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Abstract. Time-stamped data occur frequently in real-world databases.
The goal of analysing time-stamped data is very often to find a small
group of objects (customers, machine parts,...) which is important for the
business at hand. In contrast, the majority of objects obey well-known
rules and is not of interest for the analysis. In terms of a classification
task, the small group means that there are very few positive examples
and within them, there is some sort of a structure such that the small
group differs significantly from the majority. We may consider such a
learning task learning a local pattern.
Depending on the goal of the data analysis, different aspects of time are
relevant, e.g., the particular date, the duration of a certain state, or the
number of different states. From the given data, we may generate features
that allow us to express the aspect of interest. Here, we investigate the
aspect of state change and its representation for learning local patterns in
time-stamped data. Besides a simple Boolean representation indicating a
change, we use frequency features from information retrieval. We transfer
Joachim’s theory for text classification to our task and investigate its fit
to local pattern learning. The approach has been implemented within the
MiningMart system and was successfully applied to real-world insurance
data.

1 Introduction

When designing a knowledge discovery application, the choice of the representa-
tion of examples and hypotheses is the most important issue. Choosing the right
representation for hypotheses has been called “model selection”. Learnability is
a statement about a pair of example and hypotheses representation: we want to
represent examples and hypotheses such that concepts of interest can be learned
in at least polynomial time. This constrains the search for an appropriate repre-
sentation on one side. The majority of known solutions to model selection deals
with global models. What, if we are looking for local patterns? On the other
side, the search is constrained by the given data. Transforming them into an ap-
propriate representation is an effort, which we want to minimize. Moreover, not
every example representation which is well suited for a learning algorithm can
be constructed from given raw data. Figure 1 shows the chain of processes that
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Fig. 1. Representation – from raw data to hypotheses

lead to the learning results. What are the characteristics of raw data that es-
timate whether we can construct an example representation for which, in turn,
we know learnability results for a certain learning algorithm? Concerning the
example representation, our standard approach to feature selection requires a
subset of given features to separate the data according to the target concepts.
What, if the learning task has to cope with an internal structure where attributes
occurring in the target concept do occur in the remaining examples as well? It
is our goal to develop guidelines for the choice of an appropriate example repre-
sentation. We want to estimate before the transformation, whether it enlarges or
shrinks the representation space and whether it favours a certain learning algo-
rithm, or is appropriate for many of them. In terms of Figure 1, we are concerned
with the question mark between raw data and the example language.

In this paper, we generalize the applicability of Thorsten Joachim’s TCat
model which gives clear learnability bounds for text classification using the sup-
port vector machine (SVM) [1]. The TCat model shares characteristics with local
patterns (cf. Section 2). It refers to the bag-of-words representation of texts. It
is straight forward to construct this example representation from texts. Now,
we found that frequency features as used in the bag-of-words representation can
effectively be constructed from time-stamped data, too. Moreover, we developed
a heuristic that efficiently estimates for raw data, whether the transformation
to frequency features will shrink or enlarge the data space, and whether it fits
the distribution to which TCat models fit. For learning local patterns from time-
stamped data we found that the representation enhanced the learning results of
several algorithms, when compared to using the raw data.

The paper is organised as follows. We first state a working hypothesis on the
notion of local patterns (Section 2). Then, we clarify the time aspects in time-
stamped data (Section 3). For the aspect of state changes and their frequency, we
show how to transform a relational database into one with frequency features for
state change. We illustrate the procedure by real-world insurance data (Section
4). Then we can make use of the transformed data for learning a local pattern.
We conducted several experiments with insurance data (Section 5.1). The good
learning results are – for the SVM – explained by Joachim’s theory. We describe
the (transformed) insurance data by a TCat model (Section 6). We then focus on
the the step from raw data to the TCat model. Section 6.1 characterizes the raw
data with respect to the transformation and presents a heuristic which estimates
the effect of the transformation. A program calculates a TCat model for given
data set. Experiments with articifial data sets investigate the impact of the local
patterns characteristics to TCat models and learning results (Section 7). This
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completes the chain from the time-stamped raw data to SVM learning of local
patterns.

