
Efficient Feature Construction by Meta Learning –

Guiding the Search in Meta Hypothesis Space

Ingo Mierswa mierswa@ls8.cs.uni-dortmund.de

Michael Wurst wurst@ls8.cs.uni-dortmund.de

Artificial Intelligence Unit, Department of Computer Science, University of Dortmund, Germany

Abstract

Choosing the right internal representation of
examples and hypothesis is a key issue for
many learning problems. Feature construc-
tion is an approach to find such a representa-
tion independently of the underlying learning
algorithm. Unfortunately, the construction
of features usually implies searching a very
large space of possibilities and is often com-
putationally demanding. In this work, we
propose an approach to feature construction
that is based on Meta Learning. Learning
tasks are stored together with a correspond-
ing set of constructed features in a case base.
This case base is then used to constraint and
guide the feature construction for new tasks.
Our proposed method consists essentially of
a new representation model for learning tasks
and a corresponding two step distance mea-
sure. Our approach is unique as it enables us
to apply case based feature construction not
only on a large scale, but also in distributed
learning scenarios in which communication
cost plays an important role. Using the two
step process, the accuracy of recommenda-
tions can be increased while not loosing the
benefits of efficiency. The theoretical results
are also confirmed by experiments on both
synthetical data and data obtained from a
distributed learning scenario on audio data.

1. Introduction

Many inductive learning problems cannot be solved
accurately by using the original feature space. This
is due to the fact that standard learning algorithms

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

cannot represent complex relationships as induced for
example by trigonometric functions. For example, if
only base features X1 and X2 are given but the target
function depends highly on Xc = sin(X1 ·X2), the con-
struction of the feature Xc would ease learning – or is
necessary to enable any reasonable predictions at all.
Feature construction can help to deal with such prob-
lems by enriching the original feature space with ad-
ditional features (Blum & Langley, 1997; Dash & Liu,
1997; Koller & Sahami, 1996). Many algorithms can
be formulated in terms of kernel functions (Schölkopf
& Smola, 2002; Vapnik, 1995). Since the search for
an appropriate kernel is equivalent to the search for
an appropriate feature space transformation the suc-
cess of these algorithms also underlines the need for
feature construction. Unfortunately, feature construc-
tion is a computationally very demanding task often
requiring to search a very large space of possibilities
(Wolpert & Macready, 1997). In this work we consider
a scenario in which several learners face the problem
of feature construction on different learning problems.
The idea is to transfer constructed features between
similar learning tasks to speed up the generation in
such cases in which a successful feature has already
been generated by another feature constructor. Such
approaches are usually referred to as Meta Learning
(Vilalta & Drissi, 2002).

The importance of the representation bias, which is
closely related to feature construction, was recognized
since the early days of Meta Learning research (Bax-
ter, 1995; Baxter, 2000). Inductive learning is of-
ten regarded as a search for an optimal hypothesis in
a predefined space of possible hypothesis. A major
paradigm for Meta Learning is to use other learning
tasks to guide or constraint this search for a given
learning task. In the context of our approach, the
space of possible hypothesis is not fixed. It is opti-
mized itself by generating new features describing in-
put examples in a way that is more suitable for the sub-
sequent learning algorithm. This procedure can there-

fore be seen as search in a meta hypothesis space, con-
taining all possible representations of a given set of ex-
amples. While there are many efficient algorithms for
learning in fixed, predefined hypothesis spaces, search-
ing for an optimal hypothesis space can often be only
tackled by uninformed search strategies as evolution-
ary algorithms, which are in turn quite inefficient. It
is therefore very attractive to search for an alternative
strategy. In contrast to many classical Meta Learn-
ing approaches trying to guide the search in a prede-
fined hypothesis space, our approach tries to guide the
search in the meta hypothesis space.

As for many other Meta Learning methods (e.g. (Ben-
David & Schuller, 2003; Thrun & O’Sullivan, 1996)),
the definition of a similarity between different learn-
ing tasks is a key issue for our approach. Considering
the constraints and challenges of a distributed learn-
ing scenario we develop and analyze a method for fea-
ture construction based on Meta Learning that esti-
mates the distance of two learning tasks using only
base feature weights but not the data supporting the
learning tasks. All learners weight a common set of
base features according to their relevance to the given
learning task. Some of the learners, that have al-
ready performed feature construction, send these rel-
evance weights and the constructed features to a case
base. From this case base, learners can retrieve possi-
bly relevant features by sending their own base feature
weights. The central challenge is to find a measure that
compares two learning tasks accurately and efficiently
at the same time.

