Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
Deliverable No. D12.2

Description of the M4 Interface used by the HCI of
WP12
Deliverable D12.2

Bert Laverman and Olaf Rem

Perot Systems
NL-3821 AE, Netherlands
{Bert.Laverman, 0laf.Rem}@ps.net

July 16, 2002

Abstract

In this document the M4 Interface is described. It is the software component
that is used by the Human Computer Interface that is being developed in
WP12. It is responsible for providing access to the M4-Relational Metadata-
Schema (see deliverable D7a). In this way an extra layer is constructed
between client programs and the database. This takes away the burden
for client programs to implement their own database access code and gives
more flexibility when the implementation of the database schema is changed.
The document discusses the architecture, design choices, installation and
configuration, the current state and shows example code how to use the
interface.

Contents

1 Introduction

2 Interface architecture and design
2.1 Interface architecture
2.2 Designremarkso o Lo
2.2.1 Value Objects
222 Facade
223 Factory

3 Interface implementation
3.1 The M4Interface Class
3.2 The Value Objects
3.3 Classdiagram
3.4 Level of support for the M4-Relational Metadata Schema

4 Using the interface
5 Installation and configuration with JBoss

6 Current state of the interface

Chapter 1

Introduction

The objective for work package 12 is to provide users with a graphical user
interface for the specification of an entire preprocessing task. It should en-
able the user to transform business data into a form that is ready for mining
(the learning stage in the knowledge discovery process). The users that are
targeted to use the HCI are the case designer and the database adminis-
trator. The case designer does the main part of the work. He specifies a
conceptual model and decides which operators to apply and in what order.
It is the task of the database administrator to map the conceptual model to
the relational model: a necessary step before executing a case.

The most important components in the architecture that is being de-
veloped in WP12 are the Chain Editor, Concept Editor, Compiler and the
M4 Interface. The M4 Interface is responsible for providing access to the
M4-Relational Metadata-Schema. In this way an extra layer is constructed
between client programs and the database. This takes away the burden for
client programs to implement their own database access code and gives more
flexibility when the implementation of the database schema is changed.

The Chain Editor and the Concept Editor will use the M4 Interface to
create and manipulate meta data. Examples of meta data objects that can
be manipulated with the interface are: Case, Concept, Relationship, Opera-
tor, Step, BaseAttribute and ColumnSet. The interface provides methods to
create, retrieve, update and delete these objects. Further information about
the WP12 HCI requirements (including the M4 Interface) can be found in
the document by the Fraunhofer Institut Autonome Intelligente Systeme and
Perot System Netherlands titled MiningMart Human Computer Interface,
Requirements and specifications that was presented in March 2002.

This document further discusses the M4 interface architecture, design
choices, installation and configuration and the current state of the interface.
In the appendix information is included about programming standards used
in developing the M4 interface and example code is included showing how
to use the interface.

Chapter 2

Interface architecture and
design

2.1 Interface architecture

The position of the M4 Interface can best be shown using the picture of
the HCI architecture. This is shown in figure 2.1. The Concept Editor and
the Case Editor are part of the presentation layer. They should not contain
much business logic. The business logic is part of the business layer and
handles the communication of the presentation layer with the database layer
and the Compiler. The M4 interface forms a buffer between the business
logic and the database. It provides methods for creating, updating, deleting,
finding and retrieving information in or from an M4 instance. The Compiler
manages the compilation and execution of (parts of) a Case.

In figure 2.2 the architectural view is presented, showing the three tier
model superimposed on the major components of figure 2.1. It also shows
which elements are part of the M4Interface and how the different compo-
nents are distributed over the client, the application server and the database
server. In figure 2.2 we introduce the Client Object Library (COL). It ab-
stracts the data centric view used in the data layer for the application client
and hides the communication with the application server. Within the appli-
cation server we will have some (as few as possible) Stateful Session Beans,
which keep track of individual clients and their interactions with the data.
This is the level where locking of a case is implemented, so as to prevent
access to a case when it is being updated, and conversely prevent an update
session to start when read-only sessions are active. Further "down” into the
data layer Stateless Session Beans are used to provide access to the data
stored in the RDBMS.

