Controlling Overfitting with
Multi-Objective Support Vector Machines

Ingo Mierswa
Artificial Intelligence Unit
Department of Computer Science
University of Dortmund
ingo.mierswa@uni-dortmund.de

ABSTRACT

Recently, evolutionary computation has been successfully in-
tegrated into statistical learning methods. A Support Vector
Machine (SVM) using evolution strategies for its optimiza-
tion problem frequently deliver better results with respect
to the optimization criterion and the prediction accuracy.
Moreover, evolutionary computation allows for the efficient
large margin optimization of a huge family of new kernel
functions, namely non-positive semidefinite kernels as the
Epanechnikov kernel. For these kernel functions, evolution-
ary SVM even outperform other learning methods like the
Relevance Vector Machine. In this paper, we will discuss
another major advantage of evolutionary SVM compared to
traditional SVM solutions: we can explicitly optimize the
inherent trade-off between training error and model com-
plexity by embedding multi-objective optimization into the
evolutionary SVM. This leads to three advantages: first,
it is no longer necessary to tune the SVM parameter C
which weighs both conflicting criteria. This is a very time-
consuming task for traditional SVM. Second, the shape and
size of the Pareto front give interesting insights about the
complexity of the learning task at hand. Finally, the user
can actually see the point where overfitting occurs and can
easily select a solution from the Pareto front best suiting his
or her needs.

Track: Genetics-Based Machine Learning and Learning Clas-
sifier Systems

Categories and Subject Descriptors: 1.2.6 [Computing
Methodologies]: Learning

General Terms: Algorithms, Theory, Experimentation

Keywords: Support vector machines, machine learning,
kernel methods, evolution strategies

1. INTRODUCTION

Recently, several approaches were proposed where evolu-
tionary algorithms are used to solve large margin optimiza-
tion problems [14, 11]. Although the latter only performed

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

GECCO'07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/000%5.00.

evolutionary optimization on the less efficient primary opti-
mization problem, both publications demonstrate the inter-
est in this new intersection of three highly active research
areas, namely machine learning, statistical learning theory,
and evolutionary algorithms. This intersection allows for
powerful enhancements of traditional Support Vector Ma-
chines.

Support Vector Machines (SVM) solve supervised classi-
fication tasks. A set of data points is divided into several
classes and the machine learning method should learn a de-
cision function in order to decide into which class an unseen
data point should be classified. The SVM searches for an op-
timal decision function by maximizing the margin between
data points of different classes. This not only allows an ef-
ficient optimization procedure but also the definition of an
error bound for the generalization error. Furthermore, the
usage of kernel functions allows the learning of non-linear
decision functions. Since SVM guarantee an optimal solu-
tion for the given data set, they are currently one of the
mostly used learning methods. Furthermore, many other
optimization problems can also be formulated as large mar-
gin problem [22].

Usually, the optimization problem posed by SVM is solved
with quadratic programming. However, there are some draw-
backs with these approaches. First, no unique global op-
timum exists for kernel functions which are not positive
semidefinite. Non-positive semidefinite kernel functions are
functions which resemble a (partial) distance instead of a
similarity measure. In these cases, quadratic programming
is not able to find satisfying solutions at all. Moreover,
most implementations do not even terminate [7]. There
exist several useful non-positive kernels [13], among them
the sigmoid kernel which simulates a neural network [3, 20].
Therefore, a more generic optimization scheme based on evo-
lutionary strategies was recently proposed which allows such
non-positive kernels without the need for omitting the more
efficient dual optimization problem [15]. It has been shown
that the evolutionary implementation leads to as good re-
sults as traditional SVM on a broad variety of real-world
benchmark data sets. For non-positive semidefinite kernel
functions it always outperform traditional SVM and other
related learning methods as the Relevance Vector Machine.

Former applications of evolutionary algorithms to SVM
include the optimization of method and kernel parameters
[5, 17], the selection of optimal feature subsets [6], and the
creation of new kernel functions by means of genetic pro-
gramming [9]. The latter is particularly interesting since it
cannot be guaranteed that the resulting kernel functions are

again positive semidefinite. In contrast to these approaches,
we embed evolutionary algorithms into the learning machine
itself and solve the optimization problem of SVM in its dual
form. By doing this, we can avoid another drawback con-
nected to traditional SVM learning. Although the statistical
learning theory takes into account both the training error
and the model complexity (see Section 2), the user still has
to define a weighting factor for both conflicting criteria. The
search for this parameter is usually a non-trivial and very
time consuming task.