2 Local Patterns

Local patterns are not yet clearly defined. Common to all definitions is that
we want to learn about rare events in a large collection. In other words, the
distribution is skewed, offering few instances of the local pattern and very many
instances of a global model. Local patterns occur with a low frequency (cf. the
papers in [2]). Several authors have characterised local patterns as small regions
with high deviations from a global model, e.g., [3], [4], [5]. Paul Cohen’s definition
of local patterns as “low frequency and low entropy” also relates the local pattern
to the regular (global) frequency and entropy values. Moreover, it points at the
internal stucture of local patterns or their examples. His learning task is to
detect boundaries of episodes in a sequence. The comparison of frequency and
entropy of one n-gram with those of all other n-grams of the same length delivers
the standardized frequency and entropy [6]. Then, a local pattern is detected
between two maximally (standardized) frequent n-grams and directly following
an n-gram with highest (standardized) entropy. Episodes are complex patterns
with an internal structure, which is represented here by the moving n-grams.
Multimedia data (e.g., texts), time series, and DNA data are other instances
of complex data types. Arno Siebes models the structure within complex data
types using wavelets [4]. Transforming data into wavelets allows him to compute
the similarity between examples which can then be used for further analysis.
The wavelet transformation can be considered feature generation for structured
data. We may find an internal structure also within a simple attribute-value
representation. Interesting are the characteristics which Thorsten Joachims has
found for texts in the bag of words representation [1]: The characteristic that
several attribute values indicate the class membership has been called a high level
of redundancy. The characteristic that instances do not (necessarily) share an
attribute value being valid has been called heterogenous use of terms. In addition,
we find that attribute values occurring frequently in one pattern do so in the
remaining other observations, as well. We may call this an overlap. Redundancy,
heterogenity, and overlap are characteristics of the internal structure of (text)
instances.

As a working hypothesis, we end up with three characteristics of local pat-
terns:

– Local patterns describe rare events. In other words, the distribution is skewed,
offering few instances of the local pattern and very many instances of a global
model.

– Given a dataset for which a global model can be determined, local patterns
deviate significantly from the global model.

– Local patterns describe data with an internal structure. Redundancy, het-
erogenity, and overlap are aspects of internal structure.
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3 Time-Stamped Data

Time-related data include time series (i.e. equidistant measurements of one pro-
cess), episodes made of events from one or several processes, and time intervals
which are related (e.g., an interval overlaps, precedes, or covers another interval).
Time-stamped data refer to a calendar with its regularities. They can easily be
transformed into a collection of events, can most often be transformed into time
intervals, and sometimes into time series.

Time series are most often analysed with respect to a prediction task, but
also trend and cycle recognition belong to the statistical standard (see for an
overview [7,8]). Following the interest in very large databases, indexing of time
series according to similarity has come into focus [9,10]. Clustering of time series
is a related topic (cf. e.g., [11]) as is time series classification (cf. e.g., [12,13]). The
abstraction of time series into sequences of events or time intervals approximates
the time series piecewise by functions (so do [14,15,16]). Other segmentation
methods are presented in [17].

Event sequences are investigated in order to predict events or to determine
correlations of events [18,19], [20,21,22]. The approach of Frank Höppner ab-
stracts time series to time intervals and uses the time relations of James Allen
in order to learn episodes [23,24]. The underlying algorithm is one of learning
frequent sets as is Apriori [25]. The resulting episodes are written as association
rules. Other basic algorithms (e.g., regression trees) can be chosen as well [26],
delivering logic rules with time annotations. Also inductive logic programming
can be applied. Episodes are then written as a chain logic program, which ex-
presses direct precedence by chaining unified variables and other time relations
by additional predicates [27,28].

