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Abstract

Today’s data mining algorithms and tools have specific input requirements
which inherently demand preparation of data before their use. As a conse-
quence, one of the most time-consuming steps in the process of knowledge dis-
covery in databases (KDD) is data preprocessing, i.e., preparing data for data
mining. Common preprocessing operations are: construction of new features
derived from existing ones, adjustment of data formats, data segmentation,
sampling and cleaning. The Mining Mart project proposes a case-based reason-
ing approach that enables both automatization of preprocessing and reusability
of defined preprocessing cases for data mining applications. The system ar-
chitecture follows a metadata-driven software approach. This technical report
mainly deals with the structure of the metadata to be stored. This so called
metamodel is the core of the system since all components have to be built in
accordance with it.

M* has been developed as a collaboration between two projects, Mining
Mart! and SMART?. The latter project deals with metadata management for
data warehousing and considers metadata globally, with focus on metadata in-
tegration. The aim of SMART is an enterprise-wide metadata management
system that consistenly and uniformly manages all metadata available in a
company in order to provide better support for complex data warehousing pro-
cesses. In this context, M* may be seen as part of the global metamodel behind
the SMART metadata management system.

Yhttp:/ /www-ai.cs.uni-dortmund.de/FORSCHUNG /PROJEKTE/MININGMART /index.eng.html
*http://www.ifi.unizh.ch /dbtg/Projects/SMART/
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Chapter 1

Motivation

Extracting information and knowledge from data is the purpose of advanced
technologies like data mining, data warehousing and information retrieval. Data
mining combines statistical and mathematical techniques with machine learn-
ing algorithms and other artificial inteligence approaches and aims at detecting
unknown patterns in data. This knowledge is then used for supporting business
analysis and trend prediction. Even if a significant amount of algorithms and
tools is available on the market, performing data mining is a complex task. It
requires to be embedded in a whole process, the process of knowledge discovery
in databases (KDD) [2]. Data has to be first collected, selected, integrated,
cleaned, and further preprocessed in order to fullfil the input requirements of
the chosen data mining tool or algorithm. Preprocessing operations include
data transformations (e.g., data type conversion), aggregation, scaling, dis-
cretization, segmentation, sampling [5]. Practical experiences [11] showed that
50-80% of the efforts for knowledge discovery are spent for data preprocess-
ing. However, data preprocessing is not only time-consuming but also requires
profound business, data mining and database know-how.

DataMining Tool

!
— dataflow
Data source Ej — — — Ej Data prepared

(population) for mining

Figure 1.1: Preprocessing Chain

In this context, the aim of Mining Mart is to provide a user-friendly environ-
ment for performing preprocessing for data mining. To this end, a case-based
reasoning framework has to be built [5]. The framework provides a collection
of cases and tools to design these cases. A case consists of the specification of
a mining task (e.g., selecting suitable addresses for a mailing action), the data
to be mined, i.e. the population, and a chain of preprocessing operators to be
applied to this population (see Figure 1.1). Each mining task deploys a certain
mining tool or algorithm with special input requirements (see Figure 1.2) and
thus the target of the chain is the data prepared in accordance with these input
requirements.

A defined case may be either directly executed or reused for developing new
ones: on the one hand, an end-user without any data mining and database
knowledge may retrieve one of the prepared cases, make some simple adaption

4
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e 1no ‘unknown’ (NULL) values are allowed
for specific attributes

e scalar and ordinal attributes have to be nu-
meric

e nominal attributes must have character
values or be represented as sets of boolean
values

e no numeric or no non-numeric attributes
are admissible

e not more than N different values are al-
lowed for nominal attributes

e always the same scale for numeric at-
tributes is required

e no key attributes are considered

e input data must consist of a single flat table

Figure 1.2: Input restrictions of data mining tools [5]

if required (e.g., the selection of another population) and initiate the case exe-
cution. On the other hand, the highly skilled power-user (i.e., the KDD-expert)
may use the framework for creating new cases. To this end, he reuses building
blocks (i.e., operators) or parts of the chains available from the already defined
cases.

One of the particularities of the Mining Mart approach is the realization
of the framework as metadata-driven software (see next section). This solution
enhances reusability and flexibility of the system.

The remainder of this report is organized as follows: the next section ex-
plains the notion of metadata and metadata-driven software in order to better
understand Section 1.2 which generally discusses aspects of the system architec-
ture. In Section 1.3 we present an overview of the metamodel of the repository.
Parts II to III describe M* in more detail: each individual class with its at-
tributes, associations and restrictions is presented. The model is structured
into a data description and a case description. The data description begins
with the relational model (Chapter 2), which is an excerpt or view of the data
model as it exists at the data warehouse of the application. A more abstract
part, the conceptual model (Chapter 3) describes the data in general business
terms such as, e.g., customer or product. The meta-data characterizing cases of
successful preprocessing are described in Part ITI. Also the case model consists
of a conceptual part (Chapter 4) and an implementation part (Chapter 5). The
conceptual part of the case model is the heart of the M* model. The imple-
mentation part is very short. It just states that operators are implemented as
database operators (procedures, functions, or SQL-queries) or plug-ins of the
KDD environment. Chapter 6 concludes the paper.

1.1 Metadata-Driven Software

Metadata (data about data) is a general notion that defines any information
related to data in an information system. Metadata may be any information
related to schema definitions and configuration specifications, physical storage,
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access rights, etc. Metadata may also represent end-user-specific documenta-
tion, dictionaries, business concepts and terminology, details about predefined
queries, and user reports. Overviews of the state-of-the-art in metadata man-
agement with focus on data warehousing are provided in [12, 13].

In the case of a metadata-driven software package, metadata is stored in a
repository and is used as control information for applications implemented with
this software package. Examples of control information are static information
(like structure definitions, configuration specifications, etc. as well as some part
of application logic: conditions (e.g., for dynamic SQL), methods, parameters
for stored procedures. At runtime, metadata is read by a tool engine, is dy-
namically bound into the engine software and the resulting application is then
executed. In other words, application semantics is simply distributed between
repository and engine and is pieced together just at runtime. Examples of
metadata-driven software are the new generation tool packages for data ware-
housing, e.g., for building the data warehouse (like PowerMart!, Ardent?) or
for using it (like Cognos®, Business Objects?).

To summarize, metadata-driven software provide a framework consisting
of a repository structure and an engine which fits this structure. Users have
to specify metadata instances (i.e., to fulfil this structure) in order to achieve
executable task-oriented applications®.

One of the main benefits expected from metadata-driven software is soft-
ware reusability and flezxibility. On the one hand, objects encapsulating control
information are explicitely stored in the repository (i.e., outside scripts and
programs) and may be reused in different contexts and applications. On the
other hand, the engines running on top of the repository may be used for all
metadata instances fitting the given metadata structure. This results in an
improved flexibility. The system may be extended and adapted without dif-
ficulty. If new requirements arise, metadata instances may be easily changed
without affecting the clients (i.e., engines) sharing it. Thus, maintenance is
easier. Moreover, since operational metadata is liekly to be kept up-to-date,
the documentation of the system is implicitly up-to-date as well.

Another advantage of metadata-driven software is the automation of pro-
cesses. Since the repository may be shared by more than one programs perform-
ing certain tasks, they may pass control of execution to each other by means of
metadata stored in the repository.

Nevertheless, the main advantage of using metadata-driven software is in
view of enterprise-wide metadata integration [14]. Metadata stored in various
repositories (e.g., from various tools like those for building a data warehouse
resp. for using it) is integrated and linked with each other such that it is consis-
tentenly and uniformly managed by an enterprise-wide metadata management
system. In this way, links between metadata of various domains are established
and exploited and thus up-to-date system information and documentation is

"http://www.informatica.com/

2 Ardent Software was recently acquired by Informix, http://www.ardentsoftware.com

3http:/ /www.cognos.com

4http:/ /www.businessobjects.com

SSeparating data and programs brings indisputable advantages, as we learned in database
introduction courses. Metadata in the repository correspond to data in the database; database
applications are, in this case, engines.
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Data source Code_ Data prepared
Execution for mining
' ? code /

[ Editor ] [MD-Cnmpilu] [MSL'l‘ools}

Metadata
Repository
v

Figure 1.3: Architecture of Mining Mart System

P nctadata flow

data flow

available to all users and tools over the enterprise. Efforts are underway to
establish metamodel standards for enterprise-wide metadata integration and
exchange (for a comparison between two important standard proposals see [15]).

1.2 Architecture of the Mining Mart System

Mining Mart follows a typical metadata-driven software architecture, depicted
in Figure 1.3. The core of the system is the Repository which is implemented
on top of a DBMS. Case-specific informations are stored in the repository as
metadata: the specification of the business problem to be solved by the case,
specification of structures of the data to be mined, specification of processing
operators to be applied on the data with corresponding parameters, the de-
scription of the data mining tool for which the data has to be prepared, etc. At
runtime, a MD-Compiler reads the metadata and uses it in order to generate
code. Through the execution of this code data is read from the data source
(e.g., a data warehouse), is preprocessed and stored into the data target on
which data mining will be applied later. The FEditor is used for manipulating
metadata (insert, delete, update) within the repository.

