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Abstract
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1. Introduction

An abundance of information is generated during the process of critical care.
Much of this information can now be captured and stored using clinical informa-
tion systems (CIS) that have become commercially available for use in intensive
care over the last years. These systems provide for a complete medical documenta-
tion at the bedside and their clinical usefulness and efficiency has been shown
repeatedly [8.9.13]. While databases with more than 2000 separate patient-related
variables are now available for further analysis (10], the multitude of variables
presented at the bedside even without a CIS precludes medical judgement by
humans. A physician may be confronted with more than 200 variables in the
critically ill during a typical morning round [25]. We know. however, that even an
experienced physician is often not able to develop a systematic response to any
problem involving more than seven variables [22]. Moreover. humans are limited in

- their ability to estimate the degree of relatedness between only two variables [15].
This problem is most pronounced in the evaluation of the measurable effect of a
therapeutic intervention. Personal bias, experience, and a certain expectation to-
ward the respective intervention may distort an objective judgement [6]. These
arguments motivate the use of decision support systems.

Clinical decision support aims at providing health care professionals with therapy -
guidelines directly at the bed-side. This should enhance the quality of clinical care,
since guidelines sort out high value practices from those that have little or no value.
The goal of decision support is to supply the best recommendation under all
circumstances [26]. The computerized protocol of care can take into account more
aspects of the patient than a physician can accommodate. It is not disturbed by

’ circumstances or hospital constraints. It bridges the gap between low-level numeri-
cal measurements (the level of the equipment) and high-level qualitative principles
(the level of medical reasoning). While knowledge-based systems have mostly been
applied for diagnosis and therapy planning (e.g. [19,28]), some systems also aim at
on-line patient monitoring {7,21,26]. Methods that have proved their value in
handling low-frequency patient data are not applicable for on-line monitoring [21}.
Quantitative measurements and qualitative reasoning have to be integrated in a
system that recommends interventions in real-time. The numerical measurements of
the patients’ vital signs have to be abstracted into qualitative terms of high
abstraction. The aspect of time has to be handled both at the level of measurements
and the level of expert knowledge (4,17,21,28]. In the expert’s reasoning, time
becomes the relation between time intervals, abstracting from the exact duration of,
¢.g. an increasing heart rate, and focusing on tendencies of other parameters (e.g.
cardiac output) within overlapping time intervals.

One of the big obstacles to the more frequent implementation of decision support
systems is the tedious and time-consuming task of developing the knowledge base.
The decision support system for respiratory care at the LDS Hospital, Salt Lake
City. USA [26], for instance, has been developed in about 25 person years. The
method of guideline development itself is not supported by a computer system.
Mechanisms of temporal abstraction and reasoning presuppose manually designed
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models or ontologies [4.21.28]. Why not use techniques of knowledge discovery and
statistical time series analysis in order to ease the process of guideline generation?
Machine learning and statistical analysis have been applied in building-up diagnos-
tical systems successfully (e.g. (18,20,30,36]). We now want to exploit the huge
amount of data for the development of guidelines for on-line monitoring. Our task
is to build a decision support system for online hemodynamic monitoring in the
critically ill. We do not aim at modeling the actual physician’s behavior Imitating
the actual interventions made by physicians is not the goal. Actual behavior is
influenced by the overall hospital situation, e.g. how long is the physician on duty,
how many patients require attention at the same time. Machine learning from
patients’ data could lead to a knowledge base that mirrors such disturbing effects.
Therefore. the learned decision rules have to be checked by additional rules about
effects of drug and fluid administration. Our approach is to combine statistics,

knowledge acquisition, and machine learning. Our aim is to develop a method for

* guideline generation that is faster and more reliable than current methods.

Data for statistical evaluation and learning can be provided by the CIS. How-
ever. the nature of the data is different from that gathered in controlled experi-
ments. While a CIS in modern intensive care can take numerous measurements
every minute, the values of some vital signs are sometimes recorded only once every
hour. Other vital signs are recorded only for 2 subset of the patients. Hence, the
overall high dimensional data space is sparsely populated. Moreover, the average
time difference between intervention as charted and estimated hemodynamic effect
can show a wide variation [12]. Even the automatic measurements can be noisy due
to manipulation of measurement equipment, flushing of pressure transducers, or
technical artifacts. In some cases, relevant demographic and diagnostic parameters
may even not be recorded at all. In summary, we have a large amount of high
dimensional, numerical time series data that contains missing values and noise.
Using this data already at the stage of development of the decision support system
stave off surprises at the stage of clinical experience as have been reported in [2], p.
5721: ‘the huge number of measurements classified as invalid is quite astonishing
although it reflects the real clinical environments’.

In addition to problems of knowledge acquisition, we see a particular need for
knowledge validation. It should be noted that many medical guidelines published
today are neither evidence-based nor sufficiently validated against real patient data.
The current procedure is to first develop the guideline, then represent it in a
knowledge-based system, and finally to test it in clinical studies. In this ‘waterfall’
process, unrealistic assumptions, mistakes, and flaws are recognized at a late stage.
In contrast, our approach includes validation from the very beginning. Using a
knowledge-based system early on supports the validation of the knowledge base at
earlier stages. Inconsistencies within the knowledge base as well as a mismatch of
rules and patient data are detected while developing the knowledge base. This
facilitates and focuses the knowledge-acquisition process.