Time-stamped data have been investigated in-depth in [29]. They offer a
framework for time granularities and specialised databases for temporal data.
However, from a practical point of view, building up a temporal database before
analysing the data ist too demanding for a knowledge discovery application.
Hence, we prefer to transform the given data into an appropriate representation
for data analysis. The given data are usually stored in a multirelational database
where some attributes offer a time stamp of the same granularity (i.e., minute,
hour, day, week, year). If time stamps in the stored data are equidistant, data
actually are time series. We exclude this case, here. As was already stated above,
time-stamped data can most often be transformed into events and time intervals.
It is hard to select the appropriate representation [30]. In general, we have the
following options:

Snapshot: We ignore the time information and reduce the data to the most
current state. This state can be written as one or several events. It may well
happen that such a snapshot already suffices for learning.

Events with time intervals: We aggregate time points to time intervals where
attribute values are similar enough (segmentation). For nominal attributes,
it is straight forward to construct time intervals from the start and end time
of each attribute value. In addition, we might want to represent relations
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between the intervals. Learning algorithms which make good use of time
information (episode learning) can then be applied.

Feature generation: Time aspects are encoded as regular attributes of the
examples such that any learning algorithm can be applied. Simple encod-
ings are seasons simply stated by flags and vectors, where the attributes
summarize the history preceding a target event.

In this paper, we investigate feature generation for learning from time-stamped
data. For each attribute, we represent whether the attribute changed at all over
the recorded time span (Boolean), or how often it has changed (frequency fea-
ture). The latter allows us to link our results to the TCat model for text classi-
fication [1].

4 Using TF/IDF Features

Time-stamped data often describe the same object (customer, contract, en-
gine...) by several rows in a database table, each for one of the object’s states.
Figure 2 illustrates this by an excerpt of an insurance contract database table,
where each contract (VVID) is described by several attributes. Whenever an at-
tribute’s value has changed, a new row is added. The snapshot approach would

Fig. 2. Excerpt from the contract table

just extract the most current row for a contract. The time interval approach
would use the “begin” attribute (VVWIvon) and the “end” attribute (VVWIbis)
and indicate the other attributes from a row as an event. A Boolean represen-
tation would just state whether an attribute had been changed over the lifetime
of a contract, or not. This reduces the data space a lot. If we transform the raw
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data (about contracts) into a frequency representation, we possibly condense the
data space in an appropriate way. We simply order the rows according to the
data and count, how often an attribute’s value changes, giving us the frequency
count of that attribute. Figure 3 illustrates the procedure. However, we must

Fig. 3. Calculating the term frequency for the original attributes

exclude the frequencies of those changes that are common to all contracts, e.g.
because of a change of law. The feature from statistical text representation for-
mulates exactly this: term frequency and inverse document frequency (TFIDF)
[31].

Term frequency here describes how often a particular attribute ai of cj , the
contract or one of its components, has been changed.

tf(ai, cj) =‖ {x ∈ time points | ai of cj changed} ‖
The document frequency here corresponds to the number of contracts in

which ai has been changed. The set of all contracts is written C. The document
frequency is just the number of contracts with a term frequency greater than 0.

df(ai) =‖ {cj ∈ C | ai of cj changed} ‖
Hence the adaptation of the TF/IDF text feature to contract data becomes for
each contract cj :

tfidf(ai) = tf(ai, cj)log
‖ C ‖
df(ai)

5 Local Pattern Learning

Now that we have introduced frequency features for the aspect of change in
time-stamped databases, we can bring together the local pattern learning and
the time-stamped data. We first report on local pattern learning from a real-
world database (Section 5.1). Then we present experiments with artificial data
sets (Section 7).
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5.1 Local Patterns in Insurance Data

In the course of enhanced customer relationship management, the Swiss Life
insurance company investigated opportunities for direct marketing [32]. A more
difficult task was to predict surrender in terms of a customer buying back his
life insurance. We worked on knowledge discovery for the classification into early
termination or continuation of policies. The task was clearly one of local pattern
learning:

– Only 7.7% of the contracts end before their end date. Hence, the event to
be predicted is rare.

