occur in strong co-occurence patterns (see [van Rijsbergen,
1977]). While some words are likely to occur in one docu-
ment, others are not. This type of information is independent
of the document labels and can be exploited, if unlabeled data
is used.



2 Concept Drift
Throughout this paper, we study the problem of concept drift
for the pattern recognition problem in the following frame-
work. Each example consists of a feature vector

R and a label indicating its classifi-
cation. Data arrives over time in batches. Without loss of
generality these batches are assumed to be of equal size, each
containing examples.

denotes the -th example of batch . For each batch
the data is independently identically distributed (i.i.d.) with
respect to a distribution . Depending on the amount
and type of concept drift, the example distribution
and between batches will differ. The goal of the
learner is to sequentially predict the labels of the next batch.
For example, after batch the learner can use any subset of
the training examples from batches to to predict the labels
of batch . The learner aims to minimize the cumulated
number of prediction errors.

If the user gives only partial feedback, i.e. assigns labels
only to some of the , some of the labels may be un-

known. While supervised learning algorithms that are not
able to use unlabeled data (in addition to labeled data) have to
disregard the corrsponding (training) examples ,
other (semi-)supervised learners are able to exploit the infor-
mation captured in this unlabeled examples (see sections 3.2
and 3.3 for exampeles), which is basically information about

. The algorithms described in this section, however,
are not able to use unlabeled data.

In machine learning, changing concepts are often han-
dled by time windows of fixed or adaptive size on the train-
ing data [Mitchell et al., 1994; Widmer and Kubat, 1996;
Klinkenberg and Renz, 1998] or by weighting data or parts
of the hypothesis according to their age and/or utility for the
classification task [Kunisch, 1996; Taylor et al., 1997]. The
latter approach of weighting examples has already been used
for information filtering in the incremental relevance feed-
back approaches of [Allan, 1996] and [Balabanovic, 1997].
In this paper, the earlier approach maintaining a window of
adaptive size is explored.

For windows of fixed size, the choice of a “good” window
size is a compromise between fast adaptivity (small window)
and good generalization in phases without concept change
(large window). The basic idea of adaptive window man-
agement is to adjust the window size to the current extent
of concept drift.

The task of learning drifting or time-varying concepts has
also been studied in computational learning theory. Learn-
ing a changing concept is infeasible, if no restrictions are im-
posed on the type of admissible concept changes,1 but drifting
concepts are provably efficiently learnable (at least for certain
concept classes), if the rate or the extent of drift is limited in
particular ways.

1E.g. a function randomly jumping between the values one and
zero cannot be predicted by any learner with more than 50% accu-
racy.

[Helmbold and Long, 1994] assume a possibly permanent
but slow concept drift and define the extent of drift as the
probability that two subsequent concepts disagree on a ran-
domly drawn example. Their results include an upper bound
for the extend of drift maximally tolerable by any learner and
algorithms that can learn concepts that do not drift more than
a certain constant extent of drift. Furthermore they show that
it is sufficient for a learner to see a fixed number of the most
recent examples. Hence a window of a certain minimal fixed
size allows to learn concepts for which the extent of drift is
appropriately limited.

While Helmbold and Long restrict the extend of drift, [Kuh
et al., 1991] determine a maximal rate of drift that is accept-
able by any learner, i. e. a maximally acceptable frequency
of concept changes, which implies a lower bound for the size
of a fixed window for a time-varying concept to be learnable,
which is similar to the lower bound of Helmbold and Long.

In practice, however, it usually cannot be guaranteed that
the application at hand obeys these restrictions, e.g. a reader
of electronic news may change his interests (almost) arbitrar-
ily often and radically. Furthermore the large time window
sizes, for which the theoretical results hold, would be im-
practical. Hence more application oriented approaches rely
on far smaller windows of fixed size or on window adjust-
ment heuristics that allow far smaller window sizes and usu-
ally perform better than fixed and/or larger windows (see e.g.
[Widmer and Kubat, 1996] or [Klinkenberg and Renz, 1998]).
While these heuristics are intuitive and work well in their par-
ticular application domain, they usually require tuning their
parameters, are often not transferable to other domains, and
lack a proper theoretical foundation.