Note in Figure 1.3 that metadata may be produced and stored into the
repository by means of other components as well. This component represents
the MSL tools (multistrategy learning tools) [5] which are used for determining
operator parameters when these cannot be manually specified. MSL tools ac-
company preprocessing operators and produce the metadata they require, i.e.,
the input parameters for them. An usual example is the discretization oper-
ator. One of the input parameters is a discretization table which specify for
a certain attribute value intervals and corresponding values to substitute the
intervals (i.e., when an attribute value is in the range of a certain interval, the
corresponding value in the table has to be considered). Since the manual speci-
fication of an optimal discretization table is not always easy, a MSL tool is used
for discovering the best discretization table by means of data analysis. Further-
more, optimal parameter settings usually depend on data, thus their discovering
by means of MSL tools is the prerequisite for case reuse. For example, if dis-
cretization tables may be automatically rendered by a tool, the same case may
be directly re-executed without designer intervention for different populations.

The software components accessing the repository (Editor, MD-Compiler,
MSL-Tools) are “bound” to the given metadata structure and this structure
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data case

conceptual conceptual case description
datamodel (operations+control structures) conceptual

B
N

relational t
datamodel of caseimplementation

implementation

Figure 1.4: Coarse Description of the Metamodel (the marked rectangle repre-
sents the data model of M*)

represents the core of the system. The metadata structure is conceptually de-
scribed by a metamodel. The domain-specific language for specifying applica-
tions is derived from the metamodel as well. Next section introduces the Mining
Mart metamodel which is then described in more detail in the remainder of the

paper.

1.3 Overview of M*

In the following, we coarsely describe the metamodel of Mining Mart with focus
on the data model part. Recall that data models are particularly used for data
representation. Since a metamodel should “catch” the particularities that are
relevant for a specific domain, our data model reflects the features of the data
set that are important for preprocessing.

The Mining Mart Metamodel (M*?) is illustrated in the class diagram in
Appendix. M* can be logically divided into the following two main groups:
data modelling and case modelling information. Each group is again subdivided
in accordance with the abstraction level into conceptual and mining specific
information on the one hand and implementation information on the other
hand. Figure 1.4 depicts the four parts resulting from this partition; parts are
tightly coupled to each other.

- Data modelling. This group comprises classes for describing the relational
data model, which corresponds to the implementation level and the con-
ceptual data model which reflects, besides the known entity-relationship
model, data mining specific aspects (as e.g., special data types - Time,
Ordinal, Nominal, etc) and ontology knowledge.

- Case modelling. Describes preprocessing operators and the required con-
trolling structures. The model is again divided into the mining-specific
description of the case semantics (including for example operators as fea-
ture selection and discretization) and their implementation as e.g., func-
tion, stored procedure or SQL-query. We call the two groups conceptual
case description respectively description of the implemented case.

On the one hand, partitioning M* in data and case modelling is necessary for
ensuring reusability: the already specified operators may be used within cases
having various parameter values represented in the data model. Furthermore,
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cases may be reused for different data sets (i.e., populations), represented within
the data model as well. On the other hand, distinguishing between the two
abstraction levels is required for enhancing:

- user-friendliness. End-users may manipulate familiar elements on the
conceptual level in order to configure cases for execution. Regarding tech-
nical users, the two main categories are case designer and case adapter.
The case designer accesses and manipulates only the elements of the up-
per, conceptual level during his work. That means, the implementation is
transparent to him: he deals with mining-specific elements and constructs
and has not to be aware of how they are implemented (which DBMS is
used, how functions are implemented, etc.). In contrast, the case adapter
is responsible for building the connection between the two levels when
something in the structure of the database changes.

- (again) reusability. The conceptual, abstract level may be (re)used for
any implementation behind (i.e., either database implementation or im-
plementation of operators).

- transportability (is a sort of reusability as well). The idea is to be able to
reuse (parts of) the cases not only in the same company (e.g., Swiss Life)
and the same branch (life insurance) but in other branches as well. To
this end, the representation of ontologies [3, 4, 10] has to be considered
within the conceptual data modelling part. A common ontology basis has
to exist which is specialized by all domain-specific ontologies.

Recall that the four parts of M* are linked to each other and connections
between metadata instances are often in both directions navigable such that
the required information may be rapidly accessed. Note that the consideration
of case implementation submodel is optional. Since this submodel represents
detailed information related to the implementation of operators and cases, it is
necessary only if a step-by-step tracing of data transformations is intended. This
could be desired for supporting understanding, debugging and maintenance of
code. Otherwise, if implementation informations have to be stored with a coarse
granularity only, the two submodels, conceptual case and implementation case
description are merged.

M* combines ideas from two existing standards for metadata representation
and exchange in the area of data warehousing (OIM and CWM) [15]. The ideas
are drastically simplified but extended with data mining and preprocessing el-
ements to make the metamodel domain-specific. Since both standards have
UML as core, M* uses some of UML classes as foundation as well.

Foundation of the Metamodel: UML Classes
Figure 1.5 depicts the UML classes which are specialized for defining M*. These
are:

ModelElement is the base for all modeling metaclasses in the UML. All other
modeling metaclasses are either directly or indirectly specialized from
ModelElement.
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ModelElement

Figure 1.5: Simplified UML

Classifier A classifier is an element that describes behavioral and structural
features; it appears in several specific forms, including class, data type,
interface, component, and others.

Class A Class is a description of a set of objects that share the same attributes,
operations, methods, relationships, and semantics. Specializations in M*
of the UML class Class are ColumnSet and Concept (supporting concep-
tual and relational modelling).

Supertype Classifier
Subtypes (in M*) Concept, ColumnSet
Associations attributes. Multiplicity: 0..n

Attribute An attribute is a named slot within a classifier that describes a
range of values that can be assigned to instances of the classifier. Attribute
is specialized to support different needs, and associated with a data type.
Supertype StructuralFeature
Subtypes(in M*) Column, FeatureAttribute, Value, RoleRestriction
Associations classes. Ordered association to the class this attribute is
in. Multiplicity:1..1
dataType. The data type of this attribute. Multiplicity: 1..1

DataType A data type is attached to an attribute. Data types include primi-
tive built-in types (integer, strings etc.) as well as definable enumeration
types (e.g. boolean, true and false).

Supertype Classifier
Subtypes(in M*) Integer, String, DomainDataType etc.
Associations has (to Attribute). Multiplicity: 1..1

We assume a strict inheritance, where attributes of a subclass can only be
the same or specializations of attributes of the superclasses. Multiplicity of an
association denotes how many instances of the association a class may have. It
indicates the minimal and maximal range of an association. If 0 is written as
the lower bound then the association need not be present at all. Although this
can be considered kind of a negation, we treat 0 in the same way as all other
numbers. In particular, the specialization of multiplicity is simply increasing
the lower and/or decreasing the upper bound.

In the following, we present M* in more detail. The next part deals with the
two submodels obtained through vertical partition (data and case modelling).
We present each class in turn with some of its particularities. Even if not always
explicitly stated, each instance of the classes in the metamodel has a unique ID
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which identifies it, a name, and a description (which is simple text). Moreover,
each class manages its extension which contains the set of all instances of this

class.
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Mining Mart Data Model
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‘ TimeGroup

‘ Spatial

DomainDataType
RISA
Relationship
BaseAttribute <> MultiColumnFeature

FromConcept
ToConcept
FeatureAttribute Concept ClsA

RoleRestriction

DataType Attribute

i
4{ Column

JA

ForeignKey PrimaryKey

ColumnStatistics

ColumnSet ColumnSetStatistiscs

Snapshot Table

‘ View ‘

Figure 1.6: The class diagram of Mining Mart data model

The data model part of M* is illustrated in Figure 1.6. It consists of the
conceptual and relational data model which are strongly coupled with each
other. We address first the relational data model Swhich is shown in the lower
part of the picture. It describes the data as they are at the application data
warehouse. We could directly use the database schema — and actually do use
it — but we must offer users the selection of relevant tables and columns. This
selection determines the population of the data analysis task. It is up to further
preprocessing steps to sample within this population or to determine relevant
columns. The conceptual model as shown in the upper part of the picture
declares the role that a table or column or set of columns is playing for a task.
For instance, conceptual metadata characterize a particular set of columns (in
the relational model) as the concept under investigation.

5This meta model is not new since it is rather standard and present in other meta models
as well, e.g., [15].



Chapter 2

Relational Data Model

The relational model is what will be given by most applications. It is the data
description as used for many purposes. It could well be This submodel com-
prises classes for representing data structures within the relational model. The
main classes are: Column, ColumnSet (with its subclasses Table, View, Snap-
shot) and Key. Column and ColumnSet have each a class containing statistical
information ( ColumnStatistics and ColumnSetStatistics). A ColumnSet consists
of a list of Columns.

2.1 Column

A Column defines a set of values, i.e, describes a column in a result set, a view,
a table. It corresponds to a BaseAttribute at the conceptual level.

Supertype Attribute
Subtypes None
Attributes
— name - represents the name of the column in the database schema

(e.g., PTANSCH, PTEPFI, etc.)

— dataType - represents the data type (in the implementation language)
of the column (integer, string, etc)

Associations

— belongsToColumnSet. Is an aggregation (Column is part_ of ColumnSet).
It points to the ColumnSet that contains this Column. Multiplicity:
1..1 (Aggregation will be implemented as an attribute TableIndenti-
fier being foreign key to ColumnSet)

— keys. An association describing in which keys this column is part of.
Multiplicity: 0..n

— correspondsToBaseAttribute. It points to the corresponding BaseAt-
tribute at the conceptual level. Note that a FeatureAttribute may
be either a BaseAttribute or a MultiColumnFeature. In the latter
case there are more than one corresponding columns.