In this paper, we not only propose to embed evolution-
ary algorithms into SVM but to embed multi-objective opti-
mization schemes. This allows, for a first time, to explicitely
optimize the inherent trade-off which is the basic idea of
statistical learning theory without applying time-consuming
outer wrapper approaches for optimizing the trade-off. This
goal differs from the first attempts to incorporate multivari-
ate performance measures into SVM [10] which cannot be
used for competing criteria and does not solve the general
trade-off between training error and capacity.

The result of the proposed approach is a Pareto front in
the space of training error vs. model complexity and gives
interesting insights into the nature of the problem at hand.
By using a hold-out data set as a test set for the resulting
models we derive a second front showing the generalization
error. Both, the Pareto front and the generalization error
plot allows for a quick selection of the final solution from
the Pareto front without the time-consuming optimization
of a weighting factor.

1.1 Outline

In Section 2 we give a short introduction into the concept
of regularized risk minimization and the ideas of statistical
learning theory. This allows us to formalize the optimization
problem of SVM for the classification of given data points
in Section 3. The constrained optimization problem devel-
oped in this section will be divided into two sub problems
which will be transformed into their dual forms in Section 4.
Both objectives will be used in a multi-objective evolution
strategies algorithm which solves the SVM problem while
the trade-off between training error and model complexity is
explicitely kept in the resulting Pareto fronts (see Section 5).
Finally, we give some examples of results on synthetical and
real-world benchmark data sets in Section 6 before we con-
clude this paper in Section 7.

2. REGULARIZED RISK MINIMIZATION

We first give a short discussion about the idea of regu-
larized risk minimization before we state the optimization
problem which should be solved. Machine learning methods
following this paradigm have a solid theoretical foundation
and it is possible to define bounds for prediction errors.

Let the instance space be defined as the Cartesian product
X = X1 x...x X,, of attributes X; C R. Let Y be another
set of possible labels. X and Y are random variables obey-
ing a fixed but unknown probability distribution P(X,Y).
Supervised Machine Learning tries to find a function f(x,~)
which predict the value of Y for a given input x € X. The
function class f depends on a vector of parameters ~, e. g. if
f is the class of all polynomials, v might be the degree. We
define a loss function L(Y, f(X,~)) in order to penalize er-
rors during prediction [8]. Every convex function with arity
2, positive range, and L(y,y) = 0 can be used as loss func-

tion [19]. This leads to a possible criterion for the selection
of a function f, the expected risk:

DEFINITION 1. Let X be a wvector of random wvariables
and Y another random variable obeying a fized but unknown
probability distribution P(X,Y). For a given loss function
L(Y, f(X,~)) the EXPECTED RISK is defined as

R(y) = / L(y, f(z.7))dP(z.y).

Since the underlying distribution is not known we are not
able to calculate the expected risk. However, instead of
estimating the probability distribution in order to allow this
calculation, we directly estimate the expected risk by using
a set of known data points 7' = {(z1,91),..., (Zn,yn)} C
X xY. T is usually called training data. Using this set of
data points we can calculate the empirical risk:

DEFINITION 2. Let T = {(z1,91) .-+, (@n,yn)} CX XY
be an item set and let L(Y, f(X,7)) be a loss function. The
EMPIRICAL RISK is defined as

n

i=1

If training data is sampled according to P(X,Y), the em-
pirical risk approximates the expected risk if the number of
samples grows:
Jim Remp () = R(7)-

It is, however, a well known problem that for a finite num-
ber of samples the minimization of Remp(7y) alone does not
lead to a good prediction model [23]. For each loss func-
tion L, each candidate v, and each set of tuples 7" C X x
Y with T NT' = (@ exists another parameter vector v
so that L(y, f(z,7)) = L(y, f(x,7')) for all z € T and
L(y, f(z,v)) > L(y, f(z,7")) for all x € T'. Therefore, the
minimization of Remp(7y) alone does not guarantee the op-
timal selection of a parameter vector v for other samples
according to the distribution P(X,Y’). This problem is of-
ten referred to as overfitting.

