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Operational protocols are a valuable means for quality control.
However, developing operational protocols is a highly complex and
costly task. We present an integrated approach involving both
intelligent data analysis and knowledge acquisition from experts that
supports the development and validation of operational protocols. The
aim is to lower development cost through the use of machine learning
and at the same time ensure high quality standards for the protocol
through empirical validation. We demonstrate our approach of
integrating expert knowledge with data driven techniques based on our
effort to develop an operational protocol for the hemodynamic system.
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1 Introduction

An abundance of information is generated during the process of critical
care. Much of this information can now be captured and stored using
clinical information systems (CIS) that have become commercially
available for use in intensive care over the last years. These systems
provide for a complete medical documentation at the bedside and their
clinical usefulness and efficiency has been shown repeatedly [6, 7, 11].
While databases with more than 2,000 separate patient-related variables
are now available for further analysis [8], the multitude of variables
presented at the bedside even without a CIS precludes medical
judgement by humans. A physician may be confronted with more than
200 variables in the critically ill during a typical morning round [21].
We know, however, that even an experienced physician is often not
able to develop a systematic response to any problem involving more
than seven variables [18]. Moreover, humans are limited in their ability
to estimate the degree of relatedness between only two variables [12].
This problem is most pronounced in the evaluation of the measurable
effect of a therapeutic intervention. Personal bias, experience, and a
certain expectation toward the respective intervention may distort an
objective judgement [4]. These arguments motivate the use of decision
support systems.

Clinical decision support aims at providing health care professionals
with therapy guidelines directly at the bed-side. This should enhance
the quality of clinical care, since the guidelines sort out high value
practices from those that have little or no value. The goal of decision
support is to supply the best recommendation under all circumstances
[22]. The computerized protocol of care can take into account more
aspects of the patient than a physician can accommodate. It is not
disturbed by circumstances or hospital constraints. It bridges the gap
between low-level numerical measurements (the level of the
equipment) and high-level qualitative principles (the level of medical
reasoning). While knowledge-based systems have mostly been applied
for diagnosis and therapy planning (e.g. [25], [16]), some systems also
aim at on-line patient monitoring [5, 17, 22]. Methods that have proved
their value in handling low-frequency patient data are not applicable for
on-line monitoring [17]. Quantitative measurements and qualitative



reasoning have to be integrated in a system that recommends
interventions in real-time. The numerical measurements of the patients’
vital signs have to be abstracted into qualitative terms of high
abstraction. The aspect of time has to be handled both at the level of
measurements and the level of expert knowledge [3, 14, 17, 25]. In the
expert’s reasoning, time becomes the relation between time intervals,
abstracting from the exact duration of, e.g., an increasing heart rate, and
focusing on tendencies of other parameters (e.g., cardiac output) within
overlapping time intervals.

One of the big obstacles to the more frequent implementation of
decision support systems is the tedious and time-consuming task of
developing the knowledge base. The decision support system for
respiratory care at the LDS Hospital, Salt Lake City, USA [22], for
instance, has been developed in about 25 person years. The method of
guideline development itself is not supported by a computer system.
Mechanisms of temporal abstraction and reasoning presuppose
manually designed models or ontologies [3, 17, 25]. Why not use
techniques of knowledge discovery and statistical time series analysis in
order to ease the process of guideline generation? Machine learning and
statistical analysis have been applied in building-up diagnostical
systems successfully (e.g., [15]).

We now want to exploit the huge amount of data for the development
of guidelines for on-line monitoring. Our task is to build a decision
support system for on-line hemodynamic monitoring in the critically ill.
We do not aim at modeling the actual physician’s behavior. Imitating
the actual interventions made by physicians is not the goal. Actual
behavior is influenced by the overall hospital situation, e.g., how long is
the physician on duty, how many patients require attention at the same
time. Machine learning from patients̀  data could lead to a knowledge
base that mirrors such disturbing effects. Therefore, the learned
decision rules have to be checked by additional rules about effects of
drug and fluid administration. Our approach is to combine statistics,
knowledge acquisition, and machine learning. Our aim is to develop a
method for guideline generation that is faster and more reliable than
current methods.
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Data for statistical evaluation and learning can be provided by the CIS.
However, the nature of the data is different from that gathered in
controlled experiments. While a CIS in modern intensive care can take
numerous measurements every minute, the values of some vital signs
are sometimes recorded only once every hour. Other vital signs are
recorded only for a subset of the patients. Hence, the overall high
dimensional data space is sparsely populated. Moreover, the average
time difference between intervention as charted and estimated
hemodynamic effect can show a wide variation [10]. Even the
automatic measurements can be noisy due to manipulation of
measurement equipment, flushing of pressure transducers, or technical
artifacts. In some cases, relevant demographic and diagnostic
parameters may even not be recorded at all. In summary, we have a
large amount of high dimensional, numerical time series data that
contains missing values and noise. Using this data already at the stage
of development of the decision support system stave off surprises at the
stage of clinical experience as has been reported in [17, p. 572]: “The
huge number of measurements classified as invalid is quite astonishing
although it reflects the real clinical environments.”