3 Support Vector Machines
3.1 (Inductive) Support Vector Machines (SVMs)
The window adjustment approach described in this paper uses
support vector machines [Vapnik, 1998] as their core learning
algorithm. Support vector machines are based on the struc-
tural risk minimization principle [Vapnik, 1998] from statis-
tical learning theory. In their basic form, SVMs learn linear
decision rules

if
else (1)

described by a weight vector and a threshold . The
idea of structural risk minimization is to find a hypothesis

for which one can guarantee the lowest probability of er-
ror. For SVMs, [Vapnik, 1998] shows that this goal can be
translated into finding the hyperplane with maximum soft-
margin.2 Computing this hyperplane is equivalent to solving
the following optimization problem.

Optimization Problem 1 (SVM (primal))

Minimize: (2)

subject to: (3)

(4)

2See [Burges, 1998] for an introduction to SVMs.



In this optimization problem, the Euclidean length of the
weight vector is inversely proportional to the soft-margin of
the decision rule. The constraints (3) require that all train-
ing examples are classified correctly up to some slack . If
a training example lies on the “wrong” side of the hyper-
plane, the corresponding is greater or equal to . There-
fore is an upper bound on the number of training er-
rors. The factor in (2) is a parameter that allows trading-off
training error vs. model complexity.

For computational reasons it is useful to solve the Wolfe
dual [Fletcher, 1987] of optimization problem 1 instead of
solving optimization problem 1 directly [Vapnik, 1998].

Optimization Problem 2 (SVM (dual))

Minimize: (5)

subject to: (6)

(7)

In this paper, [Joachims, 1999a] is used for com-
puting the solution of this optimization problem.3 Support
vectors are those training examples with at the
solution. From the solution of optimization problem 2 the
decision rule can be computed as

and (8)

The training example for calculating must be a
support vector with . Finally, the training losses
can be computed as .

For both solving optimization problem 2 as well as apply-
ing the learned decision rule, it is sufficient to be able to cal-
culate inner products between feature vectors. Exploiting this
property, Boser et al. introduced the use of kernels
for learning non-linear decision rules. Depending on the type
of kernel function, SVMs learn polynomial classifiers, radial
basis function (RBF) classifiers, or two layer sigmoid neural
nets. Such kernels calculate an inner-product in some feature
space and replace the inner-product in the formulas above.

3.2 Transductive Support Vector Machines
(TSVMs)

The setting of transductive inference was introduced by Vap-
nik (see for example [Vapnik, 1998]). The description here
follows the description in [Joachims, 1999b]. For a learning
task the learner is given a hypoth-
esis space of functions and an i.i.d.
sample of training examples

(9)

Each training example consists of a document vector
and a binary label . In contrast to the inductive

3 is available at http://www-ai.informatik.uni-
dortmund.de/svm light

setting, the learner is also given an i.i.d. sample of
test examples

(10)

from the same distribution. The transductive learner aims
to select a function from using

and so that the expected number of erroneous
predictions

on the test examples is minimized. is zero if ,
otherwise it is one. As shown in [Vapnik, 1998], for linearly
separable problems this leads to the following optimization
problem.

Optimization Problem 3 (Transductive SVM (lin. sep. case))
Minimize over :

subject to:

Solving this problem means finding a labelling of
the test data and a hyperplane , so that this hy-
perplane separates both training and test data with maximum
margin. To be able to handle non-separable data, we can in-
troduce slack variables similarly to the way we do with
inductive SVMs.

Optimization Problem 4 (Transductive SVM (non-sep. case))
Minimize over :

subject to:

and are parameters set by the user. They allow trad-
ing off margin size against misclassifying training examples
or excluding test examples. [Joachims, 1999b] proposes an
algorithm to solve this optimization problem efficiently. In
this paper, is also used for computing the solution
of this optimization problem.