At this point we use one of the main ideas of statistical
learning theory. Think of two different functions perfectly
approximating a given set of training points. The first func-
tion is a linear function, i.e. a simple hyperplane in the con-
sidered space R™. The second function also hits all training
points but is strongly wriggling in between. Naturally, if we
have to choose between these two approximation functions,
we tend to select the simpler one, i.e. the linear hyper-
plane in this example. This derives from the observation
that more simple functions behave better on unseen exam-
ples than unnecessary complicated functions. Since the mere
minimization of the empirical risk according to the training
data is not appropriate to find a good generalization, we
incorporate the capacity [23] of the used function into the
optimization problem leading to the regularized risk:

DEFINITION 3. Let Q be strictly monotonic increasing func-
tion. The REGULARIZED RISK is defined as

Rreg (’Y) = Remp (7) +)‘Q(’Y)

This risk functional is also known as structural risk since it
takes the structural complexity into account. €2 is a function

which measures the capacity of the function class f depend-
ing on the parameter vector v (see [18] for more details).
Since the empirical risk is usually a monotonically decreas-
ing function of €2, both criteria are conflicting and we use A
to manage the trade-off between training error and capacity.

In the next section we will introduce concrete functions for
Remp and € which leads to the concept of Support Vector
Machines. This allows for the definition of a convex opti-
mization problem which can be efficiently solved. Moreover,
we can embed non-linear transformations into the optimiza-
tion problem in form of kernel-functions. Instead of opti-
mizing the weighted sum of both criteria we then explicitly
optimize the trade-off between both conflicting criteria by
means of multi-objective optimization.

3. SUPPORT VECTOR MACHINES

As discussed in the previous section, we need to use a
class of functions whose capacity can be controlled. In this
section, we will discuss a special form of regularized risk
minimization, namely a large margin approach. All large
margin methods have one thing in common: they embed
regularized risk minimization by maximizing a margin be-
tween a linear function and the nearest data points. The
most prominent large margin method for classification tasks
is the Support Vector Machine (SVM).

We constrain the number of possible values of Y to 2,
without loss of generality these values should be —1 and
+1. In this case, finding a function f in order to decide
which of both predictions is correct for an unseen data point
is referred to as classification learning for the classes —1
and +1. If the data points are linearly separable, a linear
hyperplane must exist separating both classes.

DEFINITION 4. A SEPARATING HYPERPLANE is defined as
H = {z|(w,z) + b= 0},

where w is normal to the hyperplane, |b|/||w]|| is the per-
pendicular distance of the hyperplane to the origin (offset or
bias), and ||wl|| s the Euclidean norm of w.

The vector w and the offset b define the position and orien-
tation of the hyperplane in the input space. These hyper-
plane parameters correspond to the function parameters
discussed above. After the optimal parameters w and b were
found, the prediction of new data points can be calculated
as

f(wivb) = sgn ((w,x) + b):

which is one of the reasons why we constrained the classes.

If the classes are linearly separable at all, an infinite num-
ber of different hyperplanes exist which perfectly separate
the given data points. However, one would intuitively choose
the hyperplane which has the biggest amount of safety mar-
gin to both sides of the data points. It can be shown that
the capacity of the class of separating hyperplanes decreases
with increasing margin [18]. We can define the margin as
the perpendicular distance of the nearest point(s) to the hy-
perplane. Consider two points 1 and x2 on opposite sides
of the margin. That is (w,z1)+b = +1 and (w,xz2)+b = —1
and (w, (x1 —x2)) = 2. The margin is then given by 1/||w||.
Instead of maximizing 1/||w|| we could also minimize ||w||
which will result into more simple equations later. Addition-
ally, if all given data points are correctly classified by the

hyperplane the products of the true class and the prediction
must be positive and the following must hold:

Vi :y; ((w, zi) +b) > 0. (1)

Normalizing w and b in a way that the point(s) closest to
the hyperplane satisfy |(w,z;) + b = 1 we can transform
equation (1) into

Vit y; ((w, z:) +b) > 1.

We now consider the case that the given set of data points
is not linearly separable - even after using a non-linear ker-
nel function. The optimization problem discussed in the
previous section would not have a solution since in this
case constraint (1) could not be fulfilled for all i. We re-
lax this constraint by introducing positive slack variables
fi,i: 1,...,n:

Vi y (w,zi) +b) >1—¢&.