1.1. Outline

To motivate our approach, we discuss the challenges
of applying Meta Learning in large, highly distributed
domains in section 2. We give some definitions and
conceptual ideas in section 3. In section 4 we analyze
the problem of comparing learning tasks based only
on feature weights by stating some basic conditions.
We will see that the weights calculated by Support
Vector Machines in combination with the Manhattan
distance fulfill all conditions described in section 4. In
section 5 we will discuss some enhancements allowing
even more efficient and accurate case retrieval for case
based feature construction. The theoretical results are
also confirmed by experiments that will be discussed
in section 6.

2. Applying Meta Learning in Large,

Highly Distributed Domains

Our approach is motivated by our work in the field of
distributed multimedia learning. Concretely, we face a

scenario in which several users independently arrange
multimedia items according to some personal classi-
fication scheme. New items should be added to this
scheme automatically. This is achieved by Machine
Learning methods based on a set of audio features.
The audio features best suited for a given learning task
are chosen from an infinite space of possible features
as described in (Mierswa & Morik, 2005). Although
this approach is very well suited to achieve a high
accuracy, it is computationally very demanding and
therefore not applicable to an interactive end user sys-
tem. Meta Learning is an approach to achieve both
high accuracy and efficiency. The basic idea is that al-
though classification schemes created by the users may
differ in any possible way, we can assume that at least
some of them resemble each other to some extend, e. g.
many users arrange their music according to the genre.

In our opinion, this scenario is prototypical for many
current scenarios. There is a clear trend to substitute
centralized data mining and learning architectures by
highly distributed ones (Park & Kargupta, 2002). The
wide spread use of mobile devices makes the vision
of ubiquitous machine learning very realistic. Corre-
sponding systems are characterized on the one hand by
massive amounts of data fragmented in many local,
partially overlapping databases. On the other hand
they are characterized by a high degree of heterogene-
ity on different levels. Firstly, the data representation
can differ among different nodes. Secondly, the learn-
ing tasks and methods at different nodes can differ in
any possible way. Connected to this point is the ob-
servation, that learning tasks often occur in an ad hoc
fashion, based on a current information need of a user
or analyst and they may differ strongly from the ones
anticipated in the original design of the system. Fi-
nally, the computational power and the efficiency of
the network connection may vary to a large extend.
Mobile devices for example will often have only poor
processing speed and an inefficient network connec-
tion.

While some of these problems can best be approached
by methods developed in the area of Distributed Data
Mining, others give rise to new opportunities and
challenges in Meta Learning. Strong heterogeneity
in learning tasks demands new methods to compare
learning tasks effectively. The large number of individ-
ual learners and the ad hoc character of many learn-
ing problems demands efficient, flexible Meta Learning
methods. Minimal exchange of information is often a
constraint for the applicability of the system, as to al-
low the application in areas with poor network connec-
tion and high communication costs. Trivial solutions,
as sending a whole data set form a mobile device for

example to a computationally more powerful node are
ruled out by this constraint.

The methods described in this work represent a new
solution to some of these problem and challenges.

3. Basic Concepts

Before we state the conditions which must be met by
any method comparing learning tasks using feature
weights only, we first introduce some basic definitions.
Let T be the set of all learning tasks, a single task is
denoted by ti. Let Xi be a vector of random variables
for task ti and Yi another random variable, the target
variable. These obey a fixed but unknown probabil-
ity distribution Pr(Xi, Yi). The components of Xi are
called features Xik. The objective of every learning
task ti is to find a function hi(Xi) which predicts the
value of Yi. We assume that each set of features Xi

is partitioned in a set of base features XB which are
common for all learning tasks ti ∈ T and a set of con-
structed features Xi \ XB .

We now introduce a very simple model of feature rel-
evance and interaction. The feature Xik is assumed
to be irrelevant for a learning task ti if it does not
improve the classification accuracy:

Definition 1. A feature Xik is called irrelevant for
a learning task ti iff Xik is not correlated to the target
feature Yi, i. e. if Pr(Yi|Xik) = Pr(Yi).