– Internal studies at the insurance company found that for some attributes
the likelihood of surrender differed significantly from the overall likelihood.
The TCat model of the data (6) also clearly indicates this.

– Contract data have an internal structure.
• First studies showed that frequent sets in the group of continued contract

were frequent sets in the group of terminated contracts, as well [33]
(overlap).

• In each contract, there are several attributes indicating surrender or
continuation (redundancy).

• We also found that within the group of terminated contracts, there were
those which do not share attributes (heterogenous use of terms).

Hence, the internal structure of contracts shares characteristics with text
data.

The given anonymous database consists of 12 tables with 15 relations between
them. The tables contain information about 217,586 policies and 163,745 cus-
tomers. If all records referring to the same policy and component (but at a
different status at different times) are counted as one, there are 533,175 com-
ponents described in the database. We selected 14 attributes from the original
database. 13 of them were transformed as described above (Section 4). One of
them is the reason for a change of a contract. There are 121 different reasons. We
transformed these attribute values into binary attributes a. Thus we obtained
13+121=134 features describing changes of a contract. To calculate the TF/IDF
values for these binary features we considered the history of each contract. For
the 121 newly created features we counted how often they occurred within the
mutations. Figure 4 shows how the calculation was done. We compared the
learning results on this generated representation to those on the selected origi-
nal data for different learning algorithms. We used 10-fold cross validation on a
sample of 10,000 examples. In order to balance precision and recall, we used the
F -measure:

Fβ =
(β2 + 1)Prec(h)Rec(h)
β2Prec(h) + Rec(h)

(1)

where β indicates the relative weight between precision and recall. We have set
β = 1, weighting precision and recall equally. Table 1 shows the results. For all
algorithms, the frequency features are better suited than the original attributes.
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Fig. 4. Calculating the term frequency for the newly created features

6 Characterizing the Data by the TCat Model

The transformation into a frequency representation allows to model the data
as TCat-concepts. TCat-concepts model text classification tasks such that their
learnability can be proven [1].

Definition of TCat-concepts: ”The TCat-concept

TCat([p1 : n1 : f1], ..., [ps : ns : fs])

describes a binary classification task with s sets of disjoint features. The
i-th set includes fi features. Each positive example contains pi occurrences
of features from the respective set, and each negative example contains ni

occurrences. The same feature can occur multiple times in one document.”
[1]

In order to describe the newly constructed data set in terms of TCat-concepts, we
need to partition the feature space into disjoint sets of positive indicators, nega-
tive indicators and irrelevant features. For the insurance application, we selected
features by their odds ratio. There are 2 high-frequency features that indicate
positive contracts (surrender) and 3 high-frequency features indicating negative
contracts (no surrender). Similarly, there are 3 (4) medium-frequency features
that indicate positive (negative) contracts. In the low-frequency spectrum there
are 19 positive indicators and 64 negative indicators. All other features are as-
sumed to carry no information. Since the same feature can occur in pi as well as
in ni, listing the features would not show the difference. The internal structure
prohibits this. However, the number of occurrences clearly shows the significant
difference between continued and early terminated contracts.

To abstract from the details of particular contracts, it is useful to define what
a typical contract for this task looks like. An average contract has 8 features.
For positive examples, on average 25% of the 8 features come from the set of
the 2 high-frequency positive indicators while none of these features appear in
an average negative contract. The relative occurrence frequencies for the other
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Apriori

TF/IDF attributes Original attributes

Accuracy 93,48% 94,3%

Precision 56,07% 84,97%

Recall 72,8% 18,39%

F-Measure 63,35% 30,24%

J4.8

TF/IDF attributes Original attributes

Accuracy 99,88% 97,82%

Precision 98,64% 96,53%

Recall 99,8% 70,08%

F-Measure 99,22% 81,21%

mySVM

TF/IDF attributes Original attributes

Accuracy 99,71% 26,65%

Precision 97,06% 8,73%

Recall 98,86% 100%

F-Measure 97,95% 16,06%

Naive Bayes

TF/IDF attributes Original attributes

Accuracy 88,62% 87,44%

Precision 38,55% 32,08%

Recall 78,92% 77,72%

F-Measure 51,8% 45,41%

Table 1. Results comparing different learning algorithms and feature spaces

features are given in Table 2. Applying these percentages to the average number
of features, this table can be directly translated into the following TCat-concept.
Note, that pi and ni indicate frequencies. Hence, the second high-frequency set
of features consists of three attributes, which occur one time in positive and
three times in negative examples.