14
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2.1.1 ColumnSet

A ColumnSet describes any general set of columns - typically a table, view or
snapshot.

Supertype Class
Attributes

— name - represents the name of the table, view, etc.

number - represents the number of columns

file - name of the file containing the command creating the ColumnSet

— dbConnectString - name of the DB

user - the name of the owner of the ColumnSet (e.g., for the access
in Oracle User.Name@DBString is needed).

Associations

— hasColumn. Is an aggregation (ColumnSet has Column). It points
to all the Column(s) that form this ColumnSet. Multiplicity: 1..n.

— hasKeys. It points to the corresponding primary and foreign keys
that apply to the column set. Multiplicity 1..n.

— correspondsToConcept. It points to the corresponding concept at the
conceptual level. Multiplicity 0..1;

— correspondsToRelationship. It points to the corresponding relation-
ship at the conceptual level. Multiplicity 0..1;

Constraints ColumnSet points either to a Concept or a Relationship.
There are ColumnSets which do not point to any concept but to a rela-
tionship (because when the Relationship has the multiplicity m:n, it will
be implemented as a separate table);

2.1.2 ColumnStatistics

ColumnStatistics contains statistic information for columns necessary during
data mining. On the one hand, statistics of the values for each attribute are
stored (max and min value, average, etc). On the other hand, for each attribute,
information about distribution blocks is stored (if such information is available).
Distribution blocks are identified as follows: for a nominal attribute every value
is counted and grouped. For an ordinal attribute the values are grouped in at
most 1000 blocks (or intervals). For a time attribute the distribution depends
on the months between the minimal and maximal value. If months_between >
600 the values are grouped into years. If months_between > 60 and <= 600 the
values are grouped into quarters. If months_betweeen > 3 and <= 60 the values
are grouped into months. If months_between <= 3 the values are grouped into
days.

Supertype ModelElement

Attributes
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unique - number of diff. values of this column within the ColumnSet
— missing - number of missing value(s) within the ColumnSet

— min - minimal value of the column within the ColumnSet

— maz - maximal value of the column within the ColumnSet

— average - average value of the column within the ColumnSet

— standardDeviation - standard deviation value of the column within

the whole ColumnSet

The last two make sense for numeric (i.e., scalar) attributes only. The
distribution information consist of:

— distribution Value - name of one distribution block, e.g "YOUNG’ for
the attribute ’AGE’. If the attribute is of the type ORDINAL, the
average value of the block is used.

— distributionCount - number of counted records for this distribution
block.

— distributionMin - minimal value of the distribution block (makes
sense for ordinal attributes only)

— distributionMaz - maximal value of the distribution block (makes
sense for ordinal attributes only)

e Associations
— forColumn. It relates to exactly one Column. Multiplicity: 1..1.

Commentar Statistics could be represented at the conceptual level as well.

2.1.3 ColumnSetStatistics

ColumnSetStatistics contains statistic information for ColumnSets necessary
during data mining.

Supertype ModelElement

Attributes

allNumber - total number of tuples within the ColumnSet

ordinalNumber - number of ordinal attributes of the ColumnSet

— nominalNumber - number of nominal attributes of the ColumnSet

timeNumber - number of time attributes of the ColumnSet

Associations

— forColumnSet. 1t relates to exactly a ColumnSet. Multiplicity: 1..1.
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2.1.4 Table, View, Snapshot

No special features identified yet.
Supertype ColumnSet

Viev and Snapshot could possibly have an attribute containing the filtering
condition (the WHERE part of the SQL- query used for view definition) and one
association pointing to one or more instances of ColumnSet it has been applied
on (FROM part of the View definition). Snapshots require also attributes for
updating as howRefresh (i.e., either FAST or COMPLETE) and refreshInterval.

2.1.5 Key, PrimaryKey, ForeignKey
Supertype ModelElement

Attributes
— isUsedForIndex - may take two values, yes or no.
Associations

— hasColumn. It points to the Column(s) that form the Key. Multi-
plicity: 1..n.

— isAssociatedToColumnSet. It points to the ColumnSet where it is
Key. It is a sort of redundancy to the Aggregation between Column
and ColumnSet.

— isConnectionTo. 1t exists for ForeignKeys only - points to the Table
where is key (usually a primary key). Multiplicity 0..1.

— correspondsToRelationship. Is valid for ForeignKey. It points to the
corresponding relationship at the conceptual level. Multiplicity 0..1.
Relationships 1:m or 1:1 will be implemented as ForeignKeys. A rela-
tionship m:n will be implemented as ColumnSet and 2 ForeignKeys.
Multiplicity 1,2 or more;



Chapter 3

Conceptual Data Model

Due to its significant role for user-friendliness and reusability, the conceptual
layer is the most important part of the data model. It is a combination be-
tween ER-modelling, description logic (DL) and ontology representation, ex-
tended with data-mining-specific classes. The main two classes are Concept
and Relationship. A Concept (e.g., Customer, Partner) may have subconcepts
(e.g., Partner between 30-40 years or Mailed Person), that means there are
IsA relationships between Concepts (see Figure 3.2). Application-specific Rela-
tionships exist as well; they are binary Relationships (as in DL), e.g., Concept
Customer Buys Concept Product, Concept Partner is in Relationship Insur-
ance Owner with Concept Insurance Contract. Relationships may be bound to
each other with IsA relationships as well. Figure 3.1 illustrates the metamodel
representation of these semantics.

As visible in Figure 3.2, the three perspectives covered in the conceptual
model are:

e ontology level: contains general business ontologies; is useful for reuse of
cases in different companies; Mailed Person IsA Partner which in turn
IsA Customer, Taz-priviledged Contract IsA Insurance Contract and In-
surance Contract IsA Product; IsA applies for Relationships as well. Cus-
tomer and Product are included in the basis ontology which should be
common to many companies.

e database schema, level: represents the conceptual schema of the database;
this is mapped to the implemented schema. In Figure 3.2 this level corre-
spond to Partner, Insurance Contract and Insurance Qwner which have

Figure 3.1: Two important classes of the conceptual data model and their UML
associations
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Figure 3.2: Instances of conceptual model elements

direct correspondents on the implementation model in terms of relational
tables. So far, only the relational model is considered as implementation
model in M* (see Chapter 2) but other data models may be considered
as well. Note that the basis ontology (Customer, Product, Buys) has no
direct correspondence on the implementation level.

mining data level: describes data sets needed for and produced during
preprocessing for mining; contains also mining specific data types. In
Figure 3.2 these are the Mailed Persons, Tax-priviledged contracts, and
the Relationship Owns Insurance. These are subconcepts and subrela-
tionships of the elements beyond and are directly used for configuring or
designing Mining Mart cases. They correspond on the implementation
level to views or snapshots on tables.

We consider in detail the classes of the conceptual data model with their

attributes.

3.1 Concept

Supertype Class
Attributes

— name - name of the concept (e.g., Partner, Product, Customer)

— subConceptRestriction - defines (in a machine processable language!)
the characteristics of a subconcept (in relation with its supercon-
cept), e.g., the specification of the fact that concept YoungéPowerful
represents the Partner(s) between 30-40 years while Young repre-
sents Partner(s) between 20-30 years. Both are subconcepts of Part-

ner.
Associations

— 4sA. It points to its (super)concept e.g, Young isA Partner
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3.2

— correspondsToColumnSet. It points to the corresponding ColumnSet
that implements the concept. Multiplicity 0..1.

— FromConcept. It points to the Relationship the Concept is associated
with. For example, Concept Partner is in Relationship PartnerRole
to the Concept Contract. Then Partner is associated by means of
FromConcept to PartnerRole. Multiplicity 1..1.

— ToConcept. It points to the Relationship the Concept is associated
with. E.g., Contract is associated by means of ToConcept to Rela-
tionship PartnerRole. Multiplicity 1..1.

Constraints

Each ColumnSet has a Concept or Relationship but not each Concept
or Relationship points to a ColumnSet (e.g., the basis ontology has no
correspondant on the database side.

For each instance of FromConcept association an instance of ToConcept
association has to exist and conversely.

Relationship

Supertype ModelElement
Attributes

— name - name of the relationship (e.g., PartnerRole, InsuredPerson,
InsuranceHolder, InsuranceOwner)

— subRelationshipRestriction - defines (in a machine processable lan-
guage!) the characteristics of a subrelationship in relation with its
superrelationship, e.g., the specification of the fact that Relationship
InsuredPerson resp. InsuranceHolder represents a subset of Partner-
Role fulfilling some conditions. These are formulated using feature-
attributes, concepts, and so on. A possible language could be DL
role-terms [1]. InsuredPerson and InsuranceHolder are both subcon-
cepts of PartnerRole.

— defined - with regard to the restriction above, it may be defined or
primitive (sufficient condition or not)

Associations

— isA. It points to its (super)relationship e.g, InsuranceHolder isA
PartnerRole

— correspondsToForeignKey. Multiplicity 1..n. It points to the corre-
sponding ForeignKey(s) that implements the Relationship. Relation-
ships 1:m or 1:1 will be implemented as ForeignKeys. A relationship
m:n will be implemented as ColumnSet and 2 ForeignKeys. More-
over, a relationship may also have more than 2 ForeignKeys.