The set of all irrelevant features for a learning task ti
is denoted by IFi.

Two features Xik and Xil are alternative for a learning
task ti, denoted by Xik ∼ Xil if they can be replaced
by each other without affecting the classification accu-
racy. For linear learning schemes this leads to:

Definition 2. Two features Xik and Xil are called
alternative for a learning task ti (written as Xik ∼
Xil) iff Xil = a + b · Xik with b > 0.

This is a very limited definition of alternative features.
However, we will show that most weighting algorithms
are already ruled out by conditions based on this sim-
ple definition.

4. Comparing Learning Tasks

Efficiently

The objective of our work is to speed up feature con-
struction and improve prediction accuracy by building
a case base containing pairs of learning tasks and cor-
responding sets of constructed features. We assume
that a learning task ti is completely represented by a
feature weight vector wi. The vector wi is calculated

from the base features XB only. This representation
of learning tasks is motivated by the idea that a given
learning scheme approximate similar constructed fea-
tures by a set of base features in a similar way, e. g. if
the constructed feature “sin(Xik · Xil)” is highly rele-
vant the features Xik and Xil are relevant as well.

Our approach works as follows: for a given learning
task ti we first calculate the relevance of all base fea-
tures XB . We then use a distance function d (ti, tj)
to find the k most similar learning tasks. Finally, we
create a set of constructed features as union of the
constructed features associated with these tasks. This
set is then evaluated on the learning task ti. If the
performance gain is sufficiently high (above a given
threshold) we store task ti in the case base as addi-
tional case. Otherwise, the constructed features are
only used as initialization for a classical feature con-
struction that is performed locally. If this leads to a
sufficiently high increase in performance, the task ti
is also stored to the case base along with the locally
generated features.

While feature weighting and feature construction are
well studied tasks, the core of our algorithm is the cal-
culation of d using only the relevance values of the base
features XB . In a first step, we define a set of condi-
tions which must be met by feature weighting schemes.
In a second step, a set of conditions for learning task
distance is defined which makes use of the weighting
conditions.

Weighting Conditions. Let w be a weighting

function w : XB → IR. Then the following must
hold:

(W1) w(Xik) = 0 if Xik ∈ XB is irrelevant

(W2) Fi ⊆ XB is a set of alternative features. Then

∀S ⊂ Fi :
∑

Xik∈S

w(Xik) =
∑

Xik∈Fi

w(Xik) = ŵ

(W3) w(Xik) = w(Xil) if Xik ∼ Xil

(W4) Let AF be a set of features where

∀Xik ∈ AF :

Xik ∈ IFi ∨ ∃Xil ∈ XB : Xik ∼ Xil.

Then

∀Xil ∈ XB :6 ∃Xik ∈ AF : Xil ∼ Xik :

w′(Xil) = w(Xil)

where w′ is a weighting function for

X ′

B = XB ∪ AF

These conditions state that irrelevant features have
weight 0 and that the sum of weights of alternative
features must be constant independently of the actual
number of alternative features used. Together with the
last condition it will be guaranteed that a set of alter-
native features is not more important than a single
feature.

Additionally, we can define a set of conditions which
must be met by distance measures for learning tasks
which are based on feature weights only:

Distance Conditions. A distance measure d for
learning tasks is a mapping d : T × T → IR+ which
should fulfill at least the following conditions:

(D1) d(t1, t2) = 0 ⇔ t1 = t2

(D2) d(t1, t2) = d(t2, t1)

(D3) d(t1, t3) ≤ d(t1, t2) + d(t2, t3)

(D4) d(t1, t2) = d(t′1, t
′

2) if

X ′

B = XB ∪ IF and IF ⊆ IF1 ∩ IF2

(D5) d(t1, t2) = d(t′1, t
′

2) if

X ′

B = XB ∪ AF and

∀Xk ∈ AF : ∃Xl ∈ XB : Xk ∼ Xl

(D1)–(D3) represent the conditions for a metric. These
conditions are required for efficient case retrieval and
indexing, using e. g. M-Trees (Ciaccia et al., 1997).
(D4) states that irrelevant features should not have
an influence on the distance. Finally, (D5) states that
adding alternative features should not have an influ-
ence on distance.