We have chosen to use Session Beans rather than Entity Beans to ac-
cess the database. Important for this choice is to consider the amount of
data involved, the usage of the data and the differences between Session

Mining Mart IST-1999-11993, Deliverable No. D12.2 4

Presentation Layer Business Layer Database Layer

B

... MdVetalata ___,

Datawarehouse
administrator

M4-Relationaidd|

M4€oncepaliMdel
M4Casdvbdel |
: :
d

Statistic: sQL
Function|

Data

11

Business
Logic Ml

1

Java
N M4-
Designer

PLSql

I M4 Interface

5
<
5

Case >
Editor
Java .

UNIX function call W SQL Function lData sample

. B —————
MD Compilgr Operators
-— -
Wrapper| Learning

Ji Cod Ret d o
ava-Code eturn code Algoritim

Java,C, ..

Internet
Access to
Cases

v

End users

Figure 2.1: Conceptual view of the architecture for the MiningMart system
showing users, layers and different components in the system (based on
previous drawings of UniDo and SwissLife). The objects with double borders
are to be implemented in WP12.

Presentation Layer Business Layer Data Layer

Application Client Application Server

JUAI) eARL
0L FIA
SIWdTd

wi i L 4 concept
Datauarehouse | ; E ditor
administrator :

% L& M4 Case
S VT Edite
E.E_SE :
Designer

Business
Lagic

1gapmig

Amagr 0G0 BT
soRe g BORSAg TGRS

sumag mOKsag ssafalRlg

Figure 2.2: View of the WP12 architecture focusing on elements of the M4

Interface.

Beans and Entity Beans. Considering that the example case of the Mailing
Action has about 400 steps, that each step may have several inputs and
that every input may be related to many other objects (e.g. a Concept has
FeatureAttributes) it is clear that the M4 Relational Metadata Schema will
store a large number of objects. We expect that when working on a Case

Mining Mart IST-1999-11993, Deliverable No. D12.2)

there may be frequent updates to meta data objects like Steps, Parameters,
Concepts and FeatureAttributes. Using Session Beans for database access
is quite different than using Entity Beans. With Session Beans oneself has
to implement the code to access the database, Entity Beans on the other
hand can use Container Managed Persistence. Then the application servers
container is responsible for storage and a lot less code needs to be produced.
Entity Beans can be seen as a representation of a database row and have a
higher memory overhead that Session Beans. Considering our expectations
about the amount of data and data usage and the larger overhead of Entity
Beans we decided for using Session Beans.

2.2 Design remarks

The M4 Interface uses three major design patterns: ”Value Objects”, ” Fac-
tory”, and ”"Facade”. In this section we will introduce these patterns, and
describe how they are applied in the M4Interface design.

Design Patterns have become more formalized over the last few years,
leading not only to more generally accepted patterns, but also standardized
names and terminology. The three patterns described here will be familiar
to most developers, if not in name, then certainly in their structure, as they
represent common approaches for layering an application over several tiers.

2.2.1 Value Objects

In the context of a J2EE application server, a common problem is the over-
head of communications between the client software and the application
server tier. Even presuming a high-bandwidth, high-speed network between
the two, querying several thousands of server objects for their several at-
tributes value will most certainly cause noticeable delays in response times
to the end-user. To solve this, related data is bundled in so called Value
Objects, and transported between the two tiers in bulk. The most common
form in a J2EE environment is the usage of JavaBean compliant object rep-
resenting one row of data from a database table. References to other objects
can be represented by identifying values for the referred objects, or by ac-
tually adding that object as well and storing a reference to it. Javas RMI
transport layer will then provide efficient delivery to the client. A second
form usable in situations where large collections of objects are needed, is to
return them packaged in a suitable container object.

This pattern has as major drawback that the client receives a local copy,
which may over time become outdated, when other clients modify the orig-
inal data in the database. For the MiningMart system this will not be an
issue, as at the session level access will be restricted, preventing all access
for new clients as soon as a read/write session is opened.

Mining Mart IST-1999-11993, Deliverable No. D12.2 6

Application Client Application Server RDBMS

2llee 0 @

] @ JDBC z

o 2 - » o
2 =3

Java Client .?}:;‘ Vaue objects ; 5 ﬁ’?