— correspondsToColumnSet. 1t points to the corresponding ColumnSet
that implements the Relationhip. This is valid only when the rela-
tionship is m:n. Multiplicity 0..1.
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— FromConcept. It points to one of the Concepts connected by the
Relationship (Multiplicity 1..1) while

— ToConcept. Multiplicity 1..1. It points to the other Concept. E.g.,
PartnerRole is associated by means of FromConcept to Concept Part-
ner and by means of ToConcept to Concept Contract.

Constraints

Each Relationship corresponds to either a ColumnSet or a ForeignKey
on the implementation level. That means, the association correspondsTo-
ForeignKey may exist without the association correspondsToColumnSet.
However, when emphcorrespondsToColumnSet exists, it requires two For-
eignKeys as well (i.e.,correspondsToForeignKey exists as well).

A Relationship cannot exist without FromConcept and ToConcept.

3.3 FeatureAttribute

Contains attributes of Concepts. It may be either a BaseAttribute or a Mul-
tiColumnFeature. A FeatureAttribute may have various mining relevant data
types (they follow below).

Supertype Attribute (from UML)
Subtypes BaseAttribute, MultiColumnFeature
Attributes

— name - name of the feature attribute. The name should be more

comprehensive (e.g., postal address of partner) than usual names of
columns (as. e.g, PTANSCH and PTEPFI)

— relevanceForMining - whether the FeatureAttribute is relevant for
mining or not

— attributeType - defines whether it is a base attribute, a result or an
intermediate attribute for a case.

Associations

— belongsToConcept. 1t points to the concept it belongs to. It is an
aggregation. Multiplicity 1..1.

— correspondsToColumns. It points to the column (or columns) it rep-
resents. Multiplicity 1..n. Note that a feature attribute may have
many columns if it is a MultiFeatureColumn.

3.4 BaseAttribute

A BaseAttribute may have various mining relevant data types (they follow be-
low).

Supertype FeatureAttribute

Associations
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— domainDataType. It points to the mining-specific data type, i.e., to
the DomainDataType. Multiplicity 1..1.

— isPartOfMultiColumnFeature. Itis an aggregation and points to a
MultiColumnFeature if it is part thereof. Multiplicity 0..1.

3.5 MultiColumnFeature

A MultiColumnFeature consists of a set of BaseAttribute. Note that a Multi-
ColumnFeature has no data type, only a BaseAttribute has one.

Supertype FeatureAttribute
Subtypes Timelnterval (not depicted)
Associations

— consistsOfBaseAttributes. It points to the set of BaseAttributes that
builds the MultiColumnFeature. It is an aggregation. Multiplicity
1..n.

Comments. Timelnterval has only two BaseAttributes it points to: startOfln-
terval and endOfInterval. Their data type is Time. Another example of an
instance for MultiColumnFeature is “Money” which could be represented with
two components (value, currency).

3.6 Value

Value is needed for specifying arithmetic expressions and conditions for e.g.,
segmentation operators. It is part_of UserInput. This aggregation is not addi-
tionally depicted in the figure since superclasses of Value and UserInput (i.e.,
Attribute and Class) are anyway linked by an aggregation.

Supertype Attribute (from UML)
Attributes

— name - name (or representation) of the value
Associations

— domainDataType. It points to the mining-specific data type, i.e., to
the DomainDataType. Multiplicity 1..1.

— belongsToUserInput. It points to the UserInput it belongs to. It is
an aggregation. Multiplicity 1..n., not depicted in the diagramm.

Comments. Values could be any complex structure as well, e.g., decision trees,
regression trees, discretization tables, instance lists, aso. Complex structures
have not been considered so far.
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3.7 UserInput

Contains the set of Values entered by users when specifying cases.
Supertype Class (from UML)
Attributes
— mame - name of user input
Associations

— ContainsValues. 1t points to Values. It is an aggregation. Multiplic-
ity 1..n. Not depicted in the diagram.

3.8 RoleRestriction

It is a special attribute. It is necessarily bound to a relationship and a concept.
It actually expresses a constraint, the fact that if a Relationship is linked to a
Concept by means of FromConcept, it has to be linked to another Concept by
means of a ToConcept. RoleRestriction considers the constraint from another
perspective, for THIS (i.e., the given) Concept for which the RoleRestriction
attribute has been defined, there exists a Relationship and (at least) another
Concept (such that the relationship exists between these two concepts).
Warning: the semantics may possibly be found in the Concept-Relationship
modelling as well but it seems that various operators need the information
explicitly available in form of “role restriction” and not hidden as Concept-
Relationship representation. That’s the reason RoleRestriction had to be in-
troduced. It corresponds to the DL terms: all, atleast and atmost [1].

Supertype Attribute (from UML)
Attributes

— name - name of the role restriction

— restrictionForRelationship - pointer to the Relationship it is a re-
striction for

— restrictionForConcept - pointer to the (sub)Concept it applies to.

— restrictionToConcept - pointer to the Concept where all instances of
the range of the relation will be member of (DL-all)

— min - minimum of number of Concept instances in Relationship with
every instance of THIS Concept

— maz - maximum of Concept instances in Relationship with every
instance of THIS Concept. (Note that only a 2-Relationship is con-
sidered.)

Associations

e belongsToConcept. It points to THIS Concept for which roleRestriction
is an attribute (in the diagramm is depicted as an association between
Attribute and Class).
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3.9 DomainDataType and its Subclasses

There are many domain-specific data types we only briefly mention below.

DomainDataType. Each attribute has a data type; this will be repre-
sented as association hasDataType, multiplicity 1..1.

Generally, note that constraints have to be implemented for these data
types. In particular, operators making sense for each of the domain-
specific data types have to be defined and processing information for
them is required. For example, “<” and “<=" make sense for ordinal
attributes only. In contrast, “=" makes sense for binary and categorial
attributes. Distance is allowed for scalar attributes only. Operators like
+, - are applied to scalar attributes. Logical operators are applicable to
binary attributes.

Ordinal. All values of this attribute are ordered. Distance between
values makes no sense.

Scalar. Dinstance makes sense. Scalar attributes are usually represented
as numeric or date on the implementation level.

Time. It represents the absolute point in time. It may have the following
attributes:

— value

— timeScale (second, minute, hour, day, month, year).
Binary. Has only two values, 0 or 1. “<” and distance makes sense (it

is either 0 or 1). The two logical operations, “xor”(+) and “and” (-) are
also applicable and result in the following arithmetic logic:

XOR: AND:

1+1=0 0-0=0
1+0=1 0-1=0
0+1=1 1-0=0
0+0=0 1-1=1

Categorial. Has a fixed small number of values.

KeyAttribute. This kind of attributes is used for identification and
is not suitable for mining (the number of different values is too high).
Subclasses are TimeGroup and Spatial.

TimeGroup. It represents the identification of an individual for which
Time data is collected. It makes sense only if it is paired with a set
of Time attributes (representing the time series). It has as attribute
numberOfDifferentIndividuallnstantiations and missing values.

Spatial. This data type is used for GIS and mining visualisation.

Constant. It has only one possible value and thus it is not suitable for
mining. Typically is the result of a selection.
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Chapter 4

Conceptual Case Modelling

The metadata that characterize sequences of preprocessing operators and their
sequences is declared by the case model as depicted in Figure 4.1. A case consists
of a list of steps and each step embedds an operator; the output of a step is the
input for the next one. Operators have Parameters which should be Concepts,
Relationships, FeatureAttributes or Values - to be found in the data model part
(not all the semantics are represented in the diagram). Cases have as parameters
the population (i.e., the base concept) and the target attribute which needs to
be specified at the conceptual level (as Concept, FeatureAttribute, Relationship).
Finally, the actual data mining will be then performed on a subconcept of the
base concept which is constructed during preprocessing.

Steps can be carried out in loops 4.2.1 or as multiple steps 4.2.2. While
LoopStep is an iteration over input elements, MultiStep is an iteration over
output elements. Other control stuctures — for instance conditioned branching
— are currently not included in the case model. The case model stores successful
cases for further use. A certain case does not contain any conditioned branching.

Parameter Operator

RowSelection

TimeOperator

DataMinStep

FeatureConstr FeatureSelection

‘ MultiRelFeatureConstr

A z x % % realizes
Aggregation Scaling ‘ Discretization Segmentation Sampling ‘

DataObject sourct ExecutionElement
target

Transformation ~ TransformationGroup

‘ MSL-Tool
I

‘ StoredProcedure

Function

‘ SQLQuery

Figure 4.1: The class diagram of Mining Mart case model
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Only if case adaptation would become easier by conditions, we shall include
condistioned statemehnts into the case model.

The conceptual layer of the case model contains domain-specific classes
which represent preprocessing on a higher abstraction level than the under-
lying implementation code behind (represented within the implementation case
model in Chapter 5).

4.1 Case

A case consists of many steps. Note that a case has to contain an attribute
documentation which describes by means of natural language what the case
does. This documentation is important for retrieving the appropriate case from
the set of already defined cases.

Supertype ModelElement
Attributes

— name - name of the case
— case mode - may be training or final

— caselnput - input for the case (is a heterogeneous list containing
Concepts, FeatureAttributes, Values, Relationships)

— caseQutput - output of the case; is a Concept; it is actually the input
required by the DataMiningStep.