In addition to problems of knowledge acquisition, we see a particular
need for knowledge validation. It should be noted that many medical
guidelines published today are neither evidence-based nor sufficiently
validated against real patient data. The current procedure is to first
develop the guideline, then represent it in a knowledge-based system,
and finally to test it in clinical studies. In this “waterfall”  process,
unrealistic assumptions, mistakes, and flaws are recognized at a late
stage. In contrast, our approach includes validation from the very
beginning. Using a knowledge-based system early on supports the
validation of the knowledge base at earlier stages. Inconsistencies
within the knowledge base as well as a mismatch of rules and patient
data are detected while developing the knowledge base. A mismatch
may indicate that the model underlying the knowledge base is
insufficient. Hence, applying the model to patient data helps to find
errors in its design. A mismatch may also indicate a difference in the
medical practices of the physician at the bed-side and the medical
expert that helped to develop the knowledge base. Moreover, experts
from different schools or countries can vary quite a bit in their behavior



and knowledge. Matching the formally modeled guidelines with patient
data facilitates and focuses the knowledge-acquisition process.

In order to test our approach to using real clinical data for building and
validating a knowledge base for on-line monitoring, we have
constructed a system. Its overall architecture is shown in Figure 1. The
patients’  measurements are used to recommend an intervention and are
abstracted with respect to their course over time. The recommendation
of interventions constitutes a model of physician behavior. This asks for
further validation. Therefore, a recommended intervention is checked
by calculating its expected effects on the basis of medical knowledge.
In this way, a qualitative assessment of a statistical prediction enhances
the model of physician behavior in order to obtain a model of best
practice. The medical knowledge constitutes a model of the patients’
hemodynamic system. This model is validated with respect to past
patients’  data. In detail, the processes we have designed are:

Data abstraction: Given series of measurements of one vital sign of
the patient, detect and possibly eliminate outliers and find level changes
by good statistical practice. This abstracts the measurements to
qualitative propositions with respect to a time interval, e.g. within time
point 12 and time point 63, the heart rate remained about equal, from
time point 63 to time point 69 it was increasing. We used the statistical
time series techniques of ARMA modeling and phase space embedding
[1,2,9]

Data-dr iven acquisition of state-action rules: Given the numerical
data describing signs of the patient, his or her current medication, find
the appropriate intervention. An intervention is formalized as
increasing, decreasing or not changing the dose of a drug. The decision
is made every minute. These rules were learned by the Support Vector
Machine [26].
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Figure 1. Overall system architecture.

Acquisition of medical knowledge: Given text book knowledge and
explanations by an expert, represent the effects of substances in
different dosages, relations between vital signs, and interrelations
between different substances, and validate the knowledge on the basis
of past patients’  data. The knowledge acquisition and validation was
supported by the MOBAL system [20].
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find the effects of the current intervention on the patient. The derivation
of effects is made for each intervention as forward inference within
MOBAL. The effect should result in a stable state of the patient.

The outline of this chapter is as follows. Throughout the chapter we
report on the continuous development of a decision support system for
intensive care as performed at the city hospital and the university of
Dortmund. We start with a description of the data acquisition process at
the hospital and the resulting data set [11]. Section 3 shows, how we
applied the support vector machine (SVM) to learn state-action rules. A
short introduction to the MOBAL system [20] and its representation of
medical knowledge leads to the issue of validation which is presented
in section 4.

2 Data Acquisition and Data Set

2.1 Data Acquisition

Most variables are entered by hand at the bedside. For entities such as
clinical observations, nursing procedures, therapeutic measures,
medications, or orders it appears very unlikely that entry of these
variables can be automated in the foreseeable future. Only 5-10% of all
variables in a CIS are acquired automatically. This includes the
majority of bedside devices, e.g. physiologic monitors, ventilators,
infusion devices. Additional data is interfaced from the hospital
information system (HIS), the laboratory (LIS) or the microbiology
information systems, where the LIS represents the clinically most
relevant set of data among these centralized information systems.
Although device data account for a comparatively small number of
variables, they can, depending on the sampling rate, generate large
amounts of data.
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The data structure of a CIS shows a wide variety of different data types
on different scales (nominal scales, e.g. sex, breathing sounds; ordinal
scales, e.g. neurological scoring; absolute scales, e.g. vital signs), which
are stored at different time intervals (ranging from seconds for vital
signs to once during the length of stay for demographic data). Time
intervals may also be regular or irregular.

For further analysis data must be structured, so that it can be subjected
to statistical algorithms. Numeric data, e.g. vital signs, intake/output, is
typically directly accessible for most applications. Free-text data, which
traditionally makes up a large portion of medical documentation, cannot
be statistically analyzed in any structured way. Therefore, free-text
entries into a CIS should be avoided wherever possible. Qualitative
information, such as clinical observations or interventions, should be
documented in a strictly structured fashion with selection lists and
menu items. This approach provides a consistent terminology
throughout the entire medical institution. It is highly efficient and fast,
especially for users not well trained in the use of computers and
keyboards in particular. In clinical practice, with the stringent
implementation of structured tabular documentation, it was possible to
reduce the use of free-text notes by more than 90%. Structured
qualitative data can, in contrast to free-text information, be directly
exported for statistical analysis.

These general propositions also hold for the city hospital of Dortmund,
a 1,900-bed tertiary referral center. There, all medication data of the 16-
bed surgical intensive care unit was charted with a CIS, allowing the
user one minute time resolution for all data. Moreover, data from
bedside devices, e.g. patient monitors, is gathered automatically every
minute.