TCat ( [2 : 0 : 2], [1 : 4 : 3], # high frequency
[3 : 1 : 3], [0 : 1 : 4], # medium frequency
[1 : 0 : 19], [0 : 1 : 64], # low frequency
[1 : 1 : 39] # rest

)

The learnability theorem of TCat-concepts [1] bounds the expected generaliza-
tion error of an unbiased support vector machine after training on n examples
by

R2

n + 1
a + 2b + c

ac − b2
(2)
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high frequency medium frequency low frequency
2 pos. 3 neg. 3 pos. 4 neg. 19 pos. 64 neg. 39 rest

pos. contract 25% 12.5% 37.5% 0% 12.5% 0% 12.5%

neg. contract 0% 50% 12.5% 12.5% 0% 12.5% 12.5%

Table 2. Composition of an average positive and an average negative contract

where R2 is the maximum Euclidian length of any feature vector in the training
data, and a, b, c are calculated from the TCat-concept description as follows:

a =
s∑

i=1

p2
i

fi
b =

s∑

i=1

pini

fi
c =

s∑

i=1

n2
i

fi

a = 5.41, b = 2.326, c = 5.952 can be calculated directly from the data.
The Euclidian length of the vectors remains to be determined. We want to see
whether the data transformation condenses the data properly. The data space
with the original 15 attributes could be such that each attribute is changed m
times giving us m

√
15 – the largest case. The smallest case is that only one

attribute is changed m times giving us the small data size of m. For texts, Zipf’s
law gives the approximation [34]: if one ranks the words by their frequency,
the r-th most frequent words occur 1

r times the frequency of the most frequent
words. We can apply this law for natural language to collections c of natural
language texts. Experimental data suggests that Mandelbrot distributions [35]

TFi =
c

(k + r)φ

with parameters c, k and φ provide a better fit. For the contract data Figure 5
plots term frequency versus frequency rank. The line is an approximation with
k = −0.6687435 and φ = 1.8. We see that (as is true for text data) also the
contract data can be shrinked by the frequency transformation.

R2 =
d∑

r=1

(
c

(r + k)2

)2

(3)

We bound R2 ≤ 37 according to the Mandelbrot distribution and come up with
the bound of the expected error according to equation 3 of 37·0.5978

n+1 , consequently
after training on 1000 examples the model predicts an expected generalization
error of less than 2.2%. It turns out that the transformed data sets can easily be
separated by a support vector machine. Hence, the good learning results (0.6%
error) are explained.

6.1 Characterizing the Raw Data

In order to ease the design process of knowledge discovery applications we should
know before the transformation whether the data space will be condensed, or
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Fig. 5. Distribution of term frequencies in the contract data on a log log scale.
The line is an approximation of the observed curve using a Mandelbrot distri-
bution.

not. In other words, we want to measure the sparseness of data which can be
estimated by the maximum Euclidian length of a vector. We order the original
table with time stamps such that the states of the same individual (e.g., contract)
are in succeeding rows. We consider each individual c a vector and calculate the
frequency of changes for each of its n attributes a1...an in parallel “on the fly”
We can then determine in one database scan the maximum value of the Euclidian
length of a vector:

R̂ = max





√√√√
n∑

i=1

tf(ai, cj)2



 (4)

If R̂ ≤ m
√

n
2 where m is the maximum frequency, the data will be condensed

and learning will be fast. In the insurance case n = 14 and m = 15 so that
R̂ = 22, 913 which is in fact less than 15

√
14

2 = 28.6.
Of course, the heuristic does not tell anything about the learnability within

this representation. What we control with this heuristic is the transformation
into the example representation.