— documentation
Associations

— listOfSteps, It points to the steps that build the case. It is an aggre-
gation. Multiplicity 0..1.

— population. It points to Concept (which is an element of caselnput).
The case has to be applied on this Concept; it will be taken as
parameter for RowSelection operators

— targetAttributes. It points to the FeatureAttribute(s) for which the
mining case is applied; It will be needed as parameter value for many
of the operators.

4.2 Step

Steps are parts of cases (that means, they make sense only in connection with
a case). Each step has to be linked to a set of predecessors and successors
which are steps as well. In this way, parallelisation of operator execution is
possible because no fixe sequence is enforced, only prioritisation is specified -
that means, the operator may be executed only if its predecessors have been
executed.

Each step embedds one operator. The output of the operator belonging to
the predecessor step is needed as the input of the operator belonging to THIS
step.
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Supertype ModelElement(from UML)
Subtypes LoopStep, MultiStep
Attributes

— name - name of the step
Associations

— belongsToCase. It points to the corresponding Case. 1..n

embeddsOperator. it points to the corresponding operator. 1..1

predecessor. it points to the preceding steps. 0..n

— successor. it points to the succeding steps. 0..n

4.2.1 LoopStep

LoopStep is a special kind of Step. It allows the iteration over more than one
input element. In a loop, for instance, one step consists of the discretization of
several attributes of a table. The discretization then loops over the numerical
attributes. Similarly, a missing value operator can be applied to more than
one attribute during the same step. LoopStep may be applied only to Operators
having loopable = yes. These may be only instances of FeatureConstruction
and MultiRelationalFeature Construction. Other operators like RowSelection,
FeatureSelection, TimeQOperators are not loopable. The output description is
the same as for a single operator call.

Supertype Step
Attributes

— iterationSet - is a set of FeatureAttribute; for each element of the
set the operator (embedded in step) is called.

— outputSet - is a set of FeatureAttribute

4.2.2 MultiStep

MultiStep is another special kind of Step. While LoopStep is an iteration over
input elements, MultiStep is an iteration over output elements. That means,
the rest of the case is applied for each of the output element in the list. In a
MultiStep, for instance, several random samples are drawn from a population
and for each of these, a certain operator transforms the sample into a data set
for data mining. Multiple steps are also important when preprocessing multi-
variate time series into data sets for learning.

Supertype Step
Attributes

— iterationCondition - is the condition for looping over output elements

Comments. OutputSet is obtained from the Operator embedded in Step.
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4.3 Operator

Operator is the superclass of all operators in MiningMart. Recall, that we adopt
a strict inheritance approach. This means, that all descriptions of a superclass
are inherited by its subclasses and can only be specialized. Usually, the in-
herited associations and attributes are not listed. If it enhances readability,
however, the inherited features are repeated with the marker inherited. The
notation for the operators is informal, but employs some conventions for the
ease of reference within a description. Strings that are composed of the defi-
nite article and an element are variables of the operator metadata in the case
model !. For instance, TheInputConcept is used in an operator class to refer
to the input of the operator. Input and output are notions from the operator
metadata. The type of the variables is given by reference to the data model. It
is never written with the string “The” in front. For instance, ThelnputConcept
points to a Concept. This relates the operator description in the case model
(ThelnputConcept) with the data model (Concept).

Abstract

yes
Supertype ModelElement (from UML)
Attributes

— loopable - it may take two values, yes/no. FeatureConstruction and
MultiFeatureConstruction could be loopable while the other ones
(RowSelection, FeatureSelection, TimeOperators) are not loopable.

— manual - it may take two values, yes/no.
Associations

— 4nput. It is an ordered list of parameters. Multiplicity 1..n.
— output. It is an ordered list of parameters. Multiplicity 1..n
— realizes. It points to ExecutionElement. Multiplicity 0..1

— constraints. Constraints of the operator that clarify the semantics
of the operator. Their validity can be checked on the meta-data.
Multiplicity 0..n

— conditions. Conditions of the operator which can be checked on the
data only.

— assertions. Characterization of the operator relating input and out-
put. Assertions are true by the nature of the operator. The informa-
tion is supposed to support the sequencing of operators. Multiplicity
0..1

!Note, however, that the names of elements of the operator description need not start with
the definite article “The”.
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4.3.1 MultiRelationalFeatureConstruction

Multi-relational feature construction takes as input several concepts (tables,
relations) and produces a single concept.

Abstractyes
Supertype Operator
Attributes
loopable - yes
Associations
— input
TheConcept points to a Concept, Multiplicity 0..n.

4.3.1.1 Chaining

Chaining finds a feature of an object as a result from a chain of relationships.
For instance, we can turn the characteristics of a living place into a character-
istic of the people living there. We start with a customer in R; and use the
relation Ry between customers and areas in order to find the zip code. Let us
suppose we have background knowledge about regions (e.g., the average rent
of apartments). Then we use this relationship R3 in order to find a feature F
(the rent) for a region. Now, we ascribe this feature to the customer. At the
implementation level this means adding an attribute to R;. The new attribute
is based on attributes in several tables.

Supertype MultiRelationalFeatureConstruction
Attributes
loopable - yes

Associations

input
TheConcept points to a Concept, Multiplicity 1..1.
Rq,...,R, point to n RelationShip, each with Multiplicity 1..1.
F points to a BaseAttribute, Multiplicity 1..1.

output
TheOutputAttribute points to a BaseAttribute, Multiplicity 1..1.

Constraints
Domain(R;) = TheConcept
Range(R;) = Domain(R; 1)
F is BaseAttribute of Range(R,,)
Assertions

TheOutputAttribute belongs to TheConcept.
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4.3.1.2 Propositionalisation

Propositionalisation is the process of transforming a multi-relational dataset,
containing structured examples, into a propositional dataset with derived attribute-
value features, describing the structural properties of the examples. The process
can thus be thought of as summarising data stored in multiple tables in a sin-
gle table containing one record per example. The operator uses aggregates to
project information stored in several tables on one of these tables, essentially
adding virtual attributes to this table. In the case where the information is pro-
jected on the target table, and structural information belonging to an example
is summarised as a new feature of that example, aggregates can be thought of
as a form of feature construction. The aggregates generated by this operator
are count, min, maz, sum, avg and predominant value.

Abstract no
Supertype MultiRelationalFeatureConstruction
Attributes

loopable - yes

Associations

input
theDataModel points to a set of Concepts, Multiplicity 0..n. in-
herited
theRelationSet points to a set of Relationships, Multiplicity 0..m.
theTargetConcept points to a Concept, Multiplicity 1..1.

output
thePropositionalConcept points to a Concept, Multiplicity 1..1.

Constraints

TheTargetConcept points to a Concept that is an element of
theDataModel.

Assertions

TheOutputAttribute belongs to TheConcept.

4.3.2 RowSelection

RowSelection is the superclass of all instance selection operators. Of course,
there are many different tools that implement the subclasses Sampling or
Segmentation. Even for their subclasses, e.g. stratified random sampling or
partitioning, there exist many different algorithms. At the level of the case
model, we treat them all alike, do not differentiate among them (e.g.,with re-
spect to performance). Hence, a case including a random sampling step can
be executed applying whatever random sampling algorithm is available at the
application site (see Chapter 5).

Supertype Operator
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Attributes

loopable - no

multistepable - yes
Associations

— input
ThelnputConcept points to a Concept, Multiplicity 1..1.
TheCondition points to a StructuralFeature, Multiplicity 1..1.

— output

TheOutputConcept points to a Concept, Multiplicity 1..1.
— Assertions

TheOutputConcept isA ThelnputConcept.

4.3.2.1 Sampling
Abstract

yes
Supertype RowSelection
Associations

— input

HowMany points to a Value (dataType=Real domain=low-high
(low=0 high=1)), Multiplicity 1..1.
4.3.2.1.1 RandomSampling
Abstract
no
Supertype Sampling
Attributes
manual - yes
loopable - yes
4.3.2.1.2 StratifiedRandomSampling
Abstract
no
Supertype Sampling
Attributes

manual - no
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loopable - yes
Associations

— input

TheAttribute points to a BaseAttribute (domainDataType=Categorial),
Multiplicity 1..1.

4.3.2.2 SelectCases
Abstract

yes

Supertype RowSelection

4.3.2.2.1 DeleteRecordsWithMissingValues
Abstract
no
Supertype SelectCases
Attributes

manual - yes

loopable - yes
Associations

— input

TheAttribute points to a BaseAttribute (hasMissingValues=Yes),
Multiplicity 1..1.

— Constraints

TheAttribute is present in ThelnputConcept
— Assertions

TheAttribute hasMissingValue=No

4.3.2.2.2 SelectByQuery
Abstract
no
Supertype SelectCases
Attributes

manual - yes

loopable - yes

Associations
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— input
TheCondition points to a Condition, Multiplicity 1..1.
— Constraints

All attributes A; €TheCondition are present in ThelnputCon-
cept

4.3.2.3 Segmentation
Abstract

yes
Supertype RowSelection
Associations

— output

TheOutputConcepts points to a set of Concept, Multiplicity
1..n.

4.3.2.3.1 StratifiedSegmentation
Abstract
no
Supertype Segmentation
Associations

— input

TheAttribute points to a BaseAttribute (domainDataType=Categorial),
Multiplicity 1..1.