Table 1. Overall attribute set for learning state-effect rules
16 demographic attributes 5 intensive care diagnoses 6 continuously infused

drugs
11 vital signs 9 derived parameters 14 respiratory variables
37 intake/output variables 10 bolus drugs 10 laboratory tests



2.2 Data Set

The entire database of intensive care patient records at the city hospital
of Dortmund comprises about 2,000 different variables (attributes).
Data from the CIS is selected through customizable data filters and
copied into a standard relational database where it is accessible for
further data analysis.

For this investigation, data was acquired from 148 consecutive critically
ill patients (53 female, 95 male, mean age 64.1 years), who had
pulmonary artery catheters for extended hemodynamic monitoring.
Recording in one minute intervals, this amounts to 679,817 sets of
observations.
From the original database 118 attributes in 9 groups were taken for
learning state-action rules (Table 1).

Categorical attributes are broken down into a number of binary
attributes, each taking the values { 0,1} . Real valued parameters are
either scaled so that all measurements lie in the interval [0,1], or they
are normalized by empirical mean and variance:

)var(/))(()( XXmeansXXnorm −= (1)

We systematically evaluated a large number of plausible attribute sets
using a train/test scheme on the learning task described in section 3.2.
The set with the best performance is given in Table 2. These attributes

Table 2. Best feature set for learning state-action rules using SVM.
Vital signs (measured every

minute)
Continuously given drugs
(changes charted at 1-min-

resolution)

Demographic Attributes
(charted once at

admission)
Diastolic Arterial Pressure Dobutamine Broca-Index
Systolic Arterial Pressure Adrenaline Age
Mean Arterial Pressure Glyceroltrinitrate Body Surface Area
Heart Rate Noradrenaline Emergency Surgery y/n
Central Venous Pressure Dopamine
Diastolic Pulmonary Pressure Nifedipine
Systolic Pulmonary Pressure
Mean Pulmonary Pressure



10

are actually the most important parameters of the patient according to
expert judgement. Only the relevant attributes “Cardiac Output”  and
“Net Intake/Output”  are missing, but they cannot be used as they are
not continuously available.

We also experimented with different ways of incorporating the history
of the patient. We tried:
• using only the last minute before the intervention
• using the last up to 10 minutes before the intervention
• using the averages of up to 60 minutes before the intervention
• combinations of these
• the state of the patient at the previous intervention
None of the more complex approaches gave significantly better results
on the learning task in section 3.2 than just using the measurements
from one minute before the intervention. All the feature selection
experiments were done on the training set, leaving a separate test set to
measure the results presented in this chapter.

Since each patient record covers several interventions, data from 148
patients gives us sufficiently large sets of examples. For learning state-
action rules, we used a total of 1319 training and 473 test examples. For
the rule validation we analyzed 8200 interventions corresponding to
27400 intervention-effect pairs.

2.3 Statistical Preprocessing

Given series of measurements of one vital sign of the patient, the goal
of statistical data abstraction is to detect and possibly eliminate outliers
and find level changes by good statistical practice. This abstracts the
measurements to qualitative propositions with respect to a time interval,
e.g., within time point 12 and time point 63, the heart rate remained
about equal, from time point 63 to time point 69 it was increasing. We
used an approach based on statistical time series analysis. Classical
ARMA (autoregressive moving average) modeling [2] is applied with
corresponding outlier- and level shift detection procedures using the
new tool of a phase space embedding [1,9].



3 Data-dr iven Acquisition of State-Action
Rules

3.1 Support Vector  Machine

Support vector machines (SVMs) [26] represent a method to learn
either binary classifiers or function approximators from examples. For a
set of training examples they find the classification rule for which they
can guarantee the lowest error rate on new observations. Each example
consists of a vector (describing e.g. the state of a patient represented by
the current measurements of blood pressures, heart rate, etc.) and its
label (classification or functional value).

In their basic form, SVMs learn linear decision rules
)()( bowsignoh +⋅=

���

. The weight vector w
�

 and the threshold b are the
result of learning and describe a hyperplane. Observations are classified
according to which side of the hyperplane they are located. A typical
decision rule is given in Figure 2. During training, the SVM calculates
the hyperplane so that it classifies most training examples correctly
while keeping a large “margin”  around the hyperplane. If the training
data can be separated without error, the margin is the distance from the
hyperplane to the closest training examples.

Since we will be dealing with very unbalanced numbers of positive and
negative examples in the following, we introduce cost factors to be able
to adjust the cost of false positives vs. false negatives. Training an
SVM can now be translated into the following optimization problem:
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Training error is represented by the variables ji ξξ , , while the margin is

measured by ww
��

⋅ . We solve this optimization problem in its dual
formulation using SVMlight [13], extended to handle unsymmetrical
cost-factors.
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3.2 Learning the Directions of Interventions

The first question we asked ourselves was: Given that we know the
physician changed the dosage of some drug, can we learn when he
increased the dosage and when he decreased the dosage based on the
state of the patient? For each drug, examples are taken from the points
in time where, in fact, the dosage changed. For all drugs, linear SVMs
are trained on the problem “ increase of dosage” ( 1=ty ) vs. “decrease

of dosage” ( 1−=ty ) using the attributes in Table 2 for describing the





























































−



























































⋅



























































−

−
−
−
−

−
−
−

= 368.4

02.1

79.1

0
91.77

00.0

00.0
00.0

00.0

00.0
00.0

00.15

00.13
00.26

00.79

00.8
00.121
00.86

00.174

015.0

784.0

334.0
033.0

391.2

017.0
542.0

185.0

047.1
543.9

177.0

134.0
026.0

016.0

015.0
001.0

019.0

014.0

)(

Broca

BSA

Emerg
Age

Adrenaline

initrateGlyceroltr
ineDopam

ineDobutam

ineNoradrenal
Nifedipine

Papmn

Papdia
Papsys

HR

CVP
Artmn
Artdia

Artsys

signohnitroup

�

Figure 2. Decision rule and an instantiation for predicting an intervention that
increases the dosage of Glyceroltrinitrate.



state of the patient. The performance of the respective SVM on a
previously untouched test set is given in Table 3.