In order to test our approach to using real clinical data for building and
validating a knowledge base for online monitoring, we have constructed a system.
Its overall architecture is shown in Fig. 1. The patients’ measurements are used to
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recommend an intervention and are abstracted with respect to their course over

. time. The recommendation of interventions constitutes a model of physician
behavior. This asks for further validation. Therefore, a recommended intervention
is checked by calculating its expected effects on the basis of medical knowledge. In
this way, a qualitative assessment of a statistical prediction enhances the model of
physician behavior in order to obtain a model of best practice. The medical
knowledge constitutes a model of the patients’ hemodynamic system. This model is
validated with respect to past patients’ data. The processes we have implemented
are outlined in the following sections.

1.1. Data abstraction

Given series of measurements of one vital sign of the patient, data abstraction
detects and possibly eliminates outliers and finds level changes by good statistical
- practice. This abstracts the measurements to qualitative propositions with respect to
a time interval, e.g. within time point 12 and time point 63 the heart rate remained
about equal, from time point 63 to time point 69 it was increasing. Our approach
is based on statistical time series analysis. Classical autoregressive moving average
(ARMA) modelling [3] is applied with corresponding outlier- and level shift
detection procedures using the new tool of a phase space embedding. The statistical
method for data abstraction is described in Section 3.
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Fig. 1. Overall architecture.
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1.2. Data-driven acquisition of state-action rules

Given the numerical data describing vital signs of the patient and his or her
current medication, the task of acquiring state-action rules is to find the appropriate
intervention. An intervention is formalized as increasing, decreasing or not chang-
ing the dose of a drug. The decision is made every minute. These rules were learned
by the support vector machine [37]. Section 4 shows how we applied the support

vector machine to learn state-action rules.

1.3. Acquisition of medical knowledge

Given text book knowledge and explanations by an expert. the task of acquiring
medical knowledge is to represent the effects of substances in different dosages.

relations between vital signs, and interreiations between different substances, and
validate the knowledge on the basis of past patients’ data. The knowledge acquisi-

tion and validation was supported by the MOBAL system [24]. Section 5 gives a
short introduction to the system and its representation of medical knowledge. It is
stressed how MOBAL is capable of checking the knowledge base against patient

data.

1.4. Validation of recommended interventions

Interventions — especially those recommended by a learned rule — are to be
validated by the action-effect of rules of the knowledge base. This validation task

. is:
Given
e the state of a patient described in qualitative terms;
o medical knowledge;
e a sequence of interventions, and
e a recommended intervention,

find the effects of the current intervention on the patient. The derivation of effects
is made for each intervention as forward inference within MOBAL. The effect
should result in a stable state of the patient. The validation is detailed in Section

6

The outline of this paper is as follows. Throughout the paper we report on the

continuous development of a decision support system for intensive care as per-
formed at the City Hospital and the University of Dortmund. We start with a
description of the data acquisition process at the hospital and the resulting data
set {13] and then report on each of the processes which we have developed. A

statistical method for data abstraction is described in Sectio

n 3. The next section

(Section 4) shows, how we applied the support vector machine (SVM) to learn
state-action rules. A short introduction to the MOBAL system [24] and its
representation of medical knowledge leads to the issue of validation which is

presented in Section 6.
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Most variables are entered by hand at the bedside. For entities such as clinical
observations. nursing procedures, therapeutic measures, medications, or orders it
appears very unlikely that entry of these variables can be automated in the
foreseeable future. Only 5—10% of all variables in a CIS are acquired automatically.
This includes the majority of bedside devices, €.8. physiologic monitors, ventilators,
infusion devices. Additional data is interfaced from the hospital information system
(HIS), the laboratory (LIS) or the microbiology information systems, where the LIS

represents the clinically most relevant set of data among these

centralized informa-

tion systems. Although device data account for a comparatively small number of
variables, they can. depending on the sampling rate, generate large amounts of

- data.

The data structure of a CIS shows a wide variety of different data types on

different scales (nominal scales, e.g. sex, breathing sounds;

ordinal scales, e.g.

neurological scoring; absolute scales, e.g. vital signs), which are stored at different
time intervals (ranging from seconds for vital signs to once during the length of stay

- for demographic data). Time intervals may also be regular or irregular.
For further analysis data must be structured, so that it can be subjected to

statistical algorithms. Numeric data, e.g. vital signs, intake/output, is typically
directly accessible for most applications. Free-text data, which traditionally makes
up a large portion of medical documentation, cannot be statistically analyzed in
any structured way. Therefore, free-text entries into a CIS should be avoided

wherever possible. Qualitative information, such as clinical observations or inter-

ventions, should be documented in a strictly structured fashion with selection lists
and menu items. This approach provides a consistent terminology throughout the
entire medical institution. It is highly efficient and fast, especially for users not well

trained in the use of computers and keyboards in particular.

In clinical practice,

with the stringent implementation of structured tabular documentation, it was
possible to reduce the use of free-text notes by >90%. Structured qualitative data
can, in contrast to free-text information, be directly exported for statistical analysis.

These general propositions also hold for the City Hospital of Dortmund, a
1900-bed tertiary referral center. There, all medication data of the 16-bed surgical
intensive care unit was charted with a CIS, allowing the user 1 min time resolution
for all data. Moreover, data from bedside devices, e.g. patient monitors, is gathered

automatically every minute.