4.3.2.3.2 NNSegmentation
Abstract
no
Supertype Segmentation
Associations

— input

ClusterCenters points to a Concept, Multiplicity 1..1.
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4.3.2.3.3 Partitioning
Abstract
no
Supertype Segmentation
Associations

— input

HowManyPartitions points to a Value (dataType=Integer domain=greater-
than (value=1)), Multiplicity 1..1.

4.3.3 FeatureSelection

Some learning algorithms select the most relevant features automatically. How-
ever, the user might want to exclude a large set of irrelevant features early
on.

Supertype Operator
Attributes

manual - yes

loopable - no
Associations

— input
TheConcept points to a Concept, Multiplicity 1..1.
TheAttributes points to a set of BaseAttribute, Multiplicity 1..n.
— output
TheOutputConcept points to a Concept, Multiplicity 1..1.
— Assertions

TheOutputConcept is an extensionally equivalent projection of
TheConcept.

4.3.4 Feature Construction

The operator FeatureConstruction creates a new feature for a concept. This
corresponds to a new attribute in a table or view at the implementation level.
The new attribute is based on one or more base attributes. As opposed to multi-
relational feature construction, the attributes that are combined to obtain the
new one are all in the same table or view. The total number of data records is
the same as before the operation. Examples of feature construction operators
are: age computation for a person by using her date of birth, computation of the
entry-age into an insurance contract, or the end-age of an insurance contract.

Supertype Operator

Attributes
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loopable - yes
Associations

— input
TheConcept points to a Concept, Multiplicity 1..1.
TheAttributes points to a set of BaseAttribute, Multiplicity 1..n.
— output
TheOutputConcept points to a Concept, Multiplicity 1..1.
— Assertions

The OutputAttribute belongs to TheConcept.

4.3.4.1 Pivot

The operator Pivot merges all the records concerning a subject in only one
record. It creates new features and the total number of data records is less
than before the operation. One of the input parameters has to be categorial
Base Attribute.

Supertype Feature Construction
Attributes
Associations
— input
Userldentification points to BaseAttribute, Multiplicity 1..1.

FirstAttribute points to BaseAttribute, Multiplicity 1..1.
SecondAttribute points to BaseAttribute, Multiplicity 1..1.

output

TheOutputConcept points to a Concept, Multiplicity 1..1.

NewAttribute(7) points to BaseAttribute, Multiplicity 1..1 (where

FirstValueOfCategorial j= 7 j= LastValueOfCategorial).
Assertions

The name of the column(NewAttribute(i)) = i.

The datatype of the columns NewAttribute = the datatype of
Second Attribute.

Constraints

The PrimaryKey(TheConcept) has column Userldentification,
First Attribute, SecondAttribute.

DomainDataType(FirstAttribute) = Categorial (with n value).
The number of column of THeQutputConcept is equal to n + 1
(they are the NewAttributes + ThePrimaryKey).

The PrimaryKey(TheOutputConcept) has column Userldentifi-
cation.
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4.3.4.2 Dual Pivot

The operator 1dual pivot splits a record and creates a basket of records; the
input multi-features concept is transformed in a two features concept.

Supertype Feature Construction
Attributes

multistepable - no
Associations

— input
— output

TheOutputAttribute points to a BaseAttribute, Multiplicity 1..1
(it’s the only attribute of TheOutputConcept).

— Constraints

ThePrimaryKey(TheConcept) 1has column UserIdentification

ThePrimaryKey(TheOutputConcept) 1has column UserIldentifi-
cation, TheOutputAttribute

4.3.4.3 Scaling

Scaling is a specialization of the FeatureConstruction operator. The scale of
numeric attributes is very important for distance-based mining algorithms (like
e.g., clustering) because attributes with larger values are more influential on the
result. To avoid this usually unintended weighting of attributes, all attributes
have to be rescaled, i.e., the range of attribute values has to be changed in such
a way that it fits into a specified new range. Input and output parameters have
to be scalar BaseAttributes.

Abstract

yes
Supertype FeatureConstruction
Association

— input

TheAttribute points to a BaseAttribute (domainDataType =
Real), Multiplicity 1..1.

— Constraints

TheAttribute belongs to TheConcept
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4.3.4.3.1 LinearScaling
Abstract
no
Supertype Scaling
Attributes
manual - yes
Association

— input

NewRangeMin points to a Value (dataType=Real), Multiplicity
1..1.

NewRangeMax points to a Value (dataType=Real), Multiplicity
1..1.

— Conditions

NewRangeMin < NewRangeMax

4.3.4.3.2 LogScaling
Abstract
no
Supertype Scaling
Attributes
manual - yes
Association

— input

LogBase points to a Value (dataType=Integer domain=greater-
than (value=2)), Multiplicity 1..1.

— Conditions
TheAttribute > 0

4.3.4.4 MissingValues
Supertype FeatureConstruction
Associations

— input
TheConcept (inherited)points to a Concept, Multiplicity 1..1.
TheTarget Attribute points to a BaseAttribute, Multiplicity 1..1.

ThePredictingAttributes (inherited) points to a set of BaseAt-
tributes, Multiplicity 1..n.
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output
FilledAttribute points to a BaseAttribute, Multiplicity 1..1.

Constraints

TheTarget Attribute and ThePredictingAttributes belong to TheCon-
cept.

Conditions

TheTarget Attribute is a BaseAttribute with hasMissing Values=yes.

Assertions

FilledAttribute belongs to TheConcept. FilledAttribute is a
BaseAttribute with hasMissingValues=no.

4.3.4.4.1 AssignDefault
Abstract
no
Supertype MissingValue
Associations

— input

DefaultValue points to a Value (dataType=domainDataType(TheAttribute)),
Multiplicity 1..1.

4.3.4.4.2 AssignModalValue Here, the most frequent value of an attribute
is asserted, whenever the value is missing.

Abstract

no
Supertype MissingValue
Associations

— input

ModalValue points to a Value (dataType=Categorial), Multi-
plicity 1..1.

— Constraints
domainDataType(TheAttribute) = Categorial
4.3.4.4.3 AssignMedianValue
Abstract
no

Supertype MissingValue
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Associations

— input

MedianValue points to a Value (dataType=Ordinal), Multiplic-
ity 1..1.

— Constraints
domainDataType(TheAttribute) = Ordinal

4.3.4.4.4 AssignAverageValue
Abstract
no
Supertype MissingValue
Associations

— input

AverageValue points to a Value (dataType=Real), Multiplicity
1..1.

— Constraints

domainDataType(TheAttribute) = Real

4.3.4.4.5 AssignStochasticValue
Abstract
no
Supertype MissingValue
Attributes
manual - yes
Associations

— input

ProbabilityDistribution points to a Value (dataType=Distribution),
Multiplicity 1..1.

— Constraints

domainDataType(TheAttribute) = Categorial
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4.3.4.4.6 AssignPredictedValueCategorial
Abstract
no
Supertype MissingValue
Attributes
manual - no
Associations

— input

UsePreviousTree points to a Value (dataType=Boolean default-
Value=false), Multiplicity 1..1. DecisionTree points to a Value

(dataType=DecisionTree dependency=UsePreviousTree (dependency-
type=equals (value=true))), Multiplicity 1..1. PredictingAttributes

points to a set of BaseAttribute (dependency=UsePreviousTree
(dependency-type=equals (value=false))), Multiplicity 1..n.

— Constraints
domainDataType(TheAttribute) = Categorial

Note

TheAttribute is used as Target by the decision tree building algo-
rithm. The decision tree building algorithm must be run on a subset
of TheConcept that contains no records with missing values for The-
Attribute.
4.3.4.4.7 AssignPredictedValueContinuous

Abstract
no

Supertype MissingValue

Attributes
manual - no

Associations

— input

UsePreviousTree points to a Value (dataType=Boolean default-
Value=false), Multiplicity 1..1.

RegressionTree points to a Value (dataType=RegressionTree de-

pendency=UsePreviousTree (dependency-type=equals (value=true))),

Multiplicity 1..1.
PredictingAttributes points to a set of BaseAttribute (depen-

dency=UsePreviousTree (dependency-type=equals (value=false))),

Multiplicity 1..n.
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— Constraints
domainDataType(TheAttribute) = ordinal

Note

TheAttribute is used as Target by the Regression Ttree building
algorithm. The regression tree building algorithm must be run on a
subset of TheConcept that contains no records with missing values
for TheAttribute.

4.3.4.4.8 MissingValuesWithRegressionSVM
Supertype MissingValues
Attributes
manual - no
Associations

— input
The TargetAttribute (specialized) points to a BaseAttribute (Scalar),
Multiplicity 1..1.
ThePredictingAttributes (specialized) points to a set of BaseAt-
tributes (Scalar), Multiplicity 1..n.
C points to a BaseAttribute (Scalar), Multiplicity 1..1.
LossFunctionPos points to a BaseAttribute (Scalar), Multiplic-
ity 1..1.
LossFunctionNeg points to a BaseAttribute (Scalar), Multiplic-
ity 1..1.
Epsilon points to a BaseAttribute (Scalar), Multiplicity 1..1.
KernelType is a Constant.

— output
TheSVMModel points to a SVMModel, Multiplicity 1..1.
FilledAttribute (specialized) points to a BaseAttribute(Scalar).