Many common feature weighting algorithms including
Relief, information gain, and feature selection do not
fulfill the weighting conditions stated above. Further-
more, the Euclidian distance can not be used for learn-
ing task distance in our scenario (Mierswa & Wurst,
2005). In this section we will state that the feature
weights delivered by a linear Support Vector Machine
(SVM) (Schölkopf & Smola, 2002; Vapnik, 1995) obeys
the proposed weighting conditions.

Theorem 1. The feature weight calculation of SVMs
with linear kernel function meets (W1)–(W4).

In order to calculate the distance of learning tasks
based only on a set of base feature weights we still need
a distance measure that met the conditions (D1)–(D5).

Theorem 2. Manhattan distance does fulfill the con-
ditions (D1)–(D5).

Proofs can be found in (Mierswa & Wurst, 2005).
We conclude that SVM feature weights in combina-
tion with Manhattan distance fulfill the necessary con-
straints for a learning task distance measure based on
feature weights.

5. Exploiting the Similarity of

Constructed Features

In the last section we discussed a distance measure on
a set of common base features. The calculations can be
performed in linear time of both the number of training
cases and the number of features. Furthermore, since
the measure is a metric, efficient indexing of cases is
possible using data structures like M-Trees.

However, if the base features are not sufficient to ap-
proximate the target function the base weights alone
might be a poor indicator for learning task distance.
In the following we introduce two extensions of the
case based feature construction approach. First, we
incorporate the similarity of constructed features into
the distance measure presented above. This follows
the idea that for similar learning tasks similar features
must be constructed. Without loss of generality, the
constructed features can be modeled as function trees.
In the case of value series data the constructed features
can be given as method trees (Mierswa & Morik, 2005).
In order to take the similarity of constructed features
into account, the distance between the feature trees
must be calculated. It has been shown that calculat-
ing the difference of two unordered labeled trees is an
NP-complete problem (Zhang et al., 1995). Approx-
imations for this problem using syntactical heuristics
are still not feasible for large feature trees and case
bases (Klein, 1998). Additionally, the data distribu-
tion is not considered by syntactical approaches. For
example, sin(x) is very similar to x for small absolute
values of x but of course not for x → ∞. Therefore, we
are using a probabilistic sampling approach consider-
ing the ranges of interest instead of syntactical heuris-
tics. The main routine just compares each constructed
features of the first learning task with all constructed
features of the second learning task. The minimum
distances for all features are summed up and returned
(Figure 1).

We employ a sampling approach for the routine
calc distance which ensures that the feature con-
struction distance is calculated in some range of in-
terest, i.e. with respect to the data distributions in
the base dimensions. Since the data is not accessible,
the basic idea is to generate m artificial data points
in the base space XB and construct both features Xik

and Xjl for this small artificial data set. The distance

Given: learning tasks ti and tj

total = 0;
for all constructed features Xik \ XB do {
dist = Infinity;
for all constructed features Xjl \ XB do {
dist = min(dist, calc distance(Xik, Xjl));

}
total = total + dist;

}
return total;

Figure 1. The main routine to calculate the distance be-
tween two different feature sets including constructed at-
tributes.

can then be calculated with help of the correlation co-
efficient or the absolute deviation of both constructed
features. To ensure that the m artificial points are
generated in interesting ranges of all dimensions the
data ranges of all features must be submitted to the
case base in addition to the base feature weights. If the
data is standardized only the standard deviation must
be transfered. Figure 2 shows the sampling based al-
gorithm calc distance using the squared correlation
as feature distance for constructed features.

Using a probabilistic sampling approach allows an es-
timation how the distance calculation varies with dif-
ferent possible samples. This way we are able to say
how close or far from the actual distance our estima-
tion is likely to be (Neal, 1993). Since the construction
of features can be done in O(1) (at least in the non-
series case), the runtime of this sampling approach is
quadratic in the number of constructed features and
linear in the number m of sample points and cases,
i.e. O(|Xi \ XB | · |Xj \ XB | · m) for each case. To
summarize this section, one can say that the sampling
based distance measure for constructed features does
not only consider the feature ranges but is also feasible
for large numbers of constructed attributes and cases.

The second extension to the case based feature con-
struction approach introduced above is to allow learn-
ers to query the case base repeatedly. We start using
base features only and add further features in each it-
eration until a given stopping criterion is fulfilled. This
can be a desired performance or a maximal amount of
time. In each step, a learner can construct features on
its own, e.g. with help of an evolutionary feature con-
struction approach. This can also be seen the other
way round: for an evolutionary approach the retrieval
of similar cases and construction of new features is just
another mutation of the input data.