2.2. Data set

The entire database of intensive care patient records at the City Hospital of
Dortmund comprises about 2000 different variables (attributes). Data from the CIS
is selected through customizable data filters and copied into a standard relational

database where it is accessible for further data analysis.
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Table |
Overall attribute sct for learning state-effect rules
16 Demographic attributes S Intensive care diagnoses 6 Continuously infused drugs
11 Vital signs 9 Derived parameters 14 Respiratory variables
37 Intake/output variables 10 Bolus drugs 10 Laboratory tests
Table 2

Best feature set for learning state-action rules using SVM

Vital signs (measured Continuously given drugs (changes Demographic attributes (charted

every minute) charted at 1-min resolutions) once at admission)
Diastolic arterial Dobutamine Broca-index
pressure
Systolic arterial Adrenaline Age
pressure
Mean arterial pressure  Glycerol trinitrate Body surface area
Heart rate Noradrenaline Emergency surgery (y/n)
Central venous Dopamine
pressure
Diastolic pulmonary Nifedipine
pressure
Systolic pulmonary
pressure
Mean pulmonary
pressure

For this investigation, data was acquired from 148 consecutive critically ill
patients (53 female, 95 male, mean age 64.1 years), who had pulmonary artery
catheters for extended hemodynamic monitoring. Recording in 1 min intervals, this
amounts to 679 817 sets of observations.

From the original database 118 attributes in nine groups were taken for learning
state-action rules (Table 1).

Categorical attributes are broken down into a number of binary attributes, each
taking the values {0, 1}. Real valued parameters are cither scaled so that all
measurements lie in the interval [0, 1], or they are normalized by empirical mean
and variance: norm(X) = (X — means(X))/ var(X).

We systematically evaluated a large number of plausible attribute sets using a
train/test scheme on the learning task described in Section 4.2. The set with the best
performance is given in Table 2. These attributes are actually the most important
parameters of the patient according to expert judgement. Only the relevant at-
tributes ‘cardiac output’ and ‘net intake/output’ are missing, but they cannot be
used as they are not continuously available.

We also experimented with different ways of incorporating the history of the
patient. We tried:

e using only the last minute before the intervention;

Page
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using the last up to 10 min before the intervention;

using the averages of up to 60 min before the intervention;

combinations of these;

the state of the patient at the previous intervention.

None of the more complex approaches gave significantly better results on the
learning task in Section 4.2 than just using the measurements from one minute
before the intervention. All the feature selection experiments were done on the
training set, leaving a separate test set to measure the results presented in this
paper.

Since each patient record covers several interventions, data from 148 patients
gives us sufficiently large sets of examples. For learning state-action rules, we used
a total of 1319 training and 473 test examples. For the rule validation we analyzed
8200 interventions corresponding to 27 400 intervention-effect pairs.

3. Statistical analysis of time series

Time series analysis was employed for data abstraction of the time oriented
variables with the goal of detecting outliers and level changes. The classical and
widely used statistical approach to modelling time series is so called ARMA
modelling [3] which assumes that a time series (x,), =1, 2.... can be written as

x,=¢1x,_l+...+¢FX,__‘,+0|E,_1+...+0q€,_q+£, (1)

where ¢ is an unobservable shock at time ¢. This assumption means that each
observation is a linear combination of past observations and past shocks with
(unknown) coefficients éy,-.-.$, and 8,,....9, respectively. The integers p and g are
the orders of the model, while the model itself is denoted ARMA(p, g) model. In
case of g =0, i.e. when only the current shock and past observations have influence,
the model is called AR(p) model.

In order to better understand the dynamics of time dependent phenomena,
another representation of a time series can also be applied, the so called phase space
embedding [27,32). This tool, though originally designed to analyze nonlinear,
chaotic systems, has proven useful for the purpose of detecting outliers and level
changes also in an ARMA framework [2,11]. Here it does not even need any strict
model assumptions to be applied. The phase space approach is based on a simple
transformation of the time series into some Euclidean space-the phase space
embedding. Instead of the time series X,,....xy itself, one considers the sequence of
all, say m, consecutive values of the series as m-dimensional vectors

%= (X g 1o Xeamet) 1= Lo N—ml @

Here, me{l,2,...}, is called embedding dimension. Numerous rules exist for
choosing m in nonlinear models. There, in most cases the components of the phase
space vectors are not neighboring observations. but they are separated by a time
delay [14,34]. Focusing on stochastic processes it is better to take into account the
dependencies of neighboring observations. Therefore, we choose the components of

Page
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%, as chronological observations always with a time delay (lag) of one. To improve

. pattern identification, m should be chosen such that exactly those preceding
observations are considered, which have a direct influence on the present observa-
tion [2,13]. Of course, to detect outliers, level changes, etc. the classical statistical
methodology may also be applied [5.29,31,35]. We suggest to work with the more
recent phase space method here mainly because it is able to detect even patchy
outliers, because it works almost graphically without strict model assumptions, and
because it may reveal deviations from the dynamics of the series which are difficult
to detect otherwise [2].

Fig. 2 visualizes a two-dimensional phase space embedding. We connect all
consecutive phase space vectors, i.e. all points (x;, X2). (Xa. X3). (X3, X4). and so on,
in the two-dimensional Euclidean space. Typically, in the steady state this yields an
eltiptical cloud and outliers show up as aberrations from this cloud.

The identification procedure, that we developed, uses the difference time series d,,

- defined by d, = x,— X, _, t =2,...,N. In a differenced series. an abrupt level change
shows the same aberration as an outlier in the original series. The procedure focuses
on the identification of such aberrations from that elliptical cloud which describes
the steady state.