4.3.4.4.9 MissingValuesWithDecisionTree
Supertype MissingValues
Attributes
manual - no
Associations

— input
ThelnputDecisionTree points to a DecisionTree, Multiplicity 1..1.
— output

TheOutputDecisionTree points to a DecisionTree, Multiplicity
1..1.
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4.3.4.5 Grouping
Abstract
yes
Supertype FeatureConstruction
Associations

— input
LabelPrefix points to a Value (dataType=Char), Multiplicity

1..1.
4.3.4.5.1 ECGrouping

Abstract

no
Supertype Grouping
Attributes

manual - yes
Associations

— input
IntervalCard points to a Value (dataType=Integer domain=greater-
than (value=1)), Multiplicity 1..1.

— Constraints

domainDataType(TheAttribute) = Ordinal
— Conditions

IntervalCard < Max(TheAttribute)

4.3.4.5.2 UDGrouping
Abstract
no
Supertype Grouping
Associations

— input

TheGroupings points to a set of ValueSet, Multiplicity 1..m.
— Constraints

domainDataType(TheAttribute) = Categorial
— Conditions

Every value in TheGroupings must belong to Domain(TheAttribute)
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4.3.4.6 Discretization
Abstract
yes
Supertype FeatureConstruction
Associations

— input
LabelPrefix points to a Value (dataType=Char), Multiplicity
1..1.

— Constraints
domainDataType(TheAttribute) = Ordinal

4.3.4.6.1 EWDiscretizationl
Abstract

no
Supertype Discretization
Associations

— input
Delta points to a Value (dataType=Real domain=greater-than
(value=0)), Multiplicity 1..1.

4.3.4.6.2 EWDiscretization2
Abstract

no
Supertype Discretization
Associations

— input
NumberOflntervals points to a Value (dataType=Integer domain=greater-
than (value=1)), Multiplicity 1..1.

4.3.4.6.3 ECDiscretization
Abstract

no
Supertype Discretization
Associations

— input
IntervalCard points to a Value (dataType=Integer domain=greater-
than (value=1)), Multiplicity 1..1.
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4.3.4.6.4 UDDiscretization
Abstract
no
Supertype Discretization
Associations

— input
IntervalExtremes points to a set of Value (dataType=Real),
Multiplicity 1..m.

4.3.5 DataMiningStep

The data mining step will most likely be executed by a plug-in tool or even
by another system. Since the MiningMart project is about preprocessing, we
do not model all the algorithms or tools that can be used for data mining, but
characterise at a higher level the classes of learning methods. The data mining
step is part of the case model as the ultimate target of the preprocessing chain.
Input restrictions of the data mining step determine the necessary preprocessing
steps that convert the given data into ones that fulfill the learning algorithm’s
needs.

Supertype Operator
Attributes

loopable - no

manual - no
Associations
— input
TheExamples points to a Concept, Multiplicity 1..1.

4.3.5.1 Classification

This is the standard task of learning from examples the recognition of class
members. Classes are marked by nominal values.

Supertype DataMiningStep
Associations

— input
TheExamples (inherited) points to a Concept, Multiplicity 1..1

TheTarget Attribute is a BaseAttribute (Nominal), Multiplicity
1..1.

— Constraints
TheTarget Attribute belongs to TheExamples.
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4.3.5.1.1 DecisionTree
Supertype Classification
Associations

— input
TheConcept points to a Concept, Multiplicity 1..1.
TheAttributes is a set BaseAttributes, Multiplicity 1..n.

— output
TheDecisionTree points to a DecisionTree, Multiplicity 1..1.

4.3.5.1.2 SupportVectorMachineForClassification
Supertype Classification
Associations

— input
ThePredictingAttributes are a set of BaseAttribute(Scalar), Mul-
tiplicity 1..n.
C points to a BaseAttribute (Scalar), Multiplicity 1..1.
LossFunctionPos points to a BaseAttribute (Scalar), Multiplic-
ity 1..1.
LossFunctionNeg points to a BaseAttribute (Scalar), Multiplic-
ity 1..1.
KernelType is a Constant.

— output

TheSVMModel is a SVMModel, Multiplicity 1..1
TheLearningResult points to a TextFile, Multiplicity 1..1.

4.3.5.2 Regression
This is the learning task where the target attribute is numerical.
Supertype DataMiningStep
Associations
— input

TheExamples (inherited) points to a Concept, Multiplicity 1..1.
TheTarget Attribute is a BaseAttribute (Scalar), Multiplicity 1..1.

— Constraints

TheTarget Attribute belongs to TheExamples.
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4.3.5.2.1 SupportVectorMachineForRegression
Supertype Regression
Associations

— input
ThePredictingAttributes is a set of BaseAttribute(Scalar), Mul-
tiplicity 1..n.
C points to a BaseAttribute(Scalar), Multiplicity 1..1.

LossFunctionPos points to a BaseAttribute(Scalar), Multiplicity
1..1.

LossFunctionNeg points to a BaseAttribute(Scalar), Multiplicity
1..1.

Epsilon points to a BaseAttribute(Scalar), Multiplicity 1..1.
KernelType points to a Constant.

— output
TheSVMModel is a SVMModel, Multiplicity 1..1.
TheLearningResult points to a TextFile, Multiplicity 1..1.

4.3.5.3 Deviation Detection / Subgroupdiscovery

The subgroup discovery algorithms have been developed especially for knowl-
edge discovery in databases. Many algorithms exist. We characterise here the
abstract class and illustrate it by the simple discovery of subgroups, Sidos, and
the multi-relational Midos.

Abstract

yes
Supertype DataMiningStep
Associations

— input
TheConcept points to a Concept, Multiplicity 1..1.
TheAttribute points to a BaseAttribute (domainDataType=Categorial),
Multiplicity 1..1.
SolutionSize points to a Value (dataType=Integer, domain=greater-
than (value=1)), Multiplicity 1..1.
MinimalSupport points to a Value (dataType=Real, domain=between
(value=0,value=1)), Multiplicity 1..1.
SearchDepth points to a Value (dataType=Integer, domain=greater-
than (value=1)), Multiplicity 1..1.

— output
TheRuleset points to a DeviationRules, Multiplicity 1..1.

— Constraints
TheAttribute is present in TheConcept
All attributes A; of TheConcept have (domainDataType=Categorial)
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4.3.5.3.1 Sidos
Abstract
no
Supertype Deviation Detection / Subgroupdiscovery
Associations
— input
4.3.5.3.2 Midos The RelationChain is as described in the multi-relational
feature construction.
Abstract
no
Supertype Deviation Detection / Subgroupdiscovery
Associations

— input

BackgroundConcepts points to a set of Concept, Multiplicity
0..n.

RelationChain points to a set of Relationships, Multiplicity 0..m.
— Constraints

All Concepts in BackgroundConcepts are “reachable” via Rela-
tions in RelationChain from TheConcept
4.3.5.4 Clustering
Abstract
yes
Supertype DataMiningStep
Associations

— input

MaxClusters points to a Value (dataType=Integer domain=greater-
than (value=1)), Multiplicity 1..1.

— output
ClusterCenters points to a Concept, Multiplicity 1..1.
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4.3.5.4.1 K-means
Abstract
no
Supertype Clustering
Associations

— input
DistanceMeasure points to a Value (dataType=Function), Mul-
tiplicity 1..1.
MaxIterations points to a Value (dataType=Integer domain=greater-
than (value=1)), Multiplicity 1..1.

4.3.6 TimeOperator

Handling time becomes more and more important in knowledge discovery. In
addition to statistical time series methods which analyse the particular function
of a series of measurements, we also consider sequences of events ore relations
between time intervals [8]. Very often, time phenomena are not handeled using
specialised data analysis techniques. Instead, the time stamped or continuous
data are transformed such that the result of this preprocessing can be handled
by standard tools for the data mining step. Hence, preprocessing operators are
particularly important for data including time information [7].

Supertype Operator
Attributes

loopable - no
Associations

— input
TimeSeries is a Concept, Multiplicity 1..1.
TimeAttribute is a BaseAttribute (domainDataType = Time)
of the Concept, Multiplicity 1..1 .
ValueAttributes points to n BaseAttribute of the Concept. Mul-
tiplicity 1..n.

— output
OutputTimeSeries points to a Concept, Multiplicity 1..1.
OutputValueAttributes points to BaseAttribute. Multiplicity
1..n.

— Conditions

TimeSeries is ascendingly sorted over TimeAttribute.

This superclass of time-specific preprocessing takes as input a table with n
ValueAttributes and one attribute for time points. The output is another table
with the same value attributes but usually much less rows, since the operator
aggregates rows.
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4.3.6.1 Windowing

The windowing operators split a time series into several time intervals of the
size WindowSize. This window is moved over the time series. Most often, the
window is moved from one time point to the next (WindowMovement 1).

Supertype TimeOperator
Associations

— input
WindowSize points to a BaseAttribute (Scalar), Multiplicity 1..1.
WindowMovement points to a BaseAttribute (Scalar), Multi-
plicity 1..1.

— output
OutputTimeAttribute points to a Timelnterval, Multiplicity 1..1.