To get an impression about how good these prediction accuracies are,
we conducted an experiment with a physician. On a subset of 41 test
examples we asked an expert to do the same task as the SVM for
Dobutamine, given the same information about the state of the patient.
In a blind test the physician predicted the same direction of dosage
change as actually performed in 32 out of the 41 cases. On the same
examples the SVM predicted the same direction of dosage change as
actually performed in 34 cases, resulting in an essentially equivalent
accuracy.

3.3 Learning When to Intervene

The previous experiment shows that SVMs can learn in how far drugs
should be changed given the state the patient is in. In reality, the
physician also has to decide when to intervene or just keep a dosage
constant. This leads to the following three class learning problem.
Given the state of the patient, should the dosage of a drug be increased,
decreased or kept constant? Generating examples for this task from the
data is difficult. The particular minute a dosage is changed depends to a
large extend on external conditions (e.g. an emergency involving a
different patient). So interventions can be delayed and the optimal
minute an intervention should be performed is unknown. To make sure
that we generate examples only when a physician was closely
monitoring the patient, we consider only those minutes where some
drug was changed. This leads to 1319 training and 473 test examples.

Table 3. Accuracy in predicting the right direction of an intervention
Drug Accuracy StdErr

Dobutamine 83.6% 2.6%
Adrenaline 81.3% 3.7%
Glyceroltrinitrate 85.5% 3.0%
Noradrenaline 86.0% 5.2%
Dopamine 84.0% 7.3%
Nifedipine 86.8% 7.0%
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For each drug we trained two binary SVMs. One is trained on the
problem “ increase dosage” vs. “do not increase dosage (i.e. lower or
keep dosage equal)” , the other one is trained on the problem “ lower
dosage” vs. “do not lower dosage (i.e. increase or keep dosage equal)” .
An intervention is predicted if exactly one such decision rule
recommends a change. As an example, Figure 2 shows the decision rule
that the SVM learned for increasing the dosage of Glyceroltrinitrate.
Since the class distribution is very skewed towards the “do not ...
dosage” class, we use a cost model. The cost-factors are chosen so that
the potential total cost of the false positives equals the potential total
cost of the false negatives. This means that the parameters of the SVM
are chosen to conform to the ratio

examplestrainingpositiveofnumber

examplestrainingnegativeofnumber

C

C
=

−

+ (4)

Table 4 shows the test results for Dobutamine and Adrenaline. The
confusion matrices give insight into the class distributions and the type
of errors that occur. The diagonal contains the test cases, where the
prediction of the SVM was the same as the actual intervention of the
physician. This accounts for 63% of the test cases for Dobutamine and
for 79% of the test cases for Adrenaline. The SVM suggests the
opposite intervention in about 1.5% for both drugs.

Table 4. Confusion matrix for predicting time and direction of Dobutamine and
Adrenaline interventions

actual intervention
Dobutamine up equal down
predicted up 46 32 3
predicted equal 50 197 54
predicted down 5 30 56

actual intervention
Adrenaline up equal down
predicted up 23 22 3
predicted equal 21 310 15
predicted down 4 34 41



Again, we would like to put these numbers into relation to the
performance of an expert when given the same information. For a
subsample of 95 examples from the test set, we asked a physician to
perform the same task as the SVM. The results for Dobutamine and
Adrenaline are given in Table 5. The results of the SVM on this
subsample are followed by the performance of the human expert in
brackets. Both are aligned remarkably well. Again, the learned
functions of the SVM are comparable in terms of accuracy with a
human expert. This also holds for the other drugs.

3.4 SVM Rules in Evidence Based Medicine

To use the SVM decision functions in a bigger learning environment
the binary decisions of the SVM often do not offer enough information
to decide for the appropriate action. For example a decision to increase
a drug may have been triggered by random effects in the data or
different decision rules may advise two or more contradicting actions.
Hence, a measure of evidence of the SVM decisions would be very
useful. The numerical value of the SVM function

bowof +⋅=
���

)( (remember that the SVM decision function is given by
))(()( ofsignoh

		

= ) can be used as such a measure [23].

Table 5. Confusion matrix for predicting time and direction of Dobutamine and
Adrenaline interventions in comparison to human performance (results from an

experienced intensivist in brackets).
actual intervention

Dobutamine up equal down
predicted up 10 (9) 12 (8) 0 (1)
predicted equal 7 (9) 35 (31) 9 (9)
predicted down 2 (1) 7 (15) 13 (12)

actual intervention
Adrenaline up equal down
predicted up 4 (2) 3 (1) 0 (0)
predicted equal 4 (6) 65 (66) 2 (2)
predicted down 1 (1) 8 (9) 8 (8)
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As an example, Figure 3 shows the actual dosage of adrenaline of a
patient over a period of 110 minutes (upper line) and compares this to
the output of the SVM that was trained to the task of classifying
whether or not to increase the dose of adrenaline (lower line). It can be
seen that the SVM did recommend to increase the dosage for some time
before the intervention took place, but the evidence to intervene rapidly
increases a few minutes before the actual intervention. Shortly after the
intervention the recommendation of the SVM quickly changes to “do
not increase the dosage”.