7 Experiments with Artificial Data

In order to abstract away from the real-world application, we conducted ex-
periments with artificial datasets. We created 10,000 examples each with 100
attributes in both, binary and TF/IDF representation. The mySvm was run
with a 10-fold cross validation.
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7.1 Frequency of Changes Vs. Particular Changes

Datasets were generated according to two target concepts:

1. The change of particular attributes determined the classification.
2. The number of changes determined the target concept.

Of course, what should happen, is that the TF/IDF representation is best suited
for the second target concept.

We wanted to check, whether the TF/IDF representation makes the dataset
robust with respect to skewedness and local structure. In other words, we tested
the characteristic of local patterns.

We systematically varied the skewedness of the data, positive examples being
50% (not skewed), 25%, 12.5%, or 6.25% (skewed) of the data.

The first concept could perfectly be learned from the binary representation,
being robust with respect to skewedness (100% F-measure). Clearly, no internal
structure is preventing here the selection of a feature. The TF/IDF representa-
tion is little less perfect (95.03% F-measure for 6.25% positive examples). See
Figure 6 for details. The heuristic states that the data size becomes little. As
is shown in Figure 6, the second concept could not be learned from the bi-
nary representation, when the distribution becomes skewed. The default is too
dominant, hence the recall comes to zero. For the TF/IDF representation, the
learning results degraded gracefully when the distribution became more skewed
from 93.17% to 88.98% F-measure. The heuristic dissuades from the transfor-
mation in all cases, although the binary representation is only superior learning
the first concept. Indeed, as already stated, the larger data space is necessary for
the skewed second concept. The heuristic does not inform us about learnability.
Hence, when learning the second concept from skewed data fails using the binary
representation, the transformation is tried, anyway.

Varying the sparseness of the data from 50 attributes being changed over 25 to
5 attributes being changed, we found again that using the binary representation
the first concept could be learned perfectly. In contrast, the second concept could
only be learned successfully using the TF/IDF representation. See Figure 6 for
details.

7.2 Internal Structures

We also varied the local structure within the artificial data. We used the TCat
model to generate datasets, varying pi and ni within fi. Note, that for a group
of fi (high frequency, medium frequency, or low frequency) pi of them can be
arbitrarily chosen. Hence, it could happen that fi

pi
individuals do not share any

attribute. This fraction indicates how heterogenous the use of terms is. We var-
ied the heterogenous use of terms from 4 individuals which could be completely
different but be in the same class (little heterogenity) to 20 individuals being dis-
joint but in the same class. If we keep the sparseness throughout all experiments
being 20 from 100 attributes given, we automatically vary the redundancy from
0.5 in the little heterogenous case to 0.1 in the extremely heterogenous case. The
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redundancy can be expressed by pi

fi
or ni

fi
for indicative attributes (here:medium

and low frequency attributes). Tabelle 3 gives an overview of the TCat models
used for generating datasets. Figure 6 shows the achieved learning results.

Not heterogenous, re-
dundant, no overlap

Little heterogeneous,
redundant, little over-
lap

Medium heterogenous,
little redundant, no
overlap

heterogenity 20
5

= 4 20
4

= 5 20
2

= 10
redundancy 10

20
= 0.5 10

20
= 0.5 4

20
= 0.2

TCat model [10 : 10 : 20], [10 : 10 : 20], [16 : 16 : 20]
[5 : 0 : 20], [0 : 5 : 20], [4 : 1 : 20], [1 : 4 : 20], [2 : 0 : 20], [0 : 2 : 20],
[5 : 0 : 20], [0 : 5 : 20], [4 : 1 : 20], [1 : 4 : 20], [2 : 0 : 20], [0 : 2 : 20],