3 o

cl|lee o g g

&

Figure 2.3: Value objects are used by the M4 Interface between the COL
and the session beans.

Figure 2.3 shows that the COL and the session beans use value objects
to exchange data with each other.

2.2.2 Facade

An example of a facade is a film-set, where houses in a street turn out to be
no more than just the front wall. This image has been applied since days of
old in programming, allowing different implementations to be used through
a common interface.

For Java two major approaches are:

e using interfaces to describe how the provided functionality can be used,
and

e using abstract objects which provide not only the interface, but also
some common functionality.

For the M4 Interface both approaches are used. The package mining-
mart.m4 contains java interface objects like Case and Concept that describe
the methods that objects implementing these interfaces should offer. The
package miningmart.m4 also contains the abstract M4Interface class that
provides some common functionality.

2.2.3 Factory

This pattern most often appears in conjunction with interface patterns such
as Facade. The idea is that, rather than providing classes to be instantiated,
a factory object is provided which will perform the instantiation. The former
approach has as its main disadvantage that the user needs to know what the
specific classname is of the class to be instantiated, whereas a factory object
can do this without revealing that information. Factory objects often use

Mining Mart IST-1999-11993, Deliverable No. D12.2 7

the Facade pattern to hide the actual factory object itself. As an example of
a simple factory, the javax.swing.BorderFactory class defines static factory
methods to create different styles of borders. A more flexible approach
is employed by java.awt.Toolbox, which only defines a static method for
returning a factory object of that same class. The methods for creating
graphical element objects are methods of this instance. This allows the
static method to select a suitable factory object, which can then perform
the construction of the actual objects needed. The M4 Interface uses this
last approach to allow clients to create an instance of some subclass of
miningmart.m4.M4Interface through a static method called getInstance().
This instance is then an object from another package.

Chapter 3

Interface implementation

The COL can be accessed through interfaces and classes defined in the min-
ingmart.m4 package. Most of the elements in this package are interfaces,
implemented by classes in another package. Data is transferred between the
application server and the client using Value Objects (see figure 77?).

3.1 The Md4Interface Class

This class provides for a static method to retrieve an instance of the actual
factory object: M/Interface.getInstance(). The M4Interface class is the cen-
tral contact point for retrieving and storing top-level data, such as Cases and
Operators. Using for example the method M/ Interface.findCaseForUpdate
(String name) a Case can be retrieved. Dependent objects are accessed
through the other objects using the relations defined in M4. Note that the
choice for a read-only or read-write session should be made at the Case
level. A second functionality available through the Md4Interface is direct
SQL access.

3.2 The Value Objects

The value objects are defined conforming to the JavaBeans specification, in
the sense that all attributes are private, and get/set accessor methods are
available. These value objects map closely on the tables as defined in the
M4 physical data model. Value object names consist of the object name
with a suffix V. For example for the CASE_T table that is part of the M4-
Relational Metadata-Schema an object CaseV is defined that has getters
and setters for the fields: id, name, mode, output, outputName, population,
populationName and validity. Note that all value objects implement the
Serializable interface, so as to make them transportable to and from the
application server using RMI.

Mining Mart IST-1999-11993, Deliverable No. D12.2 9

3.3 Class diagram

1 interface
A4Qiject

IS J:I‘:I com.syllogic.mini .m.mobjecrl

DBBeanBase
SessionBean

R —— com.syllogic.miningimart.md.ej.CasesEJB

|
case |=1——— _qj com.svllogic.miningmart.m4.Case I: — —; <<ertity-- cam.syliogic.miningmart md ajb.Cases
N = com.syifogic.miningrmat md efb CasesHome
md.value.CaseV

! o

I B

q:l y !% |:|‘:| com.syllogic.mini t.md4.| I %

Figure 3.1: Class diagram showing M4Object, M4Interface and Case com-
ponents in the M4Interface.