From the viewpoint of quality control in medicine, the question whether
the intervention should have been taken some time earlier, as the output
of the SVM indicates, deserves further investigation. This might be an
example of a situation where a more sophisticated alarm system would
have alerted the intensivist on duty much earlier.

3.5 More Learning Tasks

Let us now reason about the appropriate learning tasks for our goals.
One may ask whether learning the appropriate direction of an
intervention is justified at all, or whether the real task is to find the
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0
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0,2
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1 60
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Figure 3. Actual dose of adrenaline (upper line) and evidence of SVM for
“ increase dosage”  (lower line).



optimal dosage of a drug. In other words: should medical interventions
be modeled as a classification or a regression problem? This is how we
try to answer the question: For every drug, medical reasoning gives a
valueδ which a dosage change has to exceed in order to be considered
to have a significant effect. We found that for all drugs at least 84% of
the changes (96% at the average) lie within the range of δ± . This
justifies our approach. A higher dosage change can be realized by re-
evaluating the decision to increase / decrease a drug a few minutes after
the intervention.

Another interesting learning task would be to predict a trend in the vital
signs of a patient. Discovering life-threatening situations as early as
possible is a major key for optimal medical treatment. Moreover, this
would also bring important advantages from the viewpoint of quality
control and knowledge revision: In the validation of the effects of
medical interventions, both of human experts and computer systems,
one often finds cases where the expected effect of an intervention
cannot be found in the data (e.g. medical knowledge says that the
application of a drug will increase the blood pressure but the blood
pressure stays stable). Confronted with this contradiction, a frequent
explanation of experts is that the intervention anticipated an imminent
change of the patients state into the opposite direction. As it is
impossible to do a controlled experiment where the reaction of the
patient with and without the intervention can be compared, the
prediction of the patient’s state based on examples of time periods
without an intervention could offer a possibility to validate the success
of an intervention.

Unfortunately, our experiments to predict vital signs of a patient in the
nearer future (5 to 30 minutes) failed. For each vital sign, a regression
version of the SVM [26] learned how much the parameter would
increase or decrease. The learning results failed to predict these changes
with more than default accuracy. As we tried many different
representations of the patient’s state (with and without history, learning
an individual predictor per patient vs. learning on all patients, using
Fourier transforms of the measurements of vital signs), we feel that this
learning task is ill-posed. At the level of numerical measurements, i.e.
disregarding the qualitative knowledge about physiological processes,
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the prediction cannot become more precise. Hence, we combine data-
driven numerical methods with a knowledge-based approach (see
Section 4).

Another learning task could aim at characterizing a stable state by the
observed measurements. Instead of judging the patients state in term of
necessary interventions, a learning algorithm could find a description of
regions in the high-dimensional attribute space that can be considered
safe. When the patients state leaves the safe regions, an alarm can be
generated. There exists an extension of the SVM algorithm to estimate
the support of high-dimensional data [24] that seems to be promising
for this learning tasks.

4 Medical Knowledge Base

Decision rules learned by the SVM reflect the average behavior of a
physician, not the “gold standard” . As argued above, they have to be
checked against medical knowledge about the effects of drugs. This
section presents an approach to building a knowledge base that helps
accomplish this task automatically and that makes decision support
transparent.

Knowledge acquisition from experts is performed according to the
current state of the art: first, knowledge is elicited from the expert,
second, a knowledge base is modeled, third, the model is inspected,
validated, and enhanced in collaboration with the expert. These steps
form a cycle, i.e. the third step actually leads to obtain more expert
knowledge, which is then modeled, etc.[19]. This expert knowledge
augments and validates the data-driven knowledge acquisition using
machine learning.

4.1 Knowledge Acquisition and Representation

The knowledge base of action-effect rules serves three purposes. First,
it is used in order to model a protocol of care. Second, it is used to base
learned decision functions on explicit and qualitative knowledge. Third,
it is used for the validation of predictions. Let us describe the
knowledge acquisition from experts before we show how this



knowledge is integrated with the learned decision functions (section
4.3) and how it is used for validating predictions (section 5).

A medical expert defined the necessary knowledge. This knowledge is
medical textbook knowledge for the cardiovascular system. It reflects
direct pharmacological effects of a selected list of medical interventions
on the basic hemodynamic variables. Any interaction of these
interventions with other organ systems or of other organ systems with
the cardiovascular system were ignored. An excerpt of intervention-
effect relations is shown in Table 6. The dosage intervals indicated for
each drug are not shown in the table, but modeled in the knowledge
base. Also parameter dependencies have been modeled. It should be
noted that the knowledge is qualitative with intervals of dosages, trends
of changes, and implicit time intervals.

For the representation of qualitative medical knowledge we chose the
MOBAL system [20]. MOBAL is a knowledge acquisition and
maintenance system. Several tools facilitate the construction and
inspection of a knowledge base. Its representation formalism is a
restricted many-sorted first-order logic with explicit negation. A four-
valued logic is used in order to allow for unknown and contradictory
facts in addition to true and false facts. The inference engine derives

Table 6. Medical Knowledge base for hemodynamic effects: + = increase of the
respective variable or intervention; - = decrease; 0 = no change.