3.3 Other Approaches for Using Unlabeled Data
Besides of the TSVMs [Joachims, 1999b] described above,
there are also other (semi-)supervised methods for exploiting
unlabeled data. Early empirical results using transduction can
be found in [Vapnik and Sterin, 1977]. More recently, Ben-
nett [Bennett, 1999] showed small improvements for some
of the standard UCI datasets. For ease of computation, she
conducted the experiments only for a linear-programming ap-
proach which minimizes the norm instead of and pro-
hibits the use of kernels. Connecting to concepts of algo-
rithmic randomness, [Gammerman et al., 1998] presented an



approach to estimating the confidence of a prediction based
on a transductive setting.

Nigam et al. [Nigam et al., 1998; 2000] proposed another
approach to using unlabeled data for text classification. They
use a multinomial Naive Bayes classifier and incorporate un-
labeled data using the EM-algorithm. One problem with us-
ing Naive Bayes is that its independence assumption is clearly
violated for text. Nevertheless, using EM showed substantial
improvements over the performance of a regular Naive Bayes
classifier. [Lanquillon, 2000] describes an extension of this
EM-based framework to an EM-style framwork for arbitrary
(text) classifiers.

Blum and Mitchell’s work on co-training [Blum and
Mitchell, 1998] uses unlabeled data in a particular setting.
They exploit the fact that, for some problems, each example
can be described by multiple representations. WWW-pages,
for example, can be represented as the text on the page and/or
the anchor texts on the hyperlinks pointing to this page. Blum
and Mitchell develop a boosting scheme which exploits a con-
ditional independence between these representations.

4 Window Adjustment by Optimizing
Performance

The method proposed in this paper is an extension of the
approach described in [Klinkenberg and Joachims, 2000].
This approach to handling drift in the distribution of ex-
amples uses a window on the training data. This window
should include only those (labeled) examples which are suf-
ficiently “close” to the current target concept. Assuming
the amount of drift increases with time, the window in-
cludes the last training examples. Previous approaches
used similar windowing strategies. Their shortcomings are
that they either fix the window size [Mitchell et al., 1994]
or involve complicated heuristics [Widmer and Kubat, 1996;
Klinkenberg and Renz, 1998]. A fixed window size makes
strong assumptions about how quickly the concept changes.
While heuristics can adapt to different speed and amount of
drift, they involve many parameters that are difficult to tune.
Here, we present an approach to selecting an appropriate win-
dow size that does not involve complicated parameterization.
They key idea is to select the window size so that the esti-
mated generalization error on new examples is minimized.
To get an estimate of the generalization error we use a special
form of -estimates [Joachims, 2000]. -estimates are a
particularly efficient method for estimating the performance
of an SVM.

4.1 -Estimators
-estimators are based on the idea of leave-one-out estima-

tion [Lunts and Brailovskiy, 1967]. The leave-one-out esti-
mator of the error rate proceeds as follows. From the train-
ing sample the first ex-

ample is removed. The resulting sample
is used for training, leading to a clas-

sification rule . This classification rule is tested on the
held out example . If the example is classified incor-
rectly it is said to produce a leave-one-out error. This process

is repeated for all training examples. The number of leave-
one-out errors divided by is the leave-one-out estimate of
the generalization error.

While the leave-one-out estimate is usually very accurate,
it is very expensive to compute. With a training sample of size

, one must run the learner times. -estimators overcome
this problem using an upper bound on the number of leave-
one-out errors instead of calculating them brute force. They
owe their name to the two arguments they are computed from.

is the vector of training losses at the solution of the primal
SVM training problem. is the solution of the dual SVM
training problem. Based on these two vectors — both are
available after training the SVM at no extra cost — the -
estimators are defined using the following two counts. With

being the maximum difference of any two elements of
the Hessian (i.e. ),

(11)

counts the number of training examples, for which the quan-
tity exceeds one. Since the document vectors are
normalized to unit length in the experiments described in this
paper, here . It is proven in [Joachims, 2000] that
is an approximate upper bound on the number of leave-one-
out errors in the training set. With as the total number of
training examples, the -estimators of the error rate is

(12)

The theoretical properties of this -estimator are discussed
in [Joachims, 2000]. It can be shown that the estimator is pes-
simistically biased, overestimating the true error rate on aver-
age. Experiments show that the bias is acceptably small for
text classification problems and that the variance of the -
estimator is essentially as low as that of a holdout estimate
using twice as much data. It is also possible to design sim-
ilar estimators for precision and recall, as well as combined
measures like [Joachims, 2000].