Figure 3.1 shows how a few components in the M4Interface are related
to each other. It shows that the interface miningmart.m4.Case extends min-
ingmart.m4.M4Object and that these interfaces are implemented by corre-
sponding classes in the com.syllogic.miningmart.m4 package. The mining-
mart.m4.M4Interface class is an abstract class and is extended by a corre-
sponding class in the com.syllogic.miningmart.m4 package. It also shows
that the com.syllogic.miningmart.m4.Case class and the CasesEJB session
bean both use the CaseV value object. The implementation of other com-
ponents like Concept and ColumnSet is equivalent to the implementation of
the Case component.

3.4 Level of support for the M4-Relational Meta-
data Schema

The M4Interface provides an application programming interface that in gen-
eral supports reading, inserting, updating and deleting records of all tables.
Database constraints and triggers guard the data integrity. The current
implementation does have a few restrictions however that are important to
note.

For creating or retrieving a certain object always a parent object must
exist. This parent object provides the context for the child object that is cre-
ated or sought for. At the highest level we have for example the M4Interface
class that must be available in order to create or retrieve a Case. That Case
is then in turn needed in order to be able to create other objects like for
example Concepts, Chains and Steps. This has as a consequence that when
a parent is deleted its children are also lost for the interface, because then
they cannot be retrieved anymore from the database.

Mining Mart IST-1999-11993, Deliverable No. D12.2 10

Further the M4Interface hides the primary keys from the programmers
interface, because the ids are not a property of the stored objects; they are
there for the database to handle the objects. This means the programmer
must identify an object in another way. We have chosen to use the name of
the object for this. This means that names must be unique within a certain
context. For example a Case name must be globally unique (i.e. in the
CASE_T table) and a Step name must be unique within the Case.

The M4-Relational Metadata Schema supports Concepts to be part of
more than one Case. The current M4Interface implementation, however,
only support Concepts to be part of one Case. In our view this makes the
handling of Concepts much easier. Many other objects may be related to
a Concept and if the Concept would be part of more Cases these related
objects could also be seen as being part of more Cases. Updating one object
would mean it would also be updated in other Cases it is part of. The user
must be very careful about this. Therefore to simplify things currently it
only is allowed for Concepts to be part of one Case. If the Concept is also
needed in another Case we suggest to make a copy of it. If it becomes clear
that it should be possible for Concepts to be part of more Cases then the
Md4Interface can be adapted for this.

Finally fields in the schema that are specially used by the Compiler can
not be modified using the M4Interface.

Chapter 4

Using the interface

Documentation describing the interface has been produced using the doc-
umentation features of Java. The api is available in HTML format and is
part of this deliverable. It describes the Objects and methods available in
the M4 Interface. When using the M4 interface the api will be the place
to start. In the appendix the source is listed of an example client program
that uses methods from the m4 Interface. It shows how to invoke the in-
terface, create objects and set object properties. Note that the COL sends
and receives value objects to the Session Beans. These value objects are
representations of database rows. When setting a property using the COL
the corresponding attribute of a value object is set.

It is important to note that the value object is only stored to the database
when the store() method is called on the corresponding object. There is an
exception to this rule however. When an object is created in relation to
another object the object needs to be stored first before this relation can be
set. For example when creating a Concept using the createConcept method
of the Case class the Concept will automatically be stored by the inter-
face before connecting it to the Case. The example listing in the appendix
comments further on this and shows how store() is used. One can use the
isChanged() method that is part of the miningmart.m4.M4Object interface
to check if an object needs to be stored.

11

Chapter 5

Installation and
configuration with JBoss

The M4Interface has been implemented using the JBoss 3.0.0RC3 applica-
tion server. Several configuration files are needed to set up the software.
Our configuration files have been included with the deliverable. Other par-
ties may need to edit some of the files and set information about their own
server name, SID, user name and password. Information which files should
be edited and where to place the files is included with the configuration files.

12

Chapter 6

Current state of the interface

All components of the M4 Interface have been implemented and several
tests have been done testing the functionality of different components within
the M4 Interface. There are still some important open issues at this time
however that should be especially be noted by partners that want to use the
current software:

e Most testing effort has been spend on the Session Beans and less on
the Client Object Library. More tests on the Client Object Library
are still needed however in order to show that all functionality indeed
works.

e There is an issue that the Client Object Library caches objects that
have been read from the database. Database triggers providing object
consistency may however delete records or set columns to NULL. Ob-
jects in the COL that correspond to records that are deleted should
be destroyed which is not the case yet.

e Case locking still has to be implemented.

e As the object id’s have erroneously been implemented as integer ob-
jects instead of longs the current sequence of the M4 Relational Schema
is not supported. Currently the maximum id nummer supported is
2,147,483,647. The id type will have to be adjusted.

e Direct sql access through the interface is not supported yet.