Intervention Effect on hemodynamic variable
Heart Rate Mean

Arterial
Pressure

Mean
Pulmonary
Artery
Pressure

Central
Venous
Pressure

Cardiac
Output

Dobutamine + + + + o +
- - - - o -

Adrenaline + + + + o +
- - - - o -

Noradrenaline + - + + o -
- + - - o +

Nitroglycerin + + - - - +
- - + + + -

Fluid intake / + - + + + +
output - + - - - -
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new facts on the basis of rules and given facts. Due to the expressive
power of first-order logic, compact models can be built. What would be
a rule in propositional logic, can be expressed by a mere fact in first-
order logic. For instance, using a propositional logic, explicitly stating
that up is the opposite of down requires the rule

heart_rate_trend=up --> not (heart_rate_trend=down)
and its dual form for all parameters. Using first-order logic, the fact

opposite(up, down)
is stated and can be used for any parameter. The pharmacological
knowledge from Table 6 is expressed by facts of the form

effect(adrenaline, 0.01, 0.03, art, up)
stating that Adrenaline in a dosage between 0.01 and 0.03 mg/kg/min
has the effect up on mean arterial pressure. Effects are modeled for
substances. Additional facts indicate the particular drugs in which the
substance is contained.

Patient records are also expressed by facts. The time is indicated by
minutes, starting with the first measurement of a patient and ending
with his or her discharge from intensive care.

intervention(pat4711, 10, 62, supra,0.02)
means that the patient 4711 from the tenth minute to minute 62
received Suprarenin (a drug containing Adrenaline) in a dosage of 0.02
mg/kg/min. Given the abstractions described in section 2, the values of
hemodynamic parameters are stated in terms of level changes.

level(pat4711, 11, 62, hr, up)
states that the heart rate of patient 4711 had an upward level change at
minute 11 and then remained almost stable until minute 62. In addition
to this abstract description of a vital sign in a time interval, its deviation
from the stable state is calculated. For each vital sign, the desired range
of values is given, e.g. [60, 100] for the heart rate. For a patient’s
parameter values within a time interval, the standard deviation is
calculated and added to (subtracted from) the upper (lower) value of the
desired range. If the patient’s actual value does not lie within this
enlarged interval, a fact stating a deviation is entered. For instance, the
following fact states that arterial mean pressure of patient 4999 is
beyond the desired range:

deviation(pat4999, 0, 31, art, up)



We now want to use the pharmacological knowledge for deriving
expected effects of an intervention on a particular patient. This is done
by rules. The advantage of first-order logic is particularly important for
modeling relations between intervals. For instance, stating that two time
intervals are immediately succeeding, can be expressed by simply
unifying the end point of one time interval with the start point of the
other time interval. The following statement states, for instance, that
two interventions were directly succeeding each other:

intervention(Patient, T1, T2, M, D1)
intervention(Patient, T2, T3, M, D2)

This statement can be instantiated by all patients, points in time,
parameters and dosages as long as the same argument variable (e.g.
Patient) is instantiated by the same value (e.g., pat4711). Different
argument variables (e.g. D1, D2) can be instantiated by different values.

intervention(pat4711, 73, 83, supra,0.05)
intervention(pat4711, 83, 177, supra, 0.02)

Intervals of dosages are handled in a similar manner. We can
distinguish between major and minor changes of a dosage. A minor
change is one within the same interval for which an effect has been
stated by pharmacological facts. The rule and an actual instantiation is
the following:

intervention(Patient, T1, T2, M,D1),
intervention(Patient, T2, T3, M,D2),
contains(M, S),
effect(S, FromD1, ToD1, Param, Trend),
FromD1=< D1 <ToD1, FromD1=< D2 <ToD1
-->
interv_effect(Patient,T2,T3,M,Param,Trend,minor)

intervention(pat4711,441,968,nitro,1.9),
intervention(pat4711,968,1081,nitro,2.38),
contains(nitro, glyceroltrinitrat),
effect(glyceroltrinitrat, 1, 10, hr, up),
1 =< 1.9 < 10, 1 =< 2.38 < 10
-->
interv_effect(pat4711,968,1081,nitro,hr,up,minor)

Changing into another such interval is a major change. The actual
dosage of a drug given to a patient is compared with the dosage interval
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of effect facts. The following rule expresses the enforcement of an
effect because of a major change of dosage.

intervention(Patient, T1, T2, M,D1),
intervention(Patient, T2, T3, M,D2),
contains(M, S),
effect(S, FromD1, ToD1, Param, Trend),
effect(S, FromD2, ToD2, Param, Trend),
FromD1 =< D1 < ToD1, FromD2 =< D2 < ToD2,
ToD1 < FromD2
-->
 interv_effect(Patient, T2,T3, M, Param, Trend, major)

Note, that if the substance S of drug M has a decreasing effect on a
parameter of the patient, the rule predicts a further decrease of that vital
sign. The variable Trend is then instantiated by down. Another rule
states that decreasing a substance with an increasing effect on a
parameter will decrease the parameter’s value. We use such rules in
order to predict effects of interventions. The prediction of intervention
effects is used to check interventions that are proposed by the learned
decision rules. Not counting the patient records, the knowledge base
consists of 39 rules and 88 facts.