The phase space vectors of the difference time series are analyzed in consecutive
order and it is checked whether they are located in a ‘critical region’. If a vector lies ~
in such a critical region, i.e. intuitively speaking, if it extrudes ‘too far’ from the
elliptical cloud describing the steady state, it can then be discriminated between
different patterns after observing further values. The ‘critical region’ is formally
defined as the region outside some ellipse, which in the steady state for a given level
x must not contain any phase space vector out of N such vectors with probability

* " larger than 1-a. The level « is chosen by the investigator and, if possible, depending
on the observed length N of the time series. In any case, as the true data generating
mechanism of the time series is unknown, the critical region has to be estimated
from some starting sequence of the time series. Then the outlying phase space
vectors located in this critical region can be detected and, finally, on the basis of the
movement of the phase space vectors, a discrimination between different patterns
can be done for those observations which have constituted an outlying phase space
vector. :

A detailed description of this methodology and a comparison with other estab-
lished time series procedures is given in [1,12]. A graphical example may visualize
this approach. In Fig. 2 a simulated time series following an AR(1) process, the
differenced series and the two-dimensional embedding of the differenced series with
the corresponding estimated ellipse are shown. This example discriminates only
between the patterns of outliers and abrupt level changes. If at the time point ¢ the
vector d, extrudes from the cloud, the decision between outtier and abrupt level
change takes place at the time point ¢+ 1. If the distance between d, ., and the
detected point LC in Fig. 2 is smaller than the distance between d,,, and the
detected point O, then a level change can be diagnosed, otherwise, an outlier is
present. If more patterns are considered. more fixed points have to be determined
and the time point at which the decision takes place is delayed.
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The whole process of pattern recognition can be described as follows: The first 60
¢ observations are taken and retrospectively analyzed (i.e. outlying regions are
estimated and patterns in this time interval identified). After this, a time window of
length 60 is moved through the data. That means, that at time point 61 we
determine if the phase space vector dg, is in the critical region. If not, then no
pattern is detected, and the estimated critical region is replaced by a new one, that
is estimated from the last 60 observations d,.....ds This is repeated for every new
observation as long as for the time point t the phase space vector d, once falls into
a critical region. Then the system is said to be no longer in a steady state. and after
analyzing the consecutive observations d, , ., , 2..... it is decided if a pattern is
present similar to the retrospective analysis.

In a previous study [13] this approach showed excellent results when compared to
pattern recognition by highly trained experts. From this investigation it can be
assumed that clinically significant patterns will be reliably detected by this method.

- An initial weakness in the detection of trends or ‘slow’ level changes was overcome
by the implementation of a delayed moving window.

The data abstraction process using phase space methods hands the recognized
patterns over to the other components of the hybrid system. This information
contains type, time of onset, direction, and duration of the pattern.

4. Data-driven acquisition of state-action rules

4.1. Support vector machine (SVM)

Using the support vector machine, we have analyzed patient data in order to
; acquire a model of actual physicians’ behavior. This section introduces support
vector machines and describes learning from patient data. Section 6 describes how
learning resuits are supplemented by qualitative and prescriptive medical knowl-
edge. SVMs [37] represent a method to learn binary classifiers from examples. For
a set of training examples (6,,)1),..-(Gna) they find the classification rule & for
which they can guarantee the lowest error rate on new observations. Each example
consists of a vector d, (describing, e.g. the state of a patient represented by the
current measurements of blood pressures, heart rate, etc.) and its classification
ye{l, —1}. In their basic form, SVMs learn linear decision rules h(3)=
sgn(w - 6 + b). The weight vector w and the threshold b are the result of learning
and describe a hyperplane. Observations are classified according to which side of
the hyperplane they are located. A typical decision rule is given in Fig. 3. During
training, the SVM calculates the hyperplane so that it classifies most training
examples correctly while keeping a large ‘margin’ around the hyperplane. If the
training data can be separated without error, the margin is the distance from the
hyperplane to the closest training examples.

Since we will be dealing with very unbalanced numbers of positive and negative
examples in the following, we introduce cost factors C, and C_ to be abie to
adjust the cost of false positives versus false negatives. Training an SVM can now
be translated into the following optimization problem:
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- Fig. 3. Decision rules for predicting an intervention that increases the dosage of glyceroltrinitrat.

. P
Minimize: J(3,b8)==w w+C, ¥ &+C_ X & 3)
2 bLy;=1 j:y/- -1
subject to: vee(l...nly w6, +b]121—=¢, A £, 20 4

Training error is represented by the variables {7, while the margin is mea;ured by
. We solve this opti mization problem in its dual formulation using SVM'ish* [16],
extended to handle unsymmetric cost-factors.

4.2. Learning the directions of interventions

The first question we asked ourselves was: given that we know the physician
changed the dosage of some drug, can we learn when he increased the dosage and
when he decreased the dosage based on the state of the patient? For each drug,
examples are taken from the points in time where, in fact, the dosage changed. For
all drugs, linear SVMs are trained on the problem ‘increase of dosage’ (y,=1)
versus ‘decrease of dosage’ (y, = 1) using the attributes in Table 2 for describing the
state of the patient. The performance of the respective SYM on a previously
untouched test set is given in Table 3.

To get an impression about how good these prediction accuracy’s are, we
conducted an experiment with a physician. On a subset of 41 test examples we
asked an expert to do the same task as the SVM for Dobutamine, given the same
information about the state of the patient. In a blind test the physician predicted

$ Available at http://www-ai.cs.uni-dortmund.de/svm _light.
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Table 3
. Accuracy in predicting the right direction of an intervention

Drug Accuracy (%) Standard error (%)
Dobutamine 83.6 25

Adrenaline 81.3 37

Glyceroltrinitrate 85.5 30

Noradrenaline 86.0 5.2

Dopamine 84.0 7.3

Nifedipine 86.9 70

the same direction of dosage change as actually performed in 32 out of the 41 cases.
On the same examples the SVM predicted the same direction of dosage change as
actually performed in 34 cases, resulting in an essentially equivalent accuracy.