These issues will be solved with updates of the M4 Interface software
within the near future.

13

Appendix

Programming standards

Copyrights

The source code will be copyrighted by the company where it originated,
unless otherwise decided during the course of the MiningMart project. Due
to the sensitive nature of copyright protection however, it should be noted
that any material produced should be protected by copyright (default will
be a copyright owned by the producer of that material) at all times. If it is
decided to place material in the public domain, then experience shows that
an Open Source style license such as the GPL or LGPL provides adequate
protection coupled with full disclosure and availability. Note however that
such a license does not preclude a copyright ownership by the MiningMart
partners. Perot Systems Nederland will include the following code snippet
at the top of all of its code: // Copyright 2002 by Perot Systems Nederland
// All rights reserved.

Java Package Name Choices

Java package naming has solved many of the problems faced by integrators
of code from different sources. We would however propose to standardize
the names of the packages themselves as follows:

e All code which is common for the entire MiningMart system should
reside in packages under the global package miningmart. For example,
the client object library for the M4 interface will reside in mining-
mart.m4, with value objects defined in miningmart.m4.value.

e All code which is internal to parts developed by an individual partner
should reside in either a package under the MiningMart package men-
tioned above, or else in a package named according to that partners
own standards. For example, the implementation of the object library
mentioned above will reside under the package com.syllogic.miningmart.

This approach, when combined with the Factory and Facade design pat-
terns, will allow partners to interface to each others code, without ever hav-

14

Mining Mart IST-1999-11993, Deliverable No. D12.2 15

ing to known partner specific package names. In fact, one would never know
of the com.syllogic packages unless one browsed the jar files or performed
getClass().getName() calls on objects received from the factory methods.
This is the same approach also followed by Sun Microsystems for large parts
of the standard Java library.

Naming Standards

Names are generally defined as is common for Java code:
e Package names are all lowercase.

e Classes and interfaces start with an uppercase letter, while methods,
attributes, and variables start with a lowercase letter. Names are gen-
erally chosen to describe value (Classes, interfaces, and attributes) or
function (methods) and not abbreviated. If the name is a concatena-
tion of several words, then the start of each word is highlighted by
putting the first letter in uppercase.

e Accessor methods are named getXxx() or setXxx(), where Xxx is the
capitalized name of the attribute involved.

e Single letter variables are only used in loops:

— Counters are called n, m,
— Indexes in arrays are called i, j,

— Characters (typically retrieved from strings are read from streams)
are called c.

For other uses descriptive names should be used.
e In a few cases suffixes will be used:

— Enterprise Java Beans will be referred to by the name of the Re-
mote interface. The Home interface will have this name suffixed
with Home, and the implementation will have suffix EJB.

— Value objects will have suffix V.

— When several methods are needed with the same name and pa-
rameter list, but with different return types, a single letter suffix
may be used to distinguish between them. For example, if an
integer value is sometimes needed in a wrapper object, and some-
times as an int, the Integer returning method will get a suffix O
to signify as object.

Mining Mart IST-1999-11993, Deliverable No. D12.2 16

Version Control Related Standards

Perot Systems uses CVS for its version control. Since CVS relies on RCS
code for the actual processing of the files, RCS style markers are used and
substituted. We normally use Id at the top of the file to provide identifica-
tion, and Log at the bottom to keep track of the change history.

Source Code Layout

Unfortunately layout is a subject which can easily waste a lot of time. When
working with code produced by others, the simple but hard rule is to fol-
low the style already in use. For newly crafted code, Professor Andrew
Tanenbaum of the Amsterdam Free University once stated (in relation to
contributions to the Minix Operating System) that he would not look at
any piece of code before it had been reformatted by cb using his standard
settings. We do not propose to go that far, but will use the following settings:

ASCII TAB characters will be presumed to expand to 8 spaces.

