
Knowledge Discovery in Databases { An

Inductive Logic Programming Approach

Katharina Morik

Univ. Dortmund, Computer Science Department, LS VIII

Abstract. The need for learning from databases has increased along
with their number and size. The new �eld of Knowledge Discovery in
Databases (KDD) develops methods that discover relevant knowledge in
very large databases. Machine learning, statistics, and database meth-
odology contribute to this exciting �eld. In this paper, the discovery of
knowledge in the form of Horn clauses is described. A case study of dir-
ectly coupling an inductive logic programming (ILP) algorithm with a
database system is presented.

1 Introduction

Databases are used in almost all branches of industry and commerce. The aim
of KDD is to discover rules hidden in these collected data.

The task of KDD is challenging, for the following reasons:

{ The amount of database tuples from which an algorithm learns exceeds the
number of examples that are usually handled by a learning algorithm or
a statistical procedure. Real-world KDD applications have to cope with a
number of tuples on the order of several hundred thousand.

{ The amount of database attributes (on the order of several hundred) exceeds
the number of features that are usually handled by a learning algorithm.

{ The task of �nding all valid rules hidden in a database is more di�cult than
other learning tasks (see Section 2).

Several such learning algorithms for KDD exist: Bayesian and Neural Net-
works, induction of decision trees, minimal description length algorithms, learn-
ing of association rules { to name but the most common ones 1. In order to
reduce the number of attributes, these algorithms reduce the database in one or
both of the following ways:

{ Analysis is only done of one database attribute or of the equivalent set of
attributes with binary values.

{ Analysis is only done on one database table comprised of the most interesting
attributes. Frequently, this table is created in a pre-processing step. 2

1 The KDD books give a comprehensive overview of the �eld [10] [4]. For fast neural
learning see also [11]

2 In principle, learning from just one database table is not a restriction { it could
be the universal relation and cover what was originally stored in many tables. In
practice, however, the universal relation of real-world databases is so large that it
cannot be e�ciently managed, nor can the learning algorithms handle it.

In addition to restricting the database, most algorithms restrict the dis-
covered knowledge to an attribute-value representation (propositional logic),
possibly with the extension of probabilistic annotations or certainty factors. This
is a severe restriction, since it excludes relational or structural knowledge. Saso
Dzeroski has given a nice example to illustrate this [3]: Figure 1 shows data in
two tables of a database. If restricted to propositional knowledge, an algorithm
could discover the following rules in the data:

income(Person) � 100000! customer(Person) = yes

sex(Person) = f&age(Person) � 32! customer(Person) = yes

Rules like the following cannot be expressed (and therefore not be learned)
by these algorithms:

(i) married(Person; Spouse)&customer yes(Person)
! customer yes(Spouse)

(ii) married(Person; Spouse)&income(Person;� 100000)! customer yes(Spouse)

potential customer married
person age sex income customer husband wife

Ann Smith 32 f 10 000 yes Jack Brown Jane Brown
Joan Gray 53 f 1 000 000 yes Bob Smith Ann Smith
Mary Blythe 27 f 20 000 no
Jane Brown 55 f 20 000 yes
Bob Smith 30 m 100 000 yes
Jack Brown 50 m 200 000 yes

Fig. 1. Relational database with two tables

Other relations that cannot be expressed or characterized in propositional
logic include spatial relations, time relations, or the connectivity of nodes in a
graph. For such knowledge, a (restricted) �rst-order logic is necessary. Inductive
Logic Programming (ILP) is the �eld within machine learning which investigates
Learning hypotheses in a restricted �rst-order logic. In Section 3 we show how to
overcome the common restrictions (learning propositional rules from one attrib-
ute or one database table) by an ILP algorithm without becoming ine�cient.

2 The Learning Task in a Logical Setting

The task of knowledge discovery in a broad sense includes interaction with the
knowledge users, the database managers and data analysts. Learning rules from
data is then one important part of the overall task of KDD. The rule learning
task has been stated formally by Nicolas Helft [5] using the logical notion of
minimal models of a theory M+(Th) �M(Th).