4.3.6.2 SignalToSymbolProcessing

The signal to symbol method transforms a time series of numerical measure-
ments into a sequence of time intervals with nominal values. The sequence can
then be analysed by a data mining algorithm which is not oriented towards
time handling. The method does not employ a fixed window size but reads one
measurement after the other until the deviation from a summarizing function
exceeds the user given tolerance parameter. Then the time interval is closed. A
further parameter indicates whether alternating values are to be tolerated. In
other words, outliers are either handled as important peaks of measurements
(alternating values parameter set to false) or smoothed into the time interval
(alternating values parameter set to true).

Supertype TimeOperator
Associations

— input
Tolerance points to a BaseAttribute(Scalar), Multplicity 1..1.

Alternating points to a BaseAttribute (Boolean), Multiplicity
1..1.

— output

OutputTimeAttribute points to a Timelnterval, Multiplicity 1..1.

IntervalSymbol points to BaseAttribute (Nominal), Multiplicity
1..1.

Gradient to BaseAttribute (Scalar), Multiplicity 1..1.
— Assertions

OutputTimeSeries is extensionally equivalent projection of Time-
Series
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4.3.6.3 MovingFunction

The standard statistical approaches to time series are subsumed by the class
MovingFunction. Each subclass characterises a different way of how to handle
the attribute values within a window. Are they all of equal importance or
weighted? Whereas in statistics, each particular function that summarizes the
values within a time window (e.g., average, median, gradient) is considered a
method in its own right (e.g., moving average, moving median), we consider
the function a parameter of a general method. The function is denoted by its
name.

Note, that here we only consider uni-variate times series. If m-variate time
series are to be processed, they have to be split into m uni-variate time series,
first.

Supertype TimeOperator
Associations

— input
ValueAttributes (specialized) points to a BaseAttribute (Scalar),
Multiplicity 1..1.
InputFunction points to a BaseAttribute (nominal), Multiplicity
1..1.

— output
OutputTimeAttribute points to a BaseAttribute (Time), Multi-
plicity 1..1.
OutputValueAttribute points to a BaseAttribute (Scalar), Mul-
tiplicity 1..1.

4.3.6.4 WeightedMovingFunction

The user may weight the values within a time window. Most likely, the mea-
surements of very past timepoints are less important than the more current
values. However, the user can give any weighting for the values within a win-
dow. For instance, the Hanning weights for windows of the size 3 assign the
first and last measurement the weight 0,25 and the middle value the weight 0,5.
This weighting scheme worked out so well for many applications that there is
a name of it. We allow the user to input a table with just one attribute for the
weights and a row for each step within a window. Hence, the table has as many
rows as the window size (e.g., 3 rows for the Hanning approach).

Supertype MovingFunction
Associations

— input
Weights is a set of BaseAttributes(Scalar), Multiplicity 1..n
— Constraints

The sum of the weights is 1.
The number of weights n = WindowSize.
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4.3.6.5 ExponentialMovingFunction

Exponential moving functions are algorithmically different from weighted mov-
ing functions. The weights for the past values (tail) and current values (head)
are recursively applied. Applying the user-given function to the tail; x T'ailW eight
and head; x HeadW eight becomes the new tail; ;1. Then, the function and the
weights are applied to the calculated tail;1 and the new head; 1.

Supertype MovingFunction
Associations

— input
TailWeight points to a BaseAttribute (Scalar), Multiplicity 1..1.
HeadWeight points to a BaseAttribute (Scalar), Multiplicity 1..1.

— Constraints
The sum of TailWeight and HeadWeight is 1.
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Modelling of Case
Implementation

The case implementation level mainly contains information needed for algo-
rithms implementing the preprocessing operators. It also contains the links to
the data elements which are the input and output for operators. Each operator
instance on the conceptual level corresponds to an instance of an EzecutionFle-
ment. Note that this submodel is necessary only if a detailed tracing of data
transformations is intended. In this case, any ExecutionElement (Function,
Stored Procedure and SQL-Query) of any (small) granularity has to be linked
to a DataObject instance. DataObjects are either ColumnSets or Columns.
Note that, a proliferation of ColumnSets and Columns arise. Information for
any small, temporary step inbetween is stored in the metadata repository. This
information may be useful but the developer has to be aware of what it means
to collect and store it.

5.1 ExecutionElement

Supertype ModelElement
Associations

— source. It points to the DataObject which is the “source” on which
the operator is executed. This “source” may be a Column or a
ColumnSet.

— target. It points to the DataObject which is the “target” of the
operator execution. This “target” may be a Column or a ColumnSet.

The DataObject makes the connection between the two parts of the imple-
mentation level. It is a placeholder for either a Column or a Columnset which
is input and/or output for an ExecutionElement.

5.2 Transformation

A Transformation may be either a Function, a StoredProcedure or the definition
of a SQL-Query (not the result).

53
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Function and StoredProcedure have as attribute nameQOf which is the name of
the function or StoredProcedure that contains the implemented code. algorithm
contains the signature of the called function or stored procedure.

For the operator Feature Construction considered above (see Section 4.3.4),
there is at least an instance of the class StoredProcedure named Scaling. Note
that StoredProcedure contains only the call of the PL/SQL procedure. The code
itself is managed by the DBMS and may look as follows:

PROCEDURE Scaling(Interval LowRangeInput REAL,
Interval HighRangeInput REAL,

Interval LowRangeOutput REAL,

Interval HighRangeOutput REAL,

NewColumn REAL, OldColumn REAL)

IS

ScalingFactor REAL;

BEGIN

ScalingFactor = (Interval HighRangeOutput — Interval Low RangeOutput) /
(Interval HighRangeInput — Interval Low RangeInput)

SET NewColumn AS Interval Low RangeOutput +
ScalingFactor(OldColumn — Interval LowRangelInput)
RETURN;

END Scaling

The DataObject instance as “source” of this EzecutionElement is the value of
OldColumn and the target is NewColumn. Note that Transformations work with
implementation data types like REAL, INTEGER and not with (conceptual)
mining types (e.g., SCALAR, NOMINAL, BINARY). Moreover, note that the
procedure above could be “broken” in smaller code modules, e.g., Scaling could
call a function ComputeScalarFactor which would be then an instance of the
class Function. In this way, the implementation of operators could be better
tracked and maintained.

For the time handling operators, stored procedures are implemented. The
function that is used for summarizing values within a time window is a user-
given parameter. Its name is a call of a non-public function. This implemen-
tation is not documented by metadata. As stated above: we need not use the
implementation level of cases as documentation of the implemented operators
(external implementation, function, stored procedure, SQL query). Here, we
show how it can be done using the example of the manual missing value oper-
ators. We show the possible variations in that these operators do not take the
particular function that is used as a user-given parameter. Instead, for each
function there exists an operator. Note, however, that v ypction could well be a
user-given parameter.

AssignDefault Algorithm

Supertype ExecutionElement

Attributes
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- algorithm — View T as Select *, vg4e as A’ From Ty Where (Ty.A)miss
AssignModalValueAlgorithm
Supertype ExecutionElement
Attributes

- algorithm — Create View T as Select *, v;,04a1 a8 A’ From Ty Where
(TO-A)miss

AssignMedianValueAlgorithm
Supertype ExecutionElement
Attributes

- algorithm — Create View T as Select *, vjedian a8 A’ From Ty Where
(TO-A)miss

AssignAverageValueAlgorithm
Supertype ExecutionElement
Attributes

- algorithm — Create View T as Select *, v,yg as A’ From T, Where
(TO-A)miss

AssignStochasticValueAlgorithm
Supertype ExecutionElement
Attributes

- algorithm — Create View T as Select *, v = extract(A,p) as A’ From
To Where (Ty.A) miss

where extract(A,p) is a function which returns a value from the A domain
according to probability distribution p.
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Conclusion

This technical report presents a metamodel design for a metadata-driven soft-
ware package that performs preprocessing for data mining. In the course of
software development, metamodel changes are expected. However, the main
features derived from the four part distinction (data/case modelling vs. con-
ceptual/implementation representation) should be preserved. Also the view of
operators and their most relevant assertions and attributes should remain sta-
ble. They are the basis for building the human-computer interface as well as for
further work on applicability conditions of operators and conditions for their
most effective use. They ease the integration of new operators and the reference
to external operators.

One can benefit the most from using metadata-driven software if com-

pany wide integration is planned. There are currently two groups proposing
metamodel standards to store and exchange metadata within data warehousing
area: Object Management Group (OMG)! and Meta Data Coalition (MDC)2.
The OMG standard CWM (Common Warehouse Metamodel)[9] is restricted to
(technical) metadata for data warehousing, whereas the MDC standard OIM
(Open Information Model)[6] is much broader in scope, covering, besides data
warehousing, also aspects like business engineering (business rules, business pro-
cesses etc), organizational elements, object-oriented analysis and design etc. A
unification of the two standards has been recently announced®. If a new release
of CWM provides us with a unified standard, the metamodel of MiningMart
can be adapted to it.
Acknowledgements: This technical report emerged from the collaboration
between two projects, SMART (Supporting Metadata for Date Warehousing)
and Mining Mart (Enabling End-User Data Warehouse Mining). SMART is
partly funded by the Swiss committee of innovation and technology (project
number KTT 3979.1). Mining Mart is a European research project (IST-1999-
11993) with support of the Swiss federal office for education and science (project
number BBW 99.0158).

'www.omg.org
*http: //www.MDCinfo.com/
3http://www.cwmforum.org/
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