4.2 Window Adjustment Algorithm
The method described here is an extension of the approach
described in [Klinkenberg and Joachims, 2000] in that it ex-
ploits unlabeled data. Its basic idea is to first use the algo-
rithm described in [Klinkenberg and Joachims, 2000] to find
the right window size on the labeled training data, ,
using -estimates for an inductive SVM, and to then use an
almost identical algorithm to determine a good window size
on the unlabeled data, , on the same stream of
documents using -estimates for a transductive SVM to es-
timate the prediciton error on the test set, leaving the window
size unchanged. The following two subsections
describe these two parts of the algorithm.

Why are separate window sizes and
maintained for labeled and unlabeled data

respectively? The probability , which describes the
user interest, i.e. the drifting concept, and which is captured
by the labeled data, may change at an other rate than the
probability , which describes the distribution of docu-
ments identically underlying both the labeled and unlabeled



examples independent of their labels. Hence it is sensible
to use separate windows to obtain the best information from
both probability distributions.

Window on the Labeled Data
This subsections describes the window adjustment approach
of [Klinkenberg and Joachims, 2000], which works on the la-
beled examples in the training set only and uses an inductive
SVM. This window adjustment algorithm ignores any unla-
beled example in the window and uses the labeled examples
only. For the sake of a simpler description, lets assume for
this subsection that all examples are labeled.

A window adjustment algorithm has to solve the follow-
ing trade-off. A large window provides the learner with much
training data, allowing it to generalize well given that the con-
cept did not change. On the other hand, a large window can
contain old data that is no longer relevant (or even confusing)
for the current target concept. Finding the right size means
trading-off the quality against the number of training exam-
ples.

To answer this question the window adjustment algorithm
proposed in the following uses -estimates in a particular
way. At batch , it essentially tries various window sizes,
training a SVM for each resulting training set.

(13)

(14)

(15)

...

For each window size it computes a -estimate based on the
result of training. In contrast to the previous section, the -
estimator used here considers only the last batch, that is the

most recent training examples

(16)

This reflects the assumption that the most recent examples are
most similar to the new examples in batch . The window
size minimizing the -estimate of the error rate is selected
by the algorithm and returned as .

The algorithm can be summarized as follows:

input: training sample con-
sisting of batches containing
(labeled) examples each

for

– train SVM on examples
– compute -estimate on examples

output: window size which minimizes
-estimate ( )

Window on the Unlabeled Data
According to the transductive setting, the test set, i.e. the ex-
amples in the batch are used as unlabeled examples in
the optimization for learning a TSVM. For text classification
tasks with stable, i.e. non-drifting concepts, the performance

improvement of a TSVM as compared to an inductive SVM
is maximal for small sets of labeled training examples and
large sets of unlabeled examples used in addition [Joachims,
1999b]. Therefore, here not only the relatively small test set is
considered useful unlabeled data, but also the unlabeled data
in the current time window of size , i.e. in the cur-
rently used part of the training set, and all training examples
outside this time window, which are all treated as unlabeled
examples, are considered potentially useful.

The batch size is usually imposed by the application, e.g.
by the number of news texts arriving per day, and hence it is
the same for the this part of the algorithm and the part de-
scribed in the previous section. While only the labeled ex-
amples were used by the algorithm described in the previ-
ous section, both labeled and unlabeled examples are used by
the algorithm described in this section. Since the earlier uses
only the labeled examples, its virtual batch size seems to
be smaller than the real batch size of the latter containing
all examples.