Minimal model. An interpretation I is a model of a theory Th, M(Th), if
it is true for every sentence in Th. An interpretation I is a minimal model

of Th, written M+(Th), if I is a model of Th and there does not exist an
interpretation I 0 that is a model of Th and I 0 � I .

Rule learning
Given observations E in a representation language LE and background know-
ledge B in a representation language LB,
�nd the set of hypotheses H in LH, which is a (restricted) �rst-order logic, such
that

(1) M+(B [E) �M(H) (validity of H)
(2) for each h 2 H there exists e 2 E such that B; E�feg 6j= e and B; E�feg; h j=

e (necessity of h)
(3) for each h 2 LH satisfying (1) and (2), it is true that H j= h (completeness

of H)
(4) There is no proper subset G of H which is valid and complete (minimality

of H).

Since the hypotheses H, i.e. sets of rules, are valid in all minimal models
of background knowledge and examples, the �rst condition asks for a deductive
step. It corresponds to the application of the closed-world assumption, i.e. all but
the stated assertions are false. The second condition restricts the learning result
to those rules that are related to given observations. There might be additional
valid rules, for instance tautologies, but we are not interested in them. The most
important condition is the third one which demands that all valid and necessary
rules must be found. Condition (4) formalizes the non-redundancy requirement.
This learning task has been taken up by several ILP researchers, e.g., [7], [2]. It
is more di�cult than the classical concept learning task described below:

Concept learning
Given positive and negative examples E = E+[E� in a representation language
LE and background knowledge B in a representation language LB,
�nd a hypothesis H in a representation language LH, which is a (restricted)
�rst-order logic, such that

(1) B;H; E+ 6j= 2 (consistency)
(2) B;H j= E+ (completeness of H)
(3) 8e� 2 E� : B;H 6j= e� (accuracy of H)

The di�erence between the two learning tasks can be illustrated by our small
example database (Figure 1). For the sake of clarity, let us reduce the table poten-
tial customer to the attributes customer and income and replace the numerical
values of income by low, high in the obvious way. We consider the observation
E to be the attribute customer and the background knowledge B to be income

and married to. In addition to rules (i) and (ii) { where � 100000 is replaced by
high { rule learning will �nd

(iii) income(Person; high)! customer yes(Person)

Let us now inspect two variants of our example in order to clarify the di�er-
ences. Case 1: It is unknown whether jane is a customer. Case 2: Both, the
income of jack and whether jane is a customer are unknown. In the �rst case,
condition (1) of rule learning leads to the rejection of rules (i) and (ii), since
jane is not a customer in all minimal models of E and B. Only rule (iii) is
valid regardless of whether or not jane is a customer. If we regard the attribute
value yes of customer as the classi�cation of positive examples and the value no
as the classi�cation of negative examples, then we can apply concept learning
on customer yes. Not knowing whether jane is a customer does not prevent
concept learning from �nding rules (i) and (ii). customer yes(jane) will be pre-
dicted. Concept learning will deliver (i) and (iii), or (ii) and (iii), depending on
its preference. The task of deriving the positive examples is accomplished with
either of the two sets of rules. If negative examples are not explicitly stated but
are derived using the closed-world assumption, however, concept learning rejects
rules (i) and (ii) (accuracy condition of concept learning). Rule (iii) alone cannot
derive that ann is a customer. Because of its completeness condition, concept
learning fails when using the closed-world assumption.

In the second case, the rules (i) { (iii) cannot derive customer yes(jack).
The completeness condition of concept learning leads to the rejection of rules
(i) { (iii). Even without the closed-world assumption, concept learning does not
deliver a result at all. Rule learning still �nds rule (iii). In summary, rule learning
�nds rules in all cases, whereas concept learning fails to �nd any rule in case 2 and
under the closed-world assumption in case 1. The rules found by rule learning are
closer to the data (i.e. less predictive) than the rules found by concept learning.
The rule learning task is more di�cult than the concept learning task because
there are learning problems that can be solved by rule learning, but not by
concept learning (case 2), and there are no learning problems that can be solved
by concept learning but not by rule learning 3. The completeness condition of
�nding all valid and possibly interesting rules is the formalization of the learning
task in KDD.