4.3. Learning when to intervene

The previous experiment shows that SVMs can learn in how far drugs shouid be
changed given the state the patient is in. In reality, the physician also has to decide
when to intervene or just keep a dosage constant. This leads to the following three
class learning problem. Given the state of the patient, should the dosage of a drug
be increased, decreased or kept constant? Generating examples for this task from
the data is difficult. The particular minute a dosage is changed depends to a large
extend on external conditions (e.g. an emergency involving a different patient). So
interventions can be delayed and the optimal minute an intervention should be
performed is unknown. To make sure that we generate examples only when a
physician was closely monitoring the patient, we consider only those minutes where
some drug was changed. This leads to 1319 training and 473 test examples.

For each drug we trained two binary SVMs. One is trained on the problem
‘increase dosage’ versus ‘do not increase dosage (i.e. lower or keep dosage equal)’,
the other one is trained on the problem ‘lower dosage’ versus ‘do not lower dosage
(i.e. increase or keep dosage equal)’. An intervention is predicted if exactly one such
decision rule recommends a change. As an example, Fig. 3 shows the decision rule
that the SVM learned for increasing the dosage of Glyceroitrinitrate. Since the class
distribution is very skewed towards the ‘do not...dosage’ class, we use a cost model.
The cost-factors are chosen so that the potential total cost of the false positives
equals the potential total cost of the false negatives. This means that the parameters
C. and C_ of the SVM are chosen to conform to the ratio

C_ number of positive training examples

Table 4 shows the test results for dobutamine and adrenaline. The confusion
matrices give insight into the class distributions and the type of errors that occur.
The diagonal contains the test cases, where the prediction of the SVM was the same
as the actual intervention of the physician. This accounts for 63% of the test cases

C, number of negative training examples )
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Tauble 4
¢ Confusion matrix for predicting time and direction of dobutamine and adrenaline interventions

Actual intervention

Dobutamine Up Equal Down
Predicted up 46 32 3
Predicted equal 50 197 54
Predicted down 5 30 56
Adrenaline Up Equal Down
Predicted up 23 22 3
Predicted equal 21 310 15
Predicted down 4 34 4]
. for dobutamine and for 79% of the test cases for adrenaline. The SVM suggests

the opposite intervention in about 1.5% for both drugs.

Again, we would like to put these numbers into relation to the performance of
an expert when given the same information. For a subsample of 95 examples from
the test set, we asked a physician to perform the same task as the SVM. The
results for Dobutamine and Adrenaline are given in Table 5. The results of the
SVM on this subsample are followed by the performance of the human expert in
brackets. Both are aligned remarkably well. Again, the learned functions of the
SVM are comparable in terms of accuracy with a human expert. This also holds
for the other drugs.

5. Medical knowledge base

Decision rules learned by the SVM reflect the average behavior of a physician,
not the ‘gold standard’. As argued above, they have to be checked against

Table §
Confusion matrix'for predicting time and direction of dobutamine/adrenaline interventions in compari-

son to human performance®

Actual intervention

Dobutamine Up Equal Down
Predicted up 10(9) 12(8) (1 4))
Predicted equal 9 35(31) U9
Predicted down 2(DH WIS 13(12)
Adrenaline Up Equal Down
Predicted up 4(2) XN o0
Predicted equal 4(6) 65(66) 2(2)
Predicted down I(t) 8(9 8(8)

 Results from an experienced intensivist in brackets.
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medical knowledge about the effects of drugs. This section presents an approach
¢ to building a knowledge base that helps accomplish this task automatically and that
makes decision support transparent.

Knowledge acquisition from experts is performed according to the current state
of the art: first, knowledge is elicited from the expert, second, a knowledge base is
modeled. third, the model is inspected, validated. and enhanced in collaboration
with the expert. These steps form a cycle, i.e. the third step actually leads to obtain
more expert knowledge, which is then modeled, etc.[23]. This expert knowledge
augments and validates the data-driven knowledge acquisition using machine
learning.

5.1. Knowledge acquisition and representation

The knowledge base of action-effect rules serves three purposes. First, it is used
in order to model a protocol of care. Second, it is used to base learned decision
functions on explicit and qualitative knowledge. Third, it is used for the validation
of predictions. Let us describe the knowledge acquisition from experts before we
show how this knowledge is integrated with the learned decision functions (Section
5.3) and how it is used for validating predictions (Section 6).

A medical expert defined the necessary knowledge. This knowledge is medical
textbook knowledge for the cardiovascular system. It reflects direct pharmacologi-
cal effects of a selected list of medical interventions on the basic hemodynamic
variables. Any interaction of these interventions with other organ systems or of
other organ systems with the cardiovascular system were ignored. An excerpt of
> intervention-effect relations is shown in Table 6. The dosage intervals indicated for

each drug are not shown in the table, but modeled in the knowledge base. Also
parameter dependencies have been modeled. It should be noted that the knowledge
is qualitative with intervals of dosages, trends of changes, and implicit time
intervals.

For the representation of qualitative medical knowledge we chose the MOBAL
system [24]. MOBAL is a knowledge acquisition and maintenance system. Several
tools facilitate the construction and inspection of a knowledge base. Its representa-
tion formalism is a restricted many-sorted first-order logic with explicit negation. A
four-valued logic is used in order to allow for unknown and contradictory facts in
addition to true and false facts. The inference engine derives new facts on the basis
of rules and given facts. Due to the expressive power of first order logic, compact
models can be built. What would be a rule in propositional logic, can be expressed
by a mere fact in first-order logic. For instance. using a propositional logic,
explicitly stating that ‘up’ is the opposite of ‘down’ requires the rule:

heart_rate_trend = up — not(heart _rate_trend = down)
and its dual form for all parameters. Using first-order logic, the fact

opposite(up, down)
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is stated and can be used for any parameter®. The pharmacological knowledge from
e Table 6 is expressed by facts of the form

effect(adrenaline, 0.01, 0.03, art, up)

stating that adrenaline in a dosage between 0.01 and 0.03 pg/kg/min has the effect
‘up’ on mean arterial pressure. Effects are modeled for substances. Additional facts
indicate the particular drugs in which the substance is contained.