4.2 Validating Action-Effect Rules

In order to validate the knowledge base we applied it to the data of 148
patients. The data contain 8,200 interventions. The validation is easy,
since rules can directly be applied to patient data. MOBAL’s inference
engine derived 27,400 effects of the interventions using forward
chaining. For 22,599 effects the actual effects in terms of level changes
could be computed by the time series analysis (see section 2). When
matching the derived effects with the actual ones, the system detected:
• 13,364 effects (i.e. 59.14%) took place in the restricted sense, that

the patient’s state remained stable. E.g., a drug with an increasing
effect on a patient’s vital sign does not lead to a significant level
change of this parameter. This is not in conflict with medical
knowledge, but shows best therapeutical practice. Smooth
medication keeps the patient’s state stable and does not lead to
oscillating reactions of the patient.



• 5,165 effects (i.e. 22.85%) took place in the sense, that increasing or
decreasing effects of drugs on vital signs match corresponding level
changes.

• 4,070 contradictions (i.e. 18.01%) were detected. The observed
level change of a vital sign went into the opposite direction of the
knowledge-based prediction.

The ratio of 83.56 percent correct predictions of effects is quite
positive. Some decisive features are not present in the data. Particularly
the lack of data about cardiac arrhythmias and cardiac output could
possibly explain many deviations of observed from predicted effects.

4.3 Integrating Learned Decision Functions With
the Knowledge Base

Since the goal of our work is an integrated system for intensive care
monitoring, the numerical approach using the SVM has to be
incorporated into the logic of MOBAL. While training SVM classifiers
can take place offline in a separate program, MOBAL needs to be able
to evaluate SVM decision rules and access the results online. We
achieve this by introducing the special predicate svm_calc/6 with the
following semantic. The first two arguments indicate the patient and the
drug. The third argument is either “up”  or “down” depending on
whether the svm_calc fact belongs to the SVM predicting dose increase
or decrease (compare section 3.3). The fourth argument is the time and
the fifth is the current dosage of the drug. The last argument finally
contains the value of that particular SVM rule for the measurements at
that time. Calculating can be done very efficiently, since it mainly
consists of computing a dot product between the SVM weight vector
and the measurement vector . From each pair of decision rules (i. e. up
and down) an intervention for the respective drug is recommended, if
exactly one decision rule has a value larger than a confidence threshold
of 0.8.

The decision rule for an increase of Glyceroltrinitrat (nitro) together
with the actual parameter values of patient 4999 at time 32 is shown in
Figure 2. The dot product plus -4.368 (the value of b) is 1.85598. The
fact entered into the fact base for patient 4999 is svm_calc(pat4999,
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nitro, up, 32, 0.0, 1.85598). An intervention to increase nitro is derived.
The dose is calculated on the basis of the former dose. The SVM
actually only decides whether to increase, to decrease, or not to change
the dose. For each drug, a level of granularity is defined. For instance,
the granularity of Glyceroltrinitrat is 1, whereas that of Suprarenin
(containing adrenaline) is 0.01. The dose is changed by just one step. In
our example, the proposed intervention is:

pred_intervention(pat4999, 32, nitro, 1.0).

5 Using the Knowledge Base of Effects to
Validate Interventions

Medical knowledge is used for validation in two different ways. On the
one hand, learned decision rules are validated on patient data by
comparing the effects of their recommended interventions with the
effects of actual physicians‘  interventions. This validation means to
incorporate an evaluation step already into the knowledge acquisition
phase. On the other hand, we believe that even an evaluated decision
support system should check its decisions by considering their effects.

5.1 Validating Learned Decision Rules

There are usually several different combinations of drugs that achieve
the same goal of keeping the patient in a stable state. And indeed,
different physicians, depending on their experience in the ICU, do use
different mixtures and follow different strategies to reach this goal. For
comparing treatment strategies, the real criterion is whether the
recommendations have the same effect as the actual interventions.
Therefore, we apply the action-effect rules from the knowledge base to
both the proposed intervention of the SVM classifiers and to the
intervention actually performed by the physician. If the derived effects
are equal, then the proposed decision of the SVM classifiers can be
considered as “equivalent”  to the intervention executed by the
physician. The results of this comparison for 473 interventions are
shown in Table 7. The right-most column indicates the accuracy, i.e. in
how many cases the classification of SVM and physician were identical
(same behavior of SVM and physician). The other columns state how



often the SVMs’  intervention leads to the same effects as the
intervention of the physician. The first two columns show, how many
of interventions had the same effect on arterial blood pressure or heart
rate, respectively. The third column gives a more concise evaluation.
Here it is stated, how many interventions recommended by the SVM
had the same effects on all vital signs as the actual intervention. For
instance, the SVM correctly classifies 299 test cases for Dobutamine
(63%). If we compare the resulting effects of the predicted interventions
concerning Dobutamine with the effects of the actual physician’s
interventions, we find that in 383 cases (81%) the deduced effects will
be equal. Thus, in 84 cases the recommendation of the SVM does not
match the physician’s behavior, but the derived effects are the same,
since the physician has chosen an “equivalent”  drug or combination of
drugs. An inspection of these cases helps to clarify issues of best
practice and thus supports knowledge acquisition.