3 Discovery of Horn Clauses

The previous section states formally what it means to �nd all valid, necessary,
and non-redundant rules. In addition, the user indicates the kind of hypotheses
in which he or she is interested. The system then restricts LH to those hypotheses
that �t the user-given declarative bias. This method o�ers two advantages: it
allows users to tailor the learning procedure to their goals and, by restricting the
space of all hypotheses, it makes rule learning feasible. Of course, there is a price
to pay: the tailored learning procedure misses interesting rules that do not �t into
the user-given hypothesis space. Our learning procedure, the Rule Discovery Tool

3 Stephen Muggleton and Luc De Raedt have shown for languages LB and LH being
restricted to de�nite clauses that rule learning covers concept learning [9]. J�org-Uwe
Kietz has generalized their �nding and gives proofs of the di�culty of learning for
various restrictions of �rst-order logic [6].

(RDT) and its adaptation in order to learn directly from databases (RDT/DB)
has been described elsewhere [7], [8], [1]. Here, we shortly summarize its main
algorithm and give an example of its declarative bias.

The user-given bias is a set of rule schemata. A rule schema has predicate
variables that can be instantiated by predicates of the domain. An instantiated
rule schema is a rule. Rule schemata are partially ordered according to their gen-
erality. For our small database, a user might specify the following rule schemata
m1, m2, and m3 which restrict hypotheses to one or two conditions for the
conclusion. An additional predicate in the premise makes a rule more speci�c.

m1(P, Q): P (X)! Q(X)
m2(P1, P2): P1(X)&P2(X)! Q(X)
m3(P1, P2): P1(X;Y)&P2(Y)! Q(X)

RDT's learning procedure consists of two steps: hypothesis generation and test-
ing. In a top-down, breadth-�rst manner, all possible instantiations of the rule
schemata are generated and tested via SQL-queries to the database. The follow-
ing rules instantiate m1 in our example:

age young(X)! customer yes(X)
age middle(X)! customer yes(X)
age old(X)! customer yes(X)
sex f(X)! customer yes(X)
sex m(X)! customer yes(X)
income high(X)! customer yes(X)
income low(X)! customer yes(X)
Rules and rule schemata depend on a mapping from the database represent-

ation to predicates. Here, we have chosen a representation in propositional logic
for the customer table. The discretized attribute values are used as predicates.
The name of the person (i.e. the key of the table) is the only argument of these
predicates. An alternative mapping is implicitly given by rule (iii) above. There,
the attribute of the database becomes the predicate; the key and the attribute
value become its arguments. Another alternative is to map the table name onto
the predicate and have all attributes as arguments. This is the natural mapping
for the married table as is implicit in rules (i) and (ii). The user can specify a
mapping from the database to the rule representation.

Hypothesis testing uses the speci�ed mapping when creating SQL queries.
A user-given acceptance criterion is used to decide whether the result of the
queries for supporting and non supporting tuples is su�cient for accepting the
hypothesis. If a rule has enough support but too many non supporting tuples, it
is considered too general. Later on, it becomes a partial instantiation of a more
speci�c rule schema if this exists. If a rule does not have enough support, it is
considered too speci�c. In this case, the rule need not be specialized further,
since this cannot increase the number of supporting tuples. RDT safely prunes
the search in this case. RDT learns all valid rules that �t the declarative bias. The
important points of this learning procedure its declarative bias and its top-down,
breadth-�rst re�nement strategy which allows the pruning of large parts of the
hypothesis space. This makes rule learning from very large databases tractable.