Patient records are also expressed by facts. The time is indicated by minutes,
starting with the first measurement of a patient and ending with his or her discharge
from intensive care.

intervention(pat4711. 10, 62. supra, 0.02)

means that the patient 4711 from the min 10 to min 62 received suprarenin (a drug
containing adrenaline) in a dosage of 0.02 pg/kg/min.

- Given the abstractions described in Section 3, the values of hemodynamic
parameters are stated in terms of level changes.

level(pat4711, 11, 62, hr, up)

states that the heart rate of patient 4711 had an upward level change at min 11 and
then remained almost stable until min 62. In addition to this abstract description of
a vital sign in a time interval, its deviation from the stable state is calculated. For
each vital sign, the desired range of values is given, €.g. [60, 100] for the heart rate.
For a patient’s parameter values within a time interval, the standard deviation is
calculated and added to (subtracted from) the upper (lower) value of the desired
range. If the patient’s actual value does not lie within this enlarged interval, a fact
stating a deviation is entered. For instance, the following fact states that arterial
mean pressure of patient 4999 is beyond the desired range:

deviation(pat4999, 0, 31, art, up)

We now want to use the pharmacological knowledge for deriving expected effects
of an intervention on a particular patient. This is done by rules. The advantage of
first-order logic is particularly important for modeling relations between intervals.
For instance, stating that two time intervals are immediately succeeding, can be
expressed by simply unifying the end point of one time interval with the start point
of the other time interval. The following statement states, for instance, that two
interventions were directly succeeding each other:

intervention(Patient, T1, T2, M, Dl)intervention(Patient, T2, T3. M, D2)

This statement can be instantiated by all patients, points in time, parameters and
dosages as long as the same argument variable (e.g. Patient) is instantiated by the
same value (e.g. patd711) and different argument variables (e.g. D1, D2) are
instantiated by different values.

¢ We follow the standard notation of logic programming. where argument variables begin with capital
letters and predicate symbols as well as constants start with small letters.
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intervention(patd4711, 73, 83, supra. 0.05)

intervention(pat4711, 83, 177, supra, 0.02)

Intervals of dosages are handled in a similar manner. We can distinguish between
major and minor changes of a dosage. A minor change is one within the same
interval for which an effect has been stated by pharmacological facts. The following
facts state, for instance,

intervention(Patient, TI, T2, M,DI), intervention(patd711. 441, 968, nitro. 1.9},
intervention{Patient, T2, T3, M.D2), intervention(patd711. 968. 1081, nitro. 2.38),
contains(M, S), contains(nitro, glyceroltrinitrat),
effect(S, FromDI1, ToDI1, Param, Trend). effect(glyceroltrinitrat, 1, 10, hr. up).
FromD! = <Dl <ToDl, FromDl=<D2<ToDl l=<19<10, |=<238<10
— —

. interv_effect(Patient, T2,T3, M, Param, Trend, interv_effect(patd711. 968, 1081, nitro, hr,

minor) up, minor)

Changing into another such interval is a major change. The actual dosage of a
drug given to a patient is compared with the dosage interval of ‘effect’ facts. The
following rule expresses the enforcement of an effect because of a major change of
dosage.

intervention(Patient, TI, T2, M, DI),

intervention(Patient, T2, T3, M, D2),

contains(M, S),

effect(S, From DI, ToDl, Param, Trend),

effect(S, From D2, D2, Param, Trend),

From Dl = < D! <ToDl, From D2 = <D2<ToD2, D1 <D2
— interv_effect(Patient, T1, T3, M, Param, Trend, major)

Note, that if the substance S of drug M has a decreasing effect on a parameter
of the patient, the rule predicts a further decrease of that vital sign. The variable
“Trend’ is then instantiated by ‘down’. Another rule states that decreasing a
substance with an increasing effect on a parameter will decrease the parameter’s
value. We use such rules in order to predict effects of interventions. The prediction
of intervention effects is used to check interventions that are proposed by the
learned decision rules. Not counting the patient records, the knowledge base
consists of 39 rules and 88 facts.

5.2. Validating action-effect rules

In order to validate the knowledge base we applied it to the data of 148 patients.
The data contains 8200 interventions. The validation is easy, since rules can
directly be applied to patient data. MOBALs inference engine derived 27 400
effects of the interventions using forward chaining. For 22 599 effects the actual
effects in terms of level changes could be computed by the time series analysis (see
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Section 3). When matching the derived effects with the actual ones. the system

« detected:

e 13 364 effects (i.e. 59.14%) took place in the restricted sense, that the patient’s
state remained stable, e.g. a drug with an increasing effect on a patient’s vital
sign does not lead to a significant level change of this parameter. This is not in
conflict with medical knowledge, but shows best therapeutical practice. Smooth
medication keeps the patient’s state stable and does not lead to oscillating
reactions of the patient.

e 5165 effects (i.e. 22.85%) took place in the sense, that increasing or decreasing
effects of drugs on vital signs match corresponding level changes.

e 4070 contradictions (i.e. 18.01%) were detected. The observed level change of
a vital sign went into the opposite direction of the knowledge-based pre-
diction.