In order to minimize the number of wrong classifications we
add a correction term C'Y "7 | & to the objective function.
The basic form of the primal SVM optimization problem
then becomes:

L -
minimize §||w|| + C’;fi (2)
subject to Vi : y; ((w,z:) +b) > 1—¢&; (3)
and Vi : & > 0.

This problem is solved by the evolutionary SVM proposed
by [11]. However, we will see later in Section 5 that solving
this problem in its primal form is very inefficient and has
several other drawbacks.

The parameter C in equation 2 is a user defined weight for
the both conflicting parts of the optimization criterion. In
later parts of this paper we will discuss how multi-objective
optimization can be exploited to omit this parameter and de-
liver the full Pareto front for all possible trade-offs between
complexity and training error. Before doing this, we will
transform the primal problem into a new problem which can
efficiently be solved. After introducing positive Lagrange
multipliers «a;,i = 1,...,n, one for each of the inequality
constraints, and setting the derivatives to zero we get the
Wolfe dual (see [24] for details):

PROBLEM 1. The SVM problem is defined as:

mazximize Z @i =3 Z Z yiyjaiazk (T, ;)
i=1

i=1 j=1
subject to 0 < a; < C foralli=1,...,n

and iaiyi =0.
i=1

The slacking variables &; vanished and the variables «; are
constrained by the upper bound C. Please note that the
examples x; only occur in scalar products which was re-
placed by a kernel function k = (® (x;),® (z;)) for a (non-
linear) mapping ® in an arbitrary dot product space. This
allows the search for a linear separating hyperplane in high-
dimensional spaces after a non-linear transformation and,
hence, the separating of non-linearly separable data. The
evolutionary SVM approach proposed by [14] solves this

dual problem stated above which can be performed in a
more efficient way.

We can calculate the optimal normal vector w from an
optimal vector a by

n
w = E QY g
i=1

The optimal offset can be calculated with help of equation
(3). Please note, that w is a linear combination of those
data points x; with a; # 0. These data points are called
support vectors, hence the name support vector machine.
Only support vectors determine the position and orientation
of the separating hyperplane, other data points might as well
be omitted during learning.

4. EXPLICIT TRADE-OFF BETWEEN
ERROR AND COMPLEXITY

Since traditional SVM are, for example, not able to opti-
mize for non-positive semidefinite kernel functions and ap-
proaches like Relevance Vector Machines are hardly feasible
for real-world problems, it is a very appealing idea to replace
the usual quadratic programming approaches by an evolu-
tion strategies (ES) optimization [1] or by particle swarm
optimization (PSO) [12]. Embedding evolutionary compu-
tation into Support Vector Machines has the additional ad-
vantage of a straightforward application of multi-objective
selection schemes in order to simultaneously optimize sev-
eral conflicting criteria. In this work, we divide the criteria
of equation 2 into two optimization targets while the weight-
ing factor C can be omitted. This leads to the following two
optimization problems:

minimize %||w| |? (4)

subject to Vi : y; ((w, i) +b) > 1—&

and Vi : & >0

and
minimize z & (5)
i=1

subject to Vi : y; ((w,z:) +b) > 1—¢&;

and Vi : & > 0.

We will transform both objectives into their dual form in
order to allow the efficient optimization of the problems in-
cluding the usage of kernel functions.

4.1 First Objective: Maximizing the Margin

We introduce positive Lagrange multipliers into equation 4
but need multipliers « for the first set of inequality con-
straints and multipliers 3 for the second set of inequality
constraints:

1

LW —
P 2

> lw Zaz (yi (w,) +b) + & — 1) —

i=1

Z Biks

In order to find a solution we have to find the minimum by
setting the derivatives to 0;

oLtV
ow

(w7 b?é-: avﬂ) =w — Zyzazmz = 0,
i=1

oLtV -
5 (W06 0) = > i =0,
=1

oL"
€

(w7b7£7a7ﬂ):— —ﬂZZO

Plugging the derivatives into the primal objective function
Lél) delivers

LS):%IIwIIQ Z zyz<Z%WM>+Z‘“
i=1

Zal Zzalaayz% (@i, z5)

7,1]1

The Wolfe dual must be maximized which leads to the for-
malization of the first objective of the multi-objective SVM
setting. The resulting problem is very similar to the dual
SVM problem stated above but without the upper bound C'
for the «; (again, the dot product is replaced by a kernel
function k):