4 Experiments

We have run RDT/DB on various large data sets. An illustrative example is
vehicle data from Daimler Benz AG. Here, we have solved two learning problems.
First of all, we learned characteristics of warranty cases. This learning task is
close to concept learning, since the learned rules characterize cars of one class or
concept, namely the warranty cases. However, the task was not to �nd a set of
rules that completely derives all warranty cases (the completeness condition of
concept learning). Instead, the task was to �nd all relevant rules about warranty
cases (the completeness condition of rule learning). That is, we wanted to �nd
out what the data tell us about warranty cases.

RDT/DB accomplishes this learning task by instantiating the predicate vari-
able of the conclusion in all rule schemata by the predicate warranty(X). Fol-
lowing the advice of the Mercedes technicians, we separated the data into three
subsets: gasoline engines and manual gearshift, gasoline engines and automatic
gearshift, and diesel engine and automatic gearshift. In each of these subsets,
the number of database tables is 23, and the largest number of tuples in a data-
base table was 111,995. We selected up to 3 relevant attributes of each table
so that one observation consists of 26 attributes which must be collected us-
ing 23 database tables. Using 3 rule schemata, RDT/DB learned rules like the
following:

(iv) rel niveaureg(X) ! warranty(X) stating that vehicles with the special
equipment of Niveauregulierung are more likely to be warranty cases than all
other cars, taking into account the distribution of cars with this equipment.

(v) motor e type(X;Type)&mobr cyl(Type; 6:0) ! warranty(X) stating that
vehicles of an engine type that has 6 cylinders are more likely to be warranty
cases than one would predict on the basis of the overall warranty rate and
the proportion of cars with this characteristic.

The second learning task was to analyze warranty cases in which parts of a
particular functional or spatial group (e.g., having to do with fuel injection) were
claimed to be defective. We investigated 9 groups of car parts. Here, RDT/DB
inserted { one after the other { 9 predicates as the conclusion of all rule schemata.
We used 13 rule schemata. We speci�ed an acceptance criterion inspired by
Bayes:

pos

pos+neg
� concl

concl+negconcl

where pos is the number of tuples for which the premise and the conclusion
are true, neg is the number of tuples for which the premise is true but the
conclusion is not true, concl is the number of tuples for which the conclusion is
true, regardless of any premise, and negconcl is the number of tuples for which
the conclusion is not true. The �rst expression corresponds to the conditional
probability of the conclusion given the conditions described by the premise. The
second expression corresponds to the a priori probability of the conclusion 4.

4 Note that the data set is complete, i.e. all vehicles of a certain engine and gearshift
are known to the system. This means that prior probabilities can be reduced to

For 5 groups of car parts, RDT/DB found no rules that ful�ll the acceptance
criterion. In contrast, 4 groups of parts were described by rules like the following:

(vi) rel warranty(X1; X2; RB;X4; X5; X6; X7; Config; Part)&
rel warranty gasman(X1; X2; RB;X4; X5; X6; X7; V ID)&
rel motor(V ID; Type; V ariant)&engine perform(Type; V ariant; 236)
! class 15(Config; Part)

(vii) rel warranty(X1; X2; RB;X4; X5; X6; X7; Config; Part)&
rel warranty gasman(X1; X2; RB;X4; X5; X6; X7; V ID)&
rel motor type(V ID; 206)®ions italy(RB) ! class 419(Config; Part)

Rule (vi) combines 3 database tables (rel warranty, rel warranty gasman, and
rel motor). It states that engines with a particular performance have more
trouble with parts of the group class 15 than we would expect, given their
overall frequency. Rule (vii) states that Italian engines of type 206 often have
fuel injections (class 419) that have been claimed as defective. The regions of
the workshops where a car has been repaired are background knowledge that
has been added to the database.

Figure 4 summarizes the system's performance, running on a Sparc 20 com-
puter. The variation in CPU run-times for the �rst learning task is due to prun-
ing. The run-time for the second learning task is justi�ed by the di�culty of the
learning task: 9 instead of 1 conclusion predicates, 13 instead of 3 rule schemata.
Moreover, for the second learning task a join using a table with 700,000 tuples
was necessary. Note, that operations which other learning procedures perform in
a preprocessing step, such as join operations, selections, groupings in the data-
base, are here performed within the hypothesis testing step, since we are working
directly on the database.