The ratio of 83.56% correct predictions of effects is quite positive. Some decisive
features are not present in the data. Particularly the lack of data about cardiac
arrhythmias and cardiac output could possibly explain many deviations of observed
from predicted effects.

5.3. Integrating learned decision functions with the knowledge base

Since the goal of our work is an integrated system for intensive care monitor-
ing, the numerical approach using the SVM has to be incorporated into the logic
of MOBAL. While training SVM classifiers can take place offline in a separate
program, MOBAL needs to be able to evaluate SVM decision rules and access the

. results online. We achieve this by introducing the special predicate ‘svm_calc/6’
with the following semantic. The first two arguments indicate the patient and the
drug. The third argument is either ‘up’ or ‘down’ depending on whether the
‘svm-calc’ fact belongs to the SVM predicting dosis increase or decrease (compare
Section 4.3). The fourth argument is the time and the fifth is the current dosage
of the drug. The last argument finally contains the value #, - 6+5, of that
particular SVM rule for the measurements & at that time. Calculating w, d+b,
can be done very efficiently, since it mainly consists of computing a dot product
between the SVM weight vector w and the measurement vector 4. From each pair
of decision rules (i.e. up and down) an intervention for the respective drug is
recommended, if exactly one decision rule has a value i, - 6 + &, larger than a
confidence threshold of 0.8.

The decision rule for an increase of Glyceroltrinitrat (nitro) together with the
actual parameter values & of patient 4999 at time 32 is shown in Fig. 3. The dot
product plus —4.368 (the value of b) is 1.85598. The fact entered into the fact
base for pat4999 is ‘svm_calc(patd4999, nitro, up, 32, 0.0, 1.85598)’. An interven-
tion to increase nitro is derived. The dose is calculated on the basis of the former
dose. The SVM actually only decides whether to increase, to decrease, or not to
change the dose. For each drug, a level of granularity is defined. For instance, the
granularity of glyceroltrinitrat is 1. whereas that of suprarenin (containing
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Table 7
. Equivalence of decisions regarding effects
Interventions Mean arterial Heart rate Same effect all Same behavior
pressure parameters

Dobutamine 403 395 383 299
Adrenaline 407 406 393 374
Glyceroltrinitrate 437 388 380 342
Noradrenaline 436 428 424 420
Nifedipine 457 457 455 438

adrenaline) is 0.01. The dose is changed by just one step. In our example. the
proposed intervention is:

pred _intervention(patd4999, 32, nitro, 1.0).

6. Using the knowledge base of effects to validate interventions

Medical knowledge is used for validation in two different ways. On the one hand,
learned decision rules are validated on patient data by comparing the effects of
their recommended interventions with the effects of actual physicians’ interventions.
This validation means to incorporate an evaluation step already into the knowledge
acquisition phase. On the other hand, we believe that even an evaluated decision
support system should check its decisions by considering their effects.

6.1. Validating learned decision rules

There are usually several different combinations of drugs that achieve the same
goal of keeping the patient in a stable state. And indeed, different physicians,
depending on- their experience in the ICU, do use different mixtures and follow
different strategies to reach this goal. For comparing treatment strategies, the real
criterion is whether the recommendations have the same effect as the actual
interventions. Therefore, we apply the action-effect rules from the knowledge base
to both the proposed intervention of the SVM classifiers and to the intervention
actually performed by the physician. If the derived effects are equal, then the
proposed decision of the SVM classifiers can be considered as ‘equivalent’ to the
intervention executed by Table 7 the physician. The results of this comparison for
473 interventions are shown in Table 7. The right-most column indicates the
accuracy, i.e. in how many cases the classification of SVM and physician were
identical (same behavior of SVM and physician). The other columns state how
often the SVMs intervention leads to the same effects as the intervention of the
physician. The first two columns show, how many of interventions had the same
effect on arterial blood pressure or heart rate, respectively. The third column gives
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a more concise evaluation. Here it is stated how many interventions recommended

¢ by the SVM had the same effects on ali vital signs as the actual intervention. For
instance, the SVM correctly classifies 299 test cases for dobutamine (63%). If we
compare the resulting effects of the predicted interventions concerning dobu-
tamine with the effects of the actual physician’s interventions. we find that in 383
cases (81%) the deduced effects will be equal. Thus, in 84 cases the recommenda-
tion of the SVM does not match the physician’s behavior. but the derived effects
are the same, since the physician has chosen an ‘equivalent’ drug or combination
of drugs. An inspection of these cases helps to clarify issues of best practice and
thus supports knowledge acquisition.

6.2. Validating proposed interventions

As depicted in the overall architecture (cf. Fig. 1), we have chosen a design
) which allows us to use the action-effect rules in the knowledge base for validating
predicted interventions. The underlying argument is that accuracy measures only
reflect how well SVMs learning results fit actual behavior of the physician.
However, we aim at best practice. Hence, we validate a proposed intervention
with respect to its effects on the patient. If the effects push vital signs in the
direction of the desired value range, the recommendation is considered sound,
otherwise it is rejected. An example may clarify this. Patient 4999 is older than 75
years and stays at the ICU after a surgical operation. He suffers from high
arterial mean pressure (around 124), where the heart rate is normal (around 80).
Using its decision rules, the SVM recommends to increase glyceroltrinitrat (see
Fig. 3). This proposed intervention is checked by the medical knowledge about
effects. The derived effects are an increase of the heart rate and a decrease of
arterial mean pressure as well as left ventricular stroke work index (lvswi) and
systemic vascular resistance (svr): interv_effect(pat4999,32, T, art, down). The
observed deviation is deviation(patd4999, 0,31, art, up). Since ‘down’ is the oppo-
site of ‘up’, the proposed intervention is considered sound. In this way, the
prescriptive medical knowledge (action-effect rules) is used to control the knowl-
edge that is learned from actual therapies (state-action rules).