Indentation is 2 spaces.

If/while/for/etc will always have use braces around their sub-statements.

The opening brace will preferably be placed at the end of the line
preceding the block, while the closing brace comes on a line by itself.

e Every statement is on its own line.

Other Standard Elements

Perot Systems Nederland will use Together 5.5 as its primary design/development
tool, Together ControlCenter will allow us to develop EJBs using a simpli-
fied interface to the three source files involved, and integrates seamlessly
with CVS. Together stores most of its integration information in the source
files themselves, using the javadoc style comments. Some of these comments
are used to control display of UML diagrams, while others control the links
to the J2EE deployment tools. As a result of this, several @jkeyword;, style
lines will be present in the source files, which do not come from the javadoc
standard. Some of the more common ones are: @notProperty This signifies
that a method looks like an accessor function, but should not imply the pres-
ence of a JavaBean property. @ejbHome Specifies the EJB Home interface.
@ejbRemote Specifies the EJB Remote interface. QENV-REF Starts an
environment reference. QENV-TYPE Java type of the environment value.
@QENV-VALUE The actual value involved. @QRESOURCE-REF Starts a
resource reference. @QRES-JNDI-NAME JNDI name of the resource.

Mining Mart IST-1999-11993, Deliverable No. D12.2 17

Example code

This section lists sample java code of a client that uses the M4Interface

software to access an instance of the M4 Relational Metadata Schema. Tt

demonstrates how to invoke the M4lInterface, create objects, set properties

and store the objects. It creates a Case "Dummy Case”, creates two Con-

cepts (partner, contract) with each two BaseAttributes. The two Concepts

are connected to each other by a partnerRole Relationship. Further one

Step is created and partner is set as an input Parameter for the Step.

This code is delivered as part of the M4interface by the miningmart.m4.M4ClientExample

class.

// Copyright 2002 Perot Systems Nederland
// All rights reserved

//

//$1d$

package miningmart.m4;

import miningmart.m4.M4Interface;
import miningmart.m4.Case;

import miningmart.m4.Concept;

import miningmart.m4.BaseAttribute;
import miningmart.m4.Relationship;
import miningmart.m4.Step;

import miningmart.m4.Parameter;
import miningmart.m4.0Operator;

import miningmart.m4.CreateException;
import miningmart.m4.DomainDatatype;

import java.util.Iterator;

import java.util.Collection;

import miningmart.m4.StorageException;

import org.apache.log4j.Logger;

import org.apache.logdj.PropertyConfigurator;

Example Class that demonstrates how to invoke the M4Interface
and shows the use of some of its methods.

- list all Cases
- list all Operators

*

*

*

* Tt does the following:

*

*

* - create Case '"Dummy Case"

Mining Mart IST-1999-11993, Deliverable No. D12.2 18

* — create Concept "Partner"

* - add BaseAttributes "Name" and "Age"

* — create a second Concept "Contract"

* - add BaseAttributes '"Name" and "Date"

* — create a Relationship "PartnerRole" between concepts "Partner" and "Contract"
* — create a Step "First Step"

* - create an input Parameter for "First Step"

* — connect the Concept "Partner" to the input Parameter

*/

public class M4ClientExample {

/** The logger class to log messages */
private static Logger logger;

//Added to test functionality of this class
public static void main(String[] args) {

//initialize Logger
initLogger();

//Get an instance

M4Interface myInterface = null;

try {
//The next line will only be necessary for the dummy
//implementation.
//The final implementation will allow to directly call
//the getInstance() method.
Class.forName("com.syllogic.miningmart.m4.M4Interface") ;
myInterface = M4Interface.getInstance();

}

catch (ClassNotFoundException e) {
logger.error("getM4Instance ", e);

}

Collection caseList = myInterface.getAllCaseNames();
//Print List of Case names

logger.info("Available cases: ");

printList(caseList);

//Retrieve Operators
Collection operatorList = myInterface.getAllOperatorNames() ;

//Print List of operator names

Mining Mart IST-1999-11993, Deliverable No. D12.2 19

logger.info("Available operators: ");
printList(operatorList);