The algorithm to find the window for the unlabeled data
(and the final hypothesis) can be summarized as follows:

input: training sample con-
sisting of batches containing
examples each and test sample

for

– train TSVM on examples ,
considering all training exam-
ples outside the window of size

as unlabeled, and on the
test examples

– compute -estimate on examples

output: window size which minimizes
-estimate ( )

5 Experiments
5.1 Experimental Setup
In order to evaluate the first part of the window adjustment
approach proposed in section 4, which corrsponds to the
methods proposed in [Klinkenberg and Joachims, 2000], and
which does not make any use of unlabeled data, each of the
following data management approaches is evaluated in com-
bination with the inductive SVM:

“Full Memory”: The learner generates its classification
model from all previously seen examples, i.e. it cannot
“forget” old examples.

“No Memory”: The learner always induces its hypothe-
sis only from the most recent batch. This corresponds to
using a window of the fixed size of one batch.

Window of “Fixed Size”: A window of the fixed size of
three batches is used.

Window of “Adaptive Size”: The window adjustment al-
gorithm proposed in [Klinkenberg and Joachims, 2000]
adapts the window size to the current concept drift situ-
ation.



Table 1: Relevance of the categories in the concept change scenarios A, B, and C.

Sce- Cate- Probability of being relevant for a document of the specified category at the specified time step (batch)
nario gory 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

B 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

C 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The experiments are performed in an information filtering
domain, a typical application area for learning drifting con-
cept. Text documents are represented as attribute-value vec-
tors (bag of words model), where each distinct word corre-
sponds to a feature whose value is the “ltc”-TF/IDF-weight
[Salton and Buckley, 1988] of that word in that document.
Words occurring less than three times in the training data or
occurring in a given list of stop words are not considered.
Each document feature vector is normalized to unit length to
abstract from different document lengths.

The performance of a classifier is measured by the three
metrics prediction error, recall, and precision. Recall is the
probability, that the classifier recognizes a relevant document
as relevant. Precision is the probability, that a document clas-
sified as relevant actually is relevant. All reported results are
estimates averaged over ten runs.

The experiments use a subset of 2608 documents of the
data set of the Text REtrieval Conference (TREC) consisting
of English business news texts. Each text is assigned to one or
several categories. The categories considered here are 1 (An-
titrust Cases Pending), 3 (Joint Ventures), 4 (Debt Reschedul-
ing), 5 (Dumping Charges), and 6 (Third World Debt Relief).
For the experiments, three concept change scenarios are sim-
ulated. The texts are randomly split into 20 batches of equal
size containing 130 documents each.4 The texts of each cate-
gory are distributed as equally as possible over the 20 batches.

Table 1 describes the relevance of the categories in the
three concept change scenarios A, B, and C. For each time
step (batch), the probability of being relevant (interesting to
the user) is specified for documents of categories 1 and 3, re-
spectively. Documents of the classes 4, 5, and 6 are never
relevant in any of these scenarios. In the first scenario (sce-
nario A), first documents of category 1 are considered rele-
vant for the user interest and all other documents irrelevant.
This changes abruptly (concept shift) in batch 10, where doc-
uments of category 3 are relevant and all others irrelevant.
In the second scenario (scenario B), again first documents of
category 1 are considered relevant for the user interest and
all other documents irrelevant. This changes slowly (concept
drift) from batch 8 to batch 12, where documents of category
3 are relevant and all others irrelevant. The third scenario
(scenario C) simulates an abrupt concept shift in the user in-
terest from category 1 to category 3 in batch 9 and back to

4Hence, in each trial, out of the 2608 documents, eight randomly
selected texts are not considered.

category 1 in batch 11.
In order to evaluate the second part of the window adjust-

ment approach proposed in section 4, the advantage achieved
by using unlabeled examples and by automatically chosing
the amount of unlabeled data to use, the following experi-
ments are planned based on the same three scenarios with
different rates of user feedback, but not yet completed:5

Inductive SVM using only labeled data and the first part
of the window adjustment method proposed in section
4.2.

TSVM on the labeled training set used by the inductive
SVM above plus the test set.

TSVM as above, but also using the unlabeled examples
in the window of size of the inductive SVM.