Given: - base feature std. dev. σi and σj

- features Xik and Xjl

// calculate ranges
for (p = 1 until |XB |) do {

σp = min(σip,σjp);
}
// generate small artificial data set
artificial_data = empty;
for (i = 1 until m) do {
generate base feature data using σ;
construct Xik and Xjl on generated data;

}
// calculate correlation and return as distance
r = correlation(Xik,Xjl) on artificial_data;
return 1 - (r * r);

Figure 2. The routine calc distance which calculates the
distance between two constructed features using a range
sensitive sampling and the squared correlation on a small
artificially generated data set with size m.

5.1. Decreasing Runtime using a 2-Phase

Distance Calculation

We have seen that the runtime of the discussed learn-
ing task similarity using constructed features is more
efficient than other approaches calculating the syntac-
tical tree distance of constructed features. However,
a quadratic runtime might be to slow for real world
applications using huge case bases. In this section, we
combine both the simple base weight distance using
SVM weights with Manhattan distance and the sam-
pling based construction distance. In a first phase we
employ only the base feature weight distance to find
a candidate set of the k most promising cases. In a
second phase we use a weighted combination of both,
the weight distance and the construction sampling dis-
tance introduced in the last section. This leads to a
number of k′ cases from this candidate set whose con-
structed features are also constructed for the case at
hand. Of course these steps can be embedded in the
iterative learning process described above. The pa-
rameter k allows an adaption of the trade-off between
runtime and accuracy depending on the application.

6. Experiments

All experiments were performed with the machine
learning environment Yale (Fischer et al., 2002). Yale
is unique in that for the first time a single environ-
ment covers and joins methods of Machine Learning,
Meta Learning, and feature construction. Yale is open
source and available from our web site1.

1http://yale.cs.uni-dortmund.de.

6.1. Synthetical Data

Experiments were performed on synthetical data. All
cases have an important property: linear regression
schemes are not able to predict the target function
without applying some feature construction. A case
base containing maximal 1500 cases was generated.
For each case the following was done:

Example set generation: 500 examples with five base
features X1, . . . ,X5 were generated. The tar-
get variable obeys a randomly created regression
function containing the building blocks +, ∗, sin,
exp, abs and 1/x. The maximal depth of the tar-
get function was 3, the probability for a leafs, i. e.
a base attribute, was 0.2.

Weight calculation: The weights of the base features
were calculated with a linear SVM.

Feature construction: An evolutionary approach for
feature construction was used to generate new fea-
tures from the base features (Ritthoff et al., 2002)
with the following parameters: 400 generations,
population size 10, and crossover probability 0.5.

Adding the case: the standard deviations of the base
features, the base weights, and a syntactical de-
scription of the constructed features were added
to the case base. Please note that the case base
does not contain the data itself, information about
the target variable, or the learned hypothesis.

Figure 3 shows the base feature weights of all cases
after a dimensionality reduction onto two dimensions.
The five “axes” represents the five base features, the
outermost points on each axis derive from the cases
exp(exp(exp(xi))). Cases between two axes contain
functional parts depending on both base features.

After creation of the case base the 241 test cases were
created in the same manner but without feature con-
struction. It was not possible to reliably determine
the averaged relative error for these test cases without
using feature construction since most SVM runs does
not converge. The case based feature construction was
performed with the constructed features of the most
similar case only. If this case was randomly selected
from the case base without using a distance measure,
an averaged relative error of 4.010 and 8.720 respec-
tively could only be achieved for 1500 and 250 cases.
For the other case base sizes it was also not possible
to calculate an error in a reasonable amount of time.
All error estimations were done with a 10-fold cross
validation. Table 1 summarizes the results and Fig-
ure 4 plots the averaged relative errors of all 241 test

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 3. The base feature weights of the synthetical test
cases after a dimensionality reduction on two dimensions.