PROBLEM 2. The first SVM objective (mazimize margin)
is defined as:

n n

mazximize ZO” - - ZZyzyjalocj (zi,x5)
=1 j=1
subject to a; > 0 forallt=1,...,n

and iaiyi =0.
i=1

4.2 Second Objective: Minimizing the
Number of Training Errors

The second problem states that the sum of errors, i.e. the
sum of the slack variables &;, should be minimized. This
optimization must be performed under the same inequal-
ity constraints as for the first objective. We add positive
Lagrange multipliers o and 3:

L(Z)—Zf —Zal yi (w,z;) +b) + & — 1) —

i=1 i=1

Z Biks

The derivatives must again be set to 0 which leads to slightly
different conditions on the derivatives of L(Q):

oLy
aw ('LU b f,O{ B zyzazxz - 0

8L(2)
oy (w0, & .) = Zaiyi =0,

8L(2)
o&;

(w,b,&,0,8)=1—a; — 3; =0.

Plugging the derivatives into the Léz) cancels out most terms

because of the first two derivatives:

n n n n
L;z) = Zfz - Zazfz + Zai — Zﬁzfz
i=1 i=1 i=1 i=1

Together with the third derivative we can replace the (3; by
1 — a; leading to

n n n
L§,2) = Z i€ — Zai& + Z o
i=1 i=1 i=1

The Wolfe dual must again be maximized which leads to the
second objective of the multi-objective SVM setting. Maxi-
mizing the sum of a; corresponds to transforming each ex-
ample into a support vector. In the limit, this means that
the training set is merely memorized instead of generalized
which is an indication of overfitting or training error mini-
mization respectively.

PROBLEM 3. The second SVM objective (minimize error)
is defined as:
n
mazximize Z o;
i=1

subject to a; > 0 foralli=1,...,n
and Z a;y; = 0.
i=1

5. MOEA FOR SVM LEARNING

After all objectives and constraints for the multi-objective
setting of SVM learning are defined, we will discuss some
consequences of these results in this section.

5.1 Using the Dual instead of the Primal
Problem

In Section 4, we defined the two conflicting criteria in
their dual form (Problems 2 and 3) which should be opti-
mized by multi-objective evolutionary algorithms (MOEA).
Of course, it would also be possible to directly optimize both
original criteria 1/2||w||* and & depicted in equation 2.
That is, we could directly optimize the weight vector w and
the offset b as it was proposed by [11]. As mentioned before,
there are two drawbacks: first, the costs of calculating the
fitness function would be much higher for the original op-
timization problem since the fulfillment of all n constraints
must be recalculated for each new hyperplane. We would
have to apply the mapping ® explicitely for each training
example (which would not be possible for infinite mappings
like the mapping of the RBF kernel) and we would have to
calculate the dot product in Vi : y; ((w,x;) +b) > 1 from
equation (3) each iteration anew. These calculations cause
very high calculation costs, especially for high-dimensional
data sets. Second, it would not be possible to allow non-
linear learning with efficient kernel functions in the original
formulation of the problem, since the mapping could only
be performed on single examples x; instead of pairs in a dot
product. Finally, the kernel matrix K with K;; = k (x4, x;)
can be calculated beforehand and the training data is never
used during optimization again. This further reduces the
needed runtime for optimization since the kernel matrix cal-
culation is done only once and no dot product calculations
are necessary during the optimization. Therefore, we decide
to optimize the more efficient dual optimization problem as
it was suggested by [14].

This is a nice example for a case, where transforming the
objective function beforehand is both more efficient and al-
lows enhancements which would not have been possible be-
fore. Transformations of the fitness functions became a very
interesting topic recently in EC research [21].

5.2 Definition of the Objectives

The Problems 2 and 3 can be used as objectives for the
MOEA. Both objectives share a common term, the sum
" ;. Since this sum as part of the first objective is
not conflicting with the second objective as a whole, we can
simply omit the calculation of the sum of «; for the first
objective.

Another efficiency improvement can be achieved by for-
mulating the problem with b = 0. All solution hyperplanes
must then contain the origin and the equality constraints
> oy = 0 will vanish [2]. This is a mild restriction for
high-dimensional spaces since the number of degrees of free-
dom is only decreased by one. However, during optimization
we do not have to cope with this equality constraint and do
not need to calculate it each generation anew.