TSVM as above, but also using all training data outside
the window of size of the inductive SVM as
unlabeled data.

TSVM using both parts of the window adjustment
method proposed in section 4.2, automatically chosing
the amount of unlabeled data to use.

5.2 Results
Figure 1 compares the prediction error rates of the adaptive
window size algorithm with the non-adaptive methods. The
graphs show the prediction error on the following batch. In
all three scenarios, the full memory strategy and the adaptive
window size algorithm essentially coincide as long as there is
no concept drift. During this stable phase, both show lower
prediction error than the fixed size and the no memory ap-
proach. At the point of concept drift, the performance of all
methods deteriorates. While the performance of no memory
and adaptive size recovers quickly after the concept drift, the
error rate full memory approach remains high especially in
scenarios A and B. Like before the concept drift, the no mem-
ory and the fixed size strategies exhibit higher error rates than
the adaptive window algorithm in the stable phase after the
concept drift. This shows that the no memory, the fixed size,
and the full memory approaches all perform suboptimally in
some situation. Only the adaptive window size algorithm can
achieve a relatively low error rate over all phases in all sce-
narios. This is also reflected in the average error rates over

5The results of these experiments will be presented at the work-
shop.
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Figure 1: Comparison of the prediction error rates for sce-
nario A (top), B (middle), and C (bottom). The x-axis denotes
the batch number and the y-axis the average prediction error.
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Figure 2: Window size and range for scenario A (top), B
(middle), and C (bottom). The y-axis denotes the batch num-
ber. Each horizontal line marks the average training window
range selected at that batch number. The bottom part of each
graph depicts the location and type of the concept shift.



all batches given in Table 2. The adaptive window size algo-
rithm achieves a low average error rate on all three scenarios.
Similarly, precision and recall are consistently high.

The behavior of the adaptive window algorithm is best ex-
plained by looking at the window sizes it selects. Figure 2
shows the average training window ranges. The bottom of
each graph depicts the time and extent of concept drift in the
corresponding scenario. For scenario A the training window
increases up to the abrupt concept change after batch 10, cov-
ering almost all examples available for the current concept.
Only in batches 5 to 10 the average training set size is slightly
smaller than maximally possible. Our explanation is that for
large training sets a relatively small number of additional ex-
amples does not always make a “noticeable” difference. Af-
ter the concept change in batch 10 the adaptive window size
algorithm now picks training windows covering only those
examples from after the drift as desired. A similar behavior is
found for scenario B (Figure 2, middle). Since the drift is less
abrupt, the adaptive window size algorithm intermediately se-
lects training examples from both concepts in batch 11. After
sufficiently many training examples from the new distribu-
tion are available, those earlier examples are discarded. The
behavior of the adaptive window size algorithm in scenario
C is reasonable as well (Figure 2, bottom). A particular sit-
uation occurs in batch 12. Here the window size exhibits a
large variance. For 8 of the 10 runs the algorithm selects a
small training set size of one batch, while for the remaining
2 runs it selects all available training examples starting with
batch 1. Here there appears to be a borderline decision be-
tween accepting 2 (out of 12) batches of “bad” examples or
just training on a single batch.

6 Summary and Conclusions

In this paper, we proposed a method for handling concept
drift with support vector machines The method uses a win-
dow adjustment approach directly implementing the goal of
discarding irrelevant data with the aim of minimizing gener-
alization error. Exploiting the special properties of SVMs, we
adapted -estimates to the window size selection problem.
Unlike for the conventional heuristic approaches, this gives
the new method a clear and simple theoretical motivation.
Furthermore, the new method is easier to use in practical ap-
plications, since it involves less parameters than complicated
heuristics. Experiments in an information filtering domain
show that the new algorithm achieves a low error rate and
selects appropriate window sizes over very different concept
drift scenarios.

Furthermore an extension of the method was proposed ex-
ploiting unlabeled data to reduce the amount of labeled data
needed to learn drifting concepts. This extension based on
transductive SVMs (TSVMs) can also react on changes in

and can be expected to need less labeled examples than
previous approaches.
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