Size No Rand. Eucl. Manh. 2-phase
50 ∞ ∞ 0.228 0.213 0.145
100 ∞ ∞ 0.201 0.196 0.106
250 ∞ 8.720 0.125 0.125 0.102
500 ∞ ∞ 0.126 0.125 0.105
1000 ∞ ∞ 0.120 0.119 0.106
1500 ∞ 4.010 0.121 0.116 0.106

Table 1. The averaged relative errors for the different ap-
proaches. The symbol ∞ indicates that no result was pro-
duced in a reasonable amount of time.

cases against the number of used training cases. The
plot shows the errors for the combination of SVM fea-
ture weighting and Manhattan distance and the new
2-phase construction approach with Manhattan dis-
tance on the base feature weights in the first phase
(20 cases) and a construction sampling weight of 50.
Both approaches dramatically reduced the error com-
pared to the randomly selected cases and the 2-phase
distance outperforms the base weight only distance.
However, further experiments has shown that increas-
ing the number k′ of similar cases reduce the perfor-
mance gain of the 2-phase approach.

Our approach fulfills the constraints presented above
and can speed up the process of feature construction
considerably. The average time needed for the auto-
matic construction of an optimal feature set without
using the case base was 216.9 seconds. Using the fea-
ture construction induced by the most similar case re-
duces the time needed for learning to 2.18 seconds for
the Manhattan distance and 3.67 seconds for the 2-
phase approach. Using only the sampling construction
distance also provides a very competitive error of 0.109
but needs a runtime of 58.73 seconds for each case.

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 200 400 600 800 1000 1200 1400 1600

SVM + Manhattan
2-Phase

Figure 4. The results of case based feature construction.
The averaged relative error of all 241 test cases is plot-
ted against the number of cases used as case base. The
2-phase approach clearly outperforms the SVM plus Man-
hattan distance.

6.2. Real World Data

We performed additional experiments using real world
data based on the application described in section 2.
Our experiments are based on 20 taxonomies created
by a group of students. The underlying audio data
consists of about 2000 audio clips from the Garage-
band site2. The set of 20 seed taxonomies was ex-
tended by applying diverse mutation operations on
them (such as adding or deleting items or subtrees).
Although this leeds to data that is partially synthetic,
this approach is justified for the given application area,
as users of the system themselves often copy complete
taxonomies from other users and modify them to suit
their needs. So the data generation reflects the actual
mechanisms present in the system. In a second step,
the hierarchical classification problems are split into
a set of flat, binary classification problems, by using
each inner node with two or more children as a split
point. If there are more than two sub nodes, two of
them are selected at random. Also, all selected sub
nodes have to contain more than 30 examples, as very
small example sets would add a considerable amount
of noise. In this case, random recommendation of fea-
tures was compared with Manhattan and Euclidian
distance using case bases of different sizes. Twelve
base features were used to compare the cases. Fig-
ure 5 shows the base feature vectors of all cases after
a singular value decomposition to transform the data
into two dimensions. The accuracy was estimated by
10-fold cross validation using a test set of 100 classi-
fication tasks. Table 2 shows the results for different

2http://www.garageband.com

Size Random Manhattan Euclidian
0 73.36 73.36 73.36
3 76.31 77.11 76.96
5 78.20 81.80 81.92
10 79.16 82.34 82.48
20 77.23 81.35 81.49
100 77.79 82.88 82.95

Table 2. The accuracy achieved by randomly choosing
cases for feature construction, using the Manhattan and
Euclidian distances of base feature weights.

-0.1

-0.05

0

0.05

0.1

-0.06 -0.03 0 0.03

Figure 5. The base feature weights of the audio test cases
after a dimensionality reduction on two dimensions.

weighting approaches. Since the “sampling” of series
data is not as trivial as for the function experiments
discussed above, no results for the 2-phase approach
are provided for series data learning for now.

This evaluation is still preliminary, though it shows
some basic results. Meta Learning does significantly
improve the accuracy of the learners. If the number
of prototypical concepts is quite small, only very few
cases are sufficient to improve the results. There is no
significant difference between Manhattan and Euclid-
ian distance. This is due to the fact, that an optimized
set of base features was used, that by construction
contains only minimal redundancy. However, alter-
native features were the reason to prefer Manhattan
over Euclidian distance. For our future work, we plan
to gather additional empirical user data and to pub-
lish it as a benchmark data set for meta- and audio
learning. Please contact us for a preliminary version
of this data set.