If the equality constraint should be fulfilled (e.g. for small
numbers of dimensions where omitting the constraint would
make a difference), it can simply be defined as a third ob-
jective by maximizing — ‘21;1 oziyi|. The whole set of ob-
jectives is then given as a maximization of the terms

n n

_ Z Zyiyjaiajk (zi,25),

i=1 j=1

subject to a; > 0 foralli=1,...,n.

5.3 Implementation: evoSVM

We developed a support vector machine based on evolu-
tion strategies optimization. Individuals are the real-valued
vectors @ = (a,...,an). For mutation, we used the hy-
brid mutation proposed by [14] to get sparser solutions, i.e.
solutions where many «; are zero. Crossover probability is
high (0.9). The individuals are initialized with 0 to further
support sparsity. The maximum number of generations is
1000. The population size is 100. We use NSGA-II as the
multi-objective selection scheme [4]. NSGA-II employs a
selection technique which first sorts all individuals into lev-
els of non-domination. Individuals from the first levels are
added to the next generation until the desired population
size is reached. Before adding individuals from the last pos-
sible level this level is sorted with respect to the crowding
distance in order to preserve diversity in the population.

5.4 Selecting a Solution from the Pareto Set

The first idea of supporting the user in selecting a final
solution from the Pareto front might be to just calculate the
first objective in its original form and check which individual
provides the highest value for

n

n n
z ; — % z z yiysiajk (T, ;) -
i=1

i=1 j=1

Source o

Default

Data set n m
Spiral 1000 | 2
Checkerboard | 1000 | 2
Sonar 208 | 60
Diabetes 768 8
Lupus 87 3
Crabs 200 7

Synthetical | 1.000 50.00
Synthetical | 1.000 50.00

StatLib 0.001 40.00
StatLib 0.100 50.00

UCI 1.000 46.62
UcCl 0.001 34.89

Table 1: The evaluation data sets. n is the number of data points, m is the dimension of the input space.
The kernel parameter o was optimized with a grid parameter search. The last column contains the default
error, i.e. the error for always predicting the major class.

The corresponding model is the maximum margin model
for the given data set without respecting the training errors
since the values «; were not bounded during the optimiza-
tion. Although this solution is interesting in its own, this
model is often not the desired one.

Alternatively, one could use another pointer to where in
the Pareto front one should search for the final solution. We
suggest to keep a small hold-out set of the data points of size
k. These k data points were part of the input training set
and are not used by the learner during the multi-objective
optimization. After the optimization has finished and the
Pareto front for all objectives is derived, the learner is ap-
plied to all k& data points of the hold-out set. The prediction
error for each individual is calculated with the binary loss

Lif y # f(x)

0 otherwise

Wy, f(z)) = {

which leads to the error Err, for the learned decision func-
tion f, of the p-th individual:

&
Errp = Zl(ymfp(fcq» :

q=1

Plotting all errors Err, together with the training set er-
rors results in another front which can be compared to the
original Pareto front. The user should examine places where
the training error and the generalization error are close to-
gether and should avoid areas where the generalization per-
formance is much worse then the achieved objectives. The
plots of both fronts together are a powerful tool to control
overfitting: displaying the effect of overfitting in the gener-
alization performance plot for all possible models ease the
selection of an optimal model without getting in danger of
too much overfitting.

6. EXAMPLES

The experiments in this section do not prove the ability to
solve the SVM problem with evolutionary algorithms which
was already done by previous work [14, 15]. It has been
shown that the proposed evolutionary optimization SVM
frequently outperform the quadratic programming counter-
parts, especially for non-positive semidefinite kernels.

In this section, we show the benefit of the transformation
of the original SVM problem into an efficient multi-objective
formalization by showing the Pareto fronts for several bench-
mark data sets. We use a RBF kernel for all SVM and de-
termine the best parameter value for ¢ with a grid search
parameter optimization. Possible parameters were 0.001,

0.01, 0.1, 1 and 10. A description of all data sets together
with the optimal kernel parameter value o for each data set
is given in Table 1. All experiments were performed with
the machine learning environment YALE [16]", the new SVM
implementation is called evoSVM within this framework.