Data set tables tuples rules learned run-time

gas. manual 23 111995 17 3 min. 15 secs.
gas. autom. 23 111995 79 3 h. 1 min. 46 secs.
diesel autom. 23 111995 15 7 min. 29 secs.

car parts 16 700000 92 49 h. 32 min. 44 secs.

Fig. 2. RDT/DB learning from databases

5 Conclusion

We have formalized the learning step within KDD as a rule learning task and
have contrasted it with the concept learning task. Since some of the interesting
rules that are hidden in databases cannot be expressed in propositional logic,

frequencies. The criterion is applicable, because for every particular rule to be tested,
we have two classes: the group of parts in the conclusion and all other groups of parts.

we have adopted the approach of ILP, which can express rules in restricted
FOL. We have shown that RDT/DB, an ILP algorithm which directly accesses
ORACLE databases, is capable of solving the di�cult task of rule learning. Using
a declarative bias which narrows the hypothesis space allows RDT/DB to learn
�rst-order logic rules from diverse tables, even when the number of tuples is
large. However, directly using the database makes hypothesis testing ine�cient.
Each hypothesis is tested using two SQL queries, which count supporting and
non supporting tuples. These tuples are not stored in the main memory under
the control of the learning system. If a hypothesis is specialized later on, a
subset of the already computed set of tuples must be selected. In our approach,
however, the result of previous hypothesis testing is lost and the new SQL query
computes the large set of tuples anew and then selects within it. Now that we
have restricted hypothesis generation successfully, improvements to hypothesis
testing are necessary.

References

1. Peter Brockhausen and Katharina Morik. A multistrategy approach to relational
knowledge discovery in databases. Machine Learning Journal, to appear 1997.

2. L. DeRaedt and M. Bruynooghe. An overview of the interactive concept{learner
and theory revisor CLINT. In Stephen Muggleton, editor, Inductive Logic Pro-

gramming., number 38 in The A.P.I.C. Series, chapter 8, pages 163{192. Academic
Press, London [u.a.], 1992.

3. Saso Dzeroski. Inductive logic programming and knowledge discovery in databases.
In Usama M. Fayyad et al., editors, see 4., pages 117{152.

4. Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy
Uthurusamy, editors. Advances in Knowledge Discovery and Data Mining. AAAI
Press Series in Computer Science. A Bradford Book, The MIT Press, Cambridge
Massachusetts, London England, 1996.

5. Nicolas Helft. Inductive generalisation: A logical framework. In Procs. of the 2nd

European Working Session on Learning, 1987.
6. J�org Uwe Kietz. Induktive Analyse relationaler Daten. PhD thesis, Technische

Universit�at Berlin, 1996.
7. J�org-Uwe Kietz and Stefan Wrobel. Controlling the complexity of learning in

logic through syntactic and task{oriented models. In Stephen Muggleton, editor,
Inductive Logic Programming, chapter 16, pages 335{360. Academic Press, London,
1992.

8. Guido Lindner and Katharina Morik. Coupling a relational learning algorithm with
a database system. In Kodrato�, Nakhaeizadek, and Taylor, editors, Statistics,
Machine Learning, and Knowledge Discovery in Databases, MLnet Familiarization
Workshops, pages 163 { 168. MLnet, April 1995.

9. S. Muggleton and Luc De Raedt. Inductive logic programming: Theory and meth-
ods. Journal of Logic Programming, 19/20:629{679, 1994.

10. Gregory Piatetsky-Shapiro and William J. Frawley, editors. Knowledge Discovery

in Databases. The AAAI Press, Menlo Park, 1991.
11. J. Schmidhuber and D. Prelinger. Discovering predictable classi�cations. Neural

Computation, 5(4):625 { 635, 1993.