//Create a Case

Case myCase = null;

try {
myCase = myInterface.createCase("Dummy Case");
logger.info("Case created: " + myCase.getName());

}

catch (CreateException e){
logger.error ("Exception while creating a Dummy Case ", e);

}

//Store a Case
try {
if (myCase.isChanged()){
myCase.store();

logger.info("Case stored: " + myCase.getName());
}
}
catch (StorageException e) {
logger.error ("Exception while storing Dummy Case ", e);
}

//Create a Concept

Concept partner = null;

try {
partner = myCase.createConcept ("Partner",

miningmart.m4.Concept.TYPE_BASE) ;

//In order to be able to connect the Concept to the Case
//the Concept is stored automatically by the M4 Interface,
//so we need not do a partner.store() here. As a good
//habit doing a store() here would be fine.
partner.store();

logger.info("Concept created and stored: "
+ partner.getName());

//Add attributes
//BaseAttributes are also stored directly when created.
BaseAttribute partnerName = partner.createBaseAttribute(
"Name", DomainDatatype.NOMINAL) ;

Mining Mart IST-1999-11993, Deliverable No. D12.2 20

partnerName.store() ;
logger.info("Attribute added: " + partnerName.getName());

BaseAttribute partnerAge = partner.createBaseAttribute(
"Age", DomainDatatype.ORDINAL_SCALAR) ;
partnerAge.store();
logger.info("Attribute added: " + partnerAge.getName());
}
catch (CreateException e){
logger.error("Failed to create the partner concept or
its attributes", e);
}
catch (StorageException e){
logger.error("Failed to store the partner concept or
its attributes", e);

//Create a second Concept + attributes
Concept contract = null;
try {
contract = myCase.createConcept("Contract"
,miningmart.m4.Concept.TYPE_BASE) ;
contract.store();
logger.info("Concept created: " + contract.getName());

//Add attributes
BaseAttribute contractName = contract.createBaseAttribute(
"Name", DomainDatatype.NOMINAL) ;
contractName.store();
logger.info("Attribute added: " + contractName.getName());

BaseAttribute contractDate = contract.createBaseAttribute(
"Date", DomainDatatype.ORDINAL_SCALAR_TIME);
contractDate.store();
logger.info("Attribute added: " + contractDate.getName());
}
catch (CreateException e){
logger.error("Failed to create the contract concept or
its attributes", e);
}
catch (StorageException e){
logger.error("Failed to store the contract concept or its
attributes", e);

Mining Mart IST-1999-11993, Deliverable No. D12.2 21

//Create a Relationship
Relationship partnerRole = null;
try {
partnerRole = partner.createFromConceptRelationship(
"partnerRole", contract);
partnerRole.store();

logger.info("Relationship created: " + partnerRole.getName());
}
catch (CreateException e){

logger.error("Failed to create retalionship partnerRole ", e);
}
catch (StorageException e){

logger.error("Failed to store retalionship partnerRole ", e);
}

//Create a new Step in the Case

Step aStep = null;

try {
aStep = myCase.createStep("First step");
logger.info("Step created: " + aStep.getName());

aStep.setOperator (myInterface.findOperator ("RowSelection")) ;
aStep.store();
logger.info("Operator added to Step: "

+ aStep.getOperator() .getName());

Parameter inputParameter = aStep.createParameter (
"inputParameter");
inputParameter.setParameterNr(1);
inputParameter.setParameterType ("IN");
inputParameter.setParameterObject (partner) ;
inputParameter.setOperator(aStep.getOperator());
inputParameter.store() ;
logger.info("Concept partner set as input parameter for
the step");
}
catch (CreateException e){
logger.error("Failed to create a Step or set up
an input parameter ", e);

Mining Mart IST-1999-11993, Deliverable No. D12.2

catch (StorageException e){
logger.error("Failed to store a Step or its
input parameter ", e);

private static void printList(Collection list) {
Iterator i = list.iterator();
while (i.hasNext()) {
String aName = (String)i.next();
System.out.println(aName) ;

}
System.out.println();

private static void initLogger (){

PropertyConfigurator.configure("log4j.properties");

logger = Logger.getLogger ("M4Test");
}

/%
*Log
*/

22