Figure 1 shows all results. The left plot for each data
set shows the resulting Pareto front delivered by the multi-
objective evolutionary SVM proposed in this paper. The
y-axis denotes the first optimization objective from Section
5.2 (margin size) and the x-axis shows the second objec-
tive (training error). The third objective is omitted in the
plots for the sake of simplicity. The right plot shows the
prediction errors for the training set and a hold-out test set
(cf. Section 5.4). The x-Axis simply denotes a counter over
all Pareto-optimal solutions found during the optimization
ordered by their training errors. The y-axis denotes the pre-
diction error for the training (+) and testing (x) data, i.e.
on the hold-out set. The hold-out test set was a randomly
sampled subset of size 20% of the given training set.

The generalization ability plotted on the right side clearly
shows the location where overfitting occurs and the train-
ing error is still minimized while the test error remains or
get worse. You can detect this area in the right plots at
places where the training error (4) and the testing error
(x) diverge. Since the x-axis in the right plots correspond
to a counter of solutions in the Pareto front, ordered by its
training errors which corresponds to the x-axis in the left
plot, you can find the interesting solutions in the Pareto
front in the same area as on the right side.

Please note that these types of plots could also be achieved
for other learning schemes (e.g. usual SVM) by iteratively
applying the learner for different parameter settings and pro-
duce the set of models in this way. The approach proposed
in this paper has the advantage that all models are calcu-
lated in one single run which is far less time-consuming.

7. CONCLUSION

Recently, evolutionary computation was connected with
statistical learning theory. The idea of large margin meth-
ods was very successful in many applications from machine
learning and data mining. Embedding evolution strategies
as the optimization scheme of a Support Vector Machine re-
sults in even better learning methods which frequently out-
perform traditional SVM. This is especially true in the case
of learning with non-positive semidefinite kernel functions
where traditional SVM implementations are not able to find
an optimum in feasible time.

http://yale.sf.net/

\==
1ev07 [wﬂ% Y

L i
osor |- % i

ses07 |

“6e+07 |-

7e+07 |

“ge+07
o

20000 20000 60000 80000 100000 120000 o 20 a0) a0 100 120 140 160

(a) Spiral Pareto (b) Spiral Generalization

(c) Checkerboard Pareto (d) Checkerboard Generalization

06

T Baames Hery

teso7 |

Aj%#%

3e+07 |

aes07 |

seso7 |

“se+07
o

5000 10000 15000 20000 25000 30000 35000 40000 45000 o 20 a0 s0 20 100 160

(e) Sonar Pareto

1e+07 |-

20407 |

se+07 |

-aeso7 |

seso7 |

seso7 |

revo7 -

se+o7 |

L

9e+07

B 20000 30000 60000 50000 100000 120000 o 20 a0 60 50 100 120 140 160

(g) Diabetes Pareto

=+ A&Eﬁ

Se+06 [
“1evo7 |
1sev07 [
2es07 [

250407 [

30407 o
o 5000 10000 15000 20000 25000 30000 35000 40000 o 20 a0 60 50 100 120 140 160

(i) Lupus Pareto (j) Lupus Generalization

+
o R oaf [
sovor |
aeson |-
saor |-
saor |-
ravor |

se+o7 |

9e+07

o 10000 20000 30000 20000 50000 60000 70000

(k) Crabs Pareto (1) Crabs Generalization

Figure 1: The left plot for each dataset shows the Pareto front delivered by the SVM proposed in this paper
(x: training error, y: margin size). The right plot shows the training (+) and testing (x) errors (on a hold-out
set of 20%) for all individuals of the resulting Pareto fronts (x: Pareto solution counter, y: errors).

In this paper, we demonstrated how the trade-off between
training error and model complexity can be made explicit.
We divided the optimization problem of SVM in two parts
and transformed both parts into its dual form of its own.
These transformations reduce the runtime for fitness evalu-
ation and provide space for other well-known improvements
like incorporating arbitrary kernel functions for non-linear
classification tasks.

We exploited the new objectives by employing a multi-
objective evolutionary algorithm after some consequences of
the explicit trade-off optimization were discussed. These in-
clude the possibility of further reduce runtime by using only
parts of the objectives and the optional usage of a hold-out
set in order to produce a hint which areas of the resulting
Pareto front should be inspected by the user. This turns the
Pareto front of all solutions between minimal training error
and minimal model complexity into a powerful tool for con-
trolling the overfitting of machine learning methods. Please
note that all information about these plots are collected in
one single run of the algorithm in contrast to wrapper ap-
proaches where the learner must be performed once for each
point of such an overfitting plot.