7. Conclusion and Outlook

We presented a Meta Learning approach to fea-
ture construction that compares tasks using relevance

weights on a common set of base features only. A SVM
as base feature weighting algorithm and the Man-
hattan distance fulfill some very basic conditions for
such a learning task distance measure. We have pre-
sented some experimental results on both synthetical
and real-world data indicating that our method can
speed up feature construction considerably.

This paper introduces some enhancements for this case
based feature construction approach. These enhance-
ments include the distance calculation of already con-
structed features using a sampling procedure in a 2-
phase distance measure. For our future work on the
subject we plan to incorporate generated features from
value series data in our distance measure too. An-
other direction of work is to analyze the relationship
between base feature weights and generated features to
get further insight which weighting methods are suit-
able. Finally, we plan to perform further empirical
experiments using other real world data.

References

Baxter, J. (1995). Learning internal representations.
Proc. of the 8th annual conference on Computational
Learning Theory (pp. 311–320). ACM Press.

Baxter, J. (2000). A model of inductive bias learning.
Journal of Artificial Intelligence Research, 12, 149–
198.

Ben-David, S., & Schuller, R. (2003). Exploiting task
relatedness for multiple task learning. Proc. of the
Sixteenth Annual Conference on Learning Theory
COLT 2003.

Blum, A. L., & Langley, P. (1997). Selection of relevant
features and examples in machine learning. Artificial
Intelligence, 245–271.

Ciaccia, P., Patella, M., & Zezula, P. (1997). M-tree:
An efficient access method for similarity search in
metric spaces. Proc. of 23rd International Confer-
ence on Very Large Data Bases (pp. 426–435). Mor-
gan Kaufmann.

Dash, M., & Liu, H. (1997). Feature selection for clas-
sification. International Journal of Intelligent Data
Analysis, 1, 131–156.

Fischer, S., Klinkenberg, R., Mierswa, I., & Ritthoff,
O. (2002). Yale: Yet Another Learning Environment
– Tutorial (Technical Report CI-136/02). Collabora-
tive Research Center 531, University of Dortmund,
Dortmund, Germany.

Klein, P. (1998). Computing the edit-distance between
unrooted ordered trees. Proc. of the 6th Annual Eu-
ropean Symposium (pp. 91–102). Springer, Berlin.

Koller, D., & Sahami, M. (1996). Toward optimal fea-
ture selection. Proc. of the Thirteenth International
Conference on Machine Learning (pp. 129–134).

Mierswa, I., & Morik, K. (2005). Automatic feature ex-
traction for classifying audio data. Machine Learn-
ing Journal, 58, 127–149.

Mierswa, I., & Wurst, M. (2005). Efficient case based
feature construction for heterogeneous learning tasks
(Technical Report CI-194/05). Collaborative Re-
search Center 531, University of Dortmund.

Neal, R. M. (1993). Probabilistic Inference Using
Markov Chain Monte Carlo Methods (Technical Re-
port). Department of Computer Science, University
of Toronto.

Park, B., & Kargupta, H. (2002). Distributed Data
Mining: Algorithms, Systems, and Applications. In
N. Ye (Ed.), Data Mining Handbook, 341–358. IEA.

Ritthoff, O., Klinkenberg, R., Fischer, S., & Mierswa,
I. (2002). A hybrid approach to feature selection and
generation using an evolutionary algorithm. Proc. of
the 2002 U.K. Workshop on Computational Intelli-
gence (pp. 147–154).

Schölkopf, B., & Smola, A. J. (2002). Learning with
kernels – support vector machines, regularization,
optimization, and beyond. MIT Press.

Thrun, S., & O’Sullivan, J. (1996). Discovering struc-
ture in multiple learning tasks: The TC algorithm.
Proc. of the 13th International Conference on Ma-
chine Learning. Morgen Kaufmann.

Vapnik, V. N. (1995). The nature of statistical learning
theory. New York: Springer.

Vilalta, R., & Drissi, Y. (2002). A perspective view
and survey of meta-learning. Artificial Intelligence
Review, 18, 77–95.

Wolpert, D., & Macready, W. (1997). No free lunch
theorems for optimisation. IEEE Trans. on Evolu-
tionary Computation, 1, 67–82.

Zhang, K., Wang, J. T. L., & Shasha, D. (1995).
On the editing distance between undirected acyclic
graphs and related problems. Proc. of the 6th An-
nual Symposium on Combinatorial Pattern Match-
ing (pp. 395–407). Springer, Berlin.