7. Comparison with related work

Using data from the most comprehensive singular clinical data repository at the
LDS Hospital, Salt Lake City, Utah, USA, the group of Morris [26] developed a
rule-based decision support system (DSS) for respiratory care in acute respiratory
distress syndrome. Time is handled by introducing time points into the rules
where a certain parameter value needs to be obtained. The development of this
highly specialized system required more than 25 person years. It is a propositional
rule base without a mechanism for consistency checking or matching rules and
data. All validation efforts started only after the knowledge base had been
completed [33].
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Temporal reasoning is taken seriously in other developments [4,7.21.28]. The
¢ Stanford approach uses an explicit time ontology for low-frequency data [28].
This approach is not feasible for our application. The VIE-VENT system is
comparable with our approach in that it combines numerical data and a knowl-
edge base [21]. Qualitative abstractions are derived for deviations of measurements
from the target range. Time intervals refer to the validity of a measurement. The
detection of outliers (data validation) is handled by a trend-based component. The
validated measurements are used by the therapy planning component which aims
at pushing vital signs into the value ranges of a stable state. Similar to our
approach, therapy planning is divided into state-action rules (therapeutic actions
based on status interpretation) and verifying the effectiveness of interventions.
However. the system was developed without using actual patient data. Hence, the
observation that parameter values oscillate considerably was made as late as the
first clinical experience. In contrast, this observation has motivated our phase
- space procedure for abstracting from numerical time series. Temporal correlations
can also be included in trend templates, which are used by Haimowitz and
Kohane [7]. Trend templates consist of sets of low order polynomial regression
models describing qualitative characteristics. Pattern abstraction is done based on
the fit of these templates to the observed data. The major drawbacks of this
method are the demand for predefined expected behavior and absolute value -
thresholds. However, time series in intensive care often show irregular behavior
like patchy outliers, or outliers and level changes occurring in short time lags.
Such behavior is difficult to specify in advance. Moreover, thresholds should be
dynamically depending on the patient’s status in the past. This has already been
included in our approach, which does not need prespecified patterns either.
Altogether, statistical time series analysis seems to be the most sophisticated
method to model and investigate dynamical data since other approaches capture
only parts of the time dependent structure of the data.

Our goals of easing the development of guidelines and validating the knowledge
early on is shared by the two-step approach by Mani and coworkers [19]. They
use machine learning in order to first characterize scores of dementia with respect
to six categories (e.g. memory, orientation). These learning results are then used
to learn the global clinical dementia rating. After a 2 years effort an efficient and
effective system was accomplished. While the goals are the same, the application
characteristics and, hence, the methods are completely different. The clinical
rating is a classification task and the patient data is of qualitative nature, whereas
our task is on-line monitoring and the patient data are time series of numerical
measurements.

8. Conclusions

We presented an approach towards integrating statistical and knowledge-based
methods for the development of decision support algorithms in critical care. This
application involves high dimensional time series data, demanding high quality
decision support under real time constraints. These properties make this case
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study a representative for a farge number of applications in medicine and engineer-
¢ ing.

This paper gives the necessary steps for solving this task as a whole. We identified
how the application can be split up into manageable parts. We proposed an overall
architecture that integrates a number of tasks, organized both sequentially and in
parallel. All tasks are embedded in a single system. while selecting the most
appropriate technique and representation including the difficult effort of selecting
and constructing appropriate features has been performed for each task
individually.

The time series approach to data abstraction using phase space models was also
validated in an independent clinical study. Here it showed a pattern recognition
similar as that of an experienced intensivist [11]. The technical implementation
proved highly efficient in data abstraction providing input for applications requir-
ing qualitative information from time series.

The present hybrid system of statistical and machine learning methodologies is a
typical example of how to integrate statistical analysis and knowledge discovery
methods. i.c. time series analysis and machine learning, using their strengths and
reaching better results than with each method alone.

The SVM was chosen for learning state-action rules due to its ability to handle
multiple features. For modeling medical knowledge in terms of action-effect rules
we chose a first-order logic representation using MOBAL. This altowed a compact
representation of medical knowledge with a small number of rules, fulfilling the
real-world demand for a knowledge base to be understandable by humans and
accessible for expert validation. Current work deals with the interactions of diverse
. medications. The rules combining opposite effects of different drugs are not

sufficient yet.

The validation issue has been treated with special care. Each process has been
validated in the standard way, i.e. tested on data not used for training. In addition.
the results of state-action rules were compared with the results of a human expert
who classified the same data. Moreover, recommended interventions of state-action
rules are validated by formalized medical knowledge. On the one hand, the effect of
a recommended intervention is compared with the effect of an actual intervention.
Of course, this comparison can only be made for past cases. In case of conflict, the
expert inspects, the particular cases. This may lead to the generation of explicit
additional knowledge. On the other hand, the formalized effects of interventions are
applied to current cases and evaluated with respect to the target ranges of vital
signs.

Our new approach combines modeling of expert knowledge with data-driven
methods. This eases the task of building operational protocols. Moreover, the
data-driven method allows for an ongoing enhancement of the knowledge base on
the basis of current practice. The knowledge base is validated against existing
patient data. This approach is meant to be significantly more effective than the
tedious, time-consuming, and costly process of traditional development of on-line
operational decision support systems.
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