The idea of statistical learning theory, i.e. taking the
model complexity into account, is simple and appealing.
Current approaches, however, did not make use of the in-
herent trade-off but demanded the definition of a weighting
factor of the conflicting criteria from the user. The multi-
objective evolutionary SVM proposed in this paper is the
first solution explicitely solving the basic problem of statis-
tical learning theory.

8. ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) within the Collaborative Research Center
“Reduction of Complexity for Multivariate Data Structures”.

9. REFERENCES

[1] H.-G. Beyer and H.-P. Schwefel. Evolution strategies:
A comprehensive introduction. Journal Natural
Computing, 1(1):2-52, 2002.

[2] C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge
Discovery, 2(2):121-167, 1998.

[3] G. Camps-Valls, J. Martin-Guerrero, J. Rojo-Alvarez,
and E. Soria-Olivas. Fuzzy sigmoid kernel for support
vector classifiers. Neurocomputing, 62:501-506, 2004.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multi-objective genetic algorithm:
Nsga-ii. Technical report, Kanpur Genetic Algorithms
Laboratory, Indian Institute of Technology, 2002.

[5] F. Friedrichs and C. Igel. Evolutionary tuning of

multiple svm parameters. In Proc. of the 12th

European Symposium on Artificial Neural Networks

(ESANN 2004), pages 519-524, 2004.

H. Frphlich, O. Chapelle, and B. Schélkopf. Feature

selection for support vector machines using genetic

algorithms. International Journal on Artificial

Intelligence Tools, 13(4):791-800, 2004.

[7] B. Haasdonk. Feature space interpretation of svms
with indefinite kernels. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(4):482-492,
2005.

6

[8] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Series in Statistics.
Springer, 2001.

[9] T. Howley and M. Madden. The genetic kernel
support vector machine: Description and evaluation.
Artificial Intelligence Review, 2005.

[10] T. Joachims. A support vector method for
multivariate performance measures. In Proc. of the
International Conference on Machine Learning
(ICML), pages 377-384, 2005.

[11] S.-H. Jun and K.-W. Oh. An evolutionary statistical
learning theory. International Journal of
Computational Intelligence, 3(3):249-256, 2006.

[12] J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In Proc. of the International Conference
on Neural Networks, pages 1942-1948, 1995.

[13] H.-T. Lin and C.-J. Lin. A study on sigmoid kernels
for svm and the training of non-psd kernels by
smo-type methods, March 2003.

[14] I. Mierswa. Evolutionary learning with kernels: A
generic solution for large margin problems. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2006), 2006.

[15] 1. Mierswa. Making indefinite kernel learning
practical. Technical report, Collaborative Research
Center 475, University of Dortmund, 2006.

[16] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. YALE: Rapid prototyping for complex data
mining tasks. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD 2006), 2006.

[17] T. Runarsson and S. Sigurdsson. Asynchronous
parallel evolutionary model selection for support
vector machines. Neural Information Processing,
3(3):59-67, 2004.

[18] B. Scholkopf and A. J. Smola. Learning with Kernels —
Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, 2002.

[19] A. Smola, B. Scholkopf, and K.-R. Miiller. General
cost functions for support vector regression. In
Proceedings of the 8th International Conference on
Artificial Neural Networks, pages 79-83, 1998.

[20] A. J. Smola, Z. L. Ovari, and R. C. Williamson.
Regularization with dot-product kernels. In Proc. of
the Neural Information Processing Systems (NIPS),
pages 308-314, 2000.

[21] T. Storch. On the impact of objective function
transformations on evolutionary and black-box
algorithms. In Proc. of the Genetic and Evolutionary
Computation Conference (GECCO), pages 833-840,
2005.

[22] B. Taskar, V. Chatalbashev, D. Koller, and
C. Guestrin. Learning structured prediction models: A
large margin approach. In Proc. of the International
Conference on Machine Learning (ICML), 2005.

[23] V. Vapnik. Statistical Learning Theory. Wiley, New
York, 1998.

[24] J.-P. Vert, K. Tsuda, and B. Schélkopf. Kernel
Methods in Computational Biology, chapter A primer
on kernel methods, pages 35—70. MIT Press, 2004.