5.2 Validating Proposed Interventions

As depicted in the overall architecture (cf. Figure 1), we have chosen a
design which allows us to use the action-effect rules in the knowledge
base for validating predicted interventions. The underlying argument is
that accuracy measures only reflect how well the SVMs’  learning
results fit actual behavior of the physician. However, we aim at best
practice. Hence, we validate a proposed intervention with respect to its
effects on the patient. If the effects push vital signs in the direction of
the desired value range, the recommendation is considered sound,
otherwise it is rejected. An example may clarify this. Patient 4999 is
older than 75 years and stays at the ICU after a surgical operation. He
suffers from high arterial mean pressure (around 124), where the heart
rate is normal (around 80). Using its decision rules, the SVM

Table 7. Equivalence of decisions regarding effects.
Interventions Mean arterial

pressure
Heart rate Same effect all

parameters
Same

behavior
Dobutamine 403 395 383 299
Adrenaline 407 406 393 374

Glyceroltrinitrate 437 388 380 342
Noradrenaline 436 428 424 420

Nifedipine 457 457 455 438
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recommends to increase Glyceroltrinitrat (see Figure 2). This proposed
intervention is checked by the medical knowledge about effects. The
derived effects are an increase of the heart rate and a decrease of arterial
mean pressure as well as left ventricular stroke work index (lvswi) and
systemic vascular resistance (svr): interv_effect(pat4999,32, T, art,
down). The observed deviation is deviation(pat4999, 0,31, art, up).
Since down is the opposite of up, the proposed intervention is
considered sound. In this way, the prescriptive medical knowledge
(action-effect rules) is used to control the knowledge that is learned
from actual therapies (state-action rules).

6 Compar ison With Related Work

Using data from the most comprehensive singular clinical data
repository at the LDS Hospital, Salt Lake City, Utah, USA, the group of
Morris [22] developed a rule-based decision support system (DSS) for
respiratory care in acute respiratory distress syndrome. Time is handled
by introducing time points into the rules where a certain parameter
value needs to be obtained. The development of this highly specialized
system required more than 25 person years. It is a propositional rule
base without a mechanism for consistency checking or matching rules
and data. All validation efforts started only after the knowledge base
had been completed.

Temporal reasoning is taken seriously in other developments [3, 5, 17,
25]. The Stanford approach uses an explicit time ontology for low-
frequency data [25]. This approach is not feasible for our application.
The VIE-VENT system is comparable with our approach in that it
combines numerical data and a knowledge base [17]. Qualitative
abstractions are derived for deviations of measurements from the target
range. Time intervals refer to the validity of a measurement. The
detection of outliers (data validation) is handled by a trend-based
component. The validated measurements are used by the therapy
planning component which aims at pushing vital signs into the value
ranges of a stable state. Similar to our approach, therapy planning is
divided into state-action rules (therapeutic actions based on status
interpretation) and verifying the effectiveness of interventions.
However, the system was developed without using actual patient data.



Hence, the observation that parameter values oscillate considerably was
made as late as the first clinical experience. In contrast, this observation
has motivated our use of the phase space procedure for abstracting from
numerical time series. Temporal correlations can also be included in
trend templates, which are used by Haimowitz and Kohane [5]. Trend
templates consist of sets of low order polynomial regression models
describing qualitative characteristics. Pattern abstraction is done based
on the fit of these templates to the observed data. The major drawbacks
of this method are the demand for predefined expected behavior and
absolute value thresholds. However, time series in intensive care often
show irregular behavior like patchy outliers, or outliers and level
changes occurring in short time lags. Such behavior is difficult to
specify in advance. Moreover, thresholds should be depending
dynamically on the patient’s status in the past. This has already been
included in our approach, which does not need prespecified patterns
either. Altogether, statistical time series analysis seems to be the most
sophisticated method to model and investigate dynamical data since
other approaches capture only parts of the time dependent structure of
the data.

Our goals of easing the development of guidelines and validating the
knowledge early on is shared by the two-step approach by Mani and
coworkers [16]. They use machine learning in order to first characterize
scores of dementia with respect to six categories (e.g., memory,
orientation). These learning results are then used to learn the global
clinical dementia rating. After a two years effort an efficient and
effective system was accomplished. While the goals are the same, the
application characteristics and, hence, the methods are completely
different. The clinical rating is a classification task and the patient data
is of qualitative nature, whereas our task is on-line monitoring and the
patient data are time series of numerical measurements.

7 Conclusions

We presented an approach towards integrating learning and knowledge-
based methods for the development of decision support algorithms in
critical care. The SVM was chosen for learning state-action rules due to
its ability to handle multiple features. For modeling medical knowledge
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in terms of action-effect rules we chose a first-order logic
representation using MOBAL. This allowed a compact representation
of medical knowledge with a small number of rules, fulfilling the real-
world demand for a knowledge base to be understandable by humans
and accessible for expert validation.

The validation issue has been treated with special care. Each process
has been validated in the standard way, i.e. tested on data not used for
training. In addition, the results of state-action rules were compared
with the results of a human expert who classified the same data.
Moreover, recommended interventions of state-action rules are
validated by formalized medical knowledge. On the one hand, the effect
of a recommended intervention is compared with the effect of an actual
intervention. Of course, this comparison can only be made for past
cases. In case of conflict, the expert inspects the particular cases. This
may lead to the generation of explicit additional knowledge. On the
other hand, the formalized effects of interventions are applied to current
cases and evaluated with respect to the target ranges of vital signs.

Our new approach combines modeling of expert knowledge with data-
driven methods. This eases the task of building operational protocols.
Moreover, the data-driven method allows for an ongoing enhancement
of the knowledge base on the basis of current practice. The knowledge
base is validated against existing patient data. This approach is meant to
be significantly more effective than the tedious, time-consuming, and
costly process of traditional development of on-line operational
decision support systems. The effect of this is an improvement in both
the extensibility of an existing knowledge base and the control of the
quality of medical treatment.
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