error bound 1.33% 3.3% 3%

High heterogenous, lit-
tle redundant, no over-
lap

Medium heterogenous,
redundant, high overlap

heterogenity 20
1

= 20 20
3

= 6.6
redundancy 2

20
= 0.1 10

20
= 0.5

TCat model [18 : 18 : 20] [10 : 10 : 20]
[1 :0 : 20], [0 : 1 : 20], [3 : 2 : 20], [2 : 3 : 20],
[1 : 0 : 20], [0 : 1 : 20], [3 : 2 : 20], [2 : 3 : 20],

error bound 72.4% 28%

Table 3. TCat models used for generating datasets

The TCat model tells that the learning results should decrease gracefully
when increasing heterogenous use of terms or overlap. The actual learning re-
sults show that only the overlap decreases the learning result and only for the
binary representation. The TF/IDF representation is robust to the variation
of both, heterogenous use of terms and overlap. This means that the TF/IDF
representation is particularly appropriate for the internal structure within local
patterns.

8 Conclusion

The design of a knowledge discovery application is supported by learnability
results as soon as the appropriate example representation has been found. The
design support missing was a principled approach to when to generate which
features for a given dataset. The transformation of given (raw) data to the ex-
ample representation is a matter of feature generation and selection [36,37,38].
The automatic selection of features becomes difficult whenever no proper subset
of features distinguishes positive from negative examples. This is particularly
the case, if the target concept has an internal structure in terms of the heteroge-
nous use, redundancy, and overlap of attributes. If, in addition, the distribution
offers a majority of negative and very few positive examples, we are confronted
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Fig. 6. Learning results

with local pattern learning. The TCat model covers such an internal structure,
is robust with respect to skewed distributions, and offers learnability results for
the SVM. Hence, if we form a TCat model for our data, we can estimate how
well learning will succeed. However, the TCat model is based on frequency fea-
tures. Calculating frequency features for texts is a standard approach. Now, we
have shown how time-stamped data can be transformed into frequency features.
Moreover, experiments with artifical datasets indicate that

– the TF/IDF representation is superior to the binary one if attributes indica-
tive within the positive and negative example sets overlap.

– The TF/IDF representation outperforms the binary one in case of sparse
data.

– the TF/IDF representation is robust with respect to skewed data
– the TF/IDF representation is robust with respect to redundancy or het-

erogenous use of terms.
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The true difference between the binary and the frequency representation we
found in the experiments is given by the skewedness and the sparseness of the
data. TF/IDF outperforms the binary representation clearly, if the data are
sparse or the distribution is skewed and the concept to be learned is about the
number of changes.

The heuristic and the generation of frequency features for time-stamped data
with respect to the aspect of state change has been implemented within the Min-
ingMart system [39]. The calculation of a TCat model for given data has been
implemented as a JAVA program to be integrated into the YALE system [38],
which has run the cross validation and mySvm runs. This supports the design
of knowledge discovery applications. The method can easily be applied to other
time-stamped datasets. If a general model can be found, the binary represen-
tation will be appropriate. For a local pattern, the TF/IDF representation is
better suited. Given a time-stamped database and the task of classification (not
that of episode learning), one can now proceed systematically from the smallest
to successively larger data spaces. First, try learning with the snapshot repre-
sentation, then try the binary representation, and finally generate the frequency
features and calculate the error bound using the TCat model. Our approach
only covers a certain type of raw data, namely those describing non-equidistant
state changes. It focuses on finding local patterns, characterised by a skewed
distribution, separable patterns, and an internal structure which does not allow
to select a proposer subset of features. More research on the transformation from
raw data to example representations is needed.
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References

1. Joachims, T.: Learning to Classify Text using Support Vector Machines. Volume
668 of Kluwer International Series in Engineering and Computer Science. Kluwer
(2002)

2. Hand, D., Bolton, R., Adams, N.: Determining hit rate in pattern search. In Hand,
D., Adams, N., Bolton, R., eds.: Pattern Detection and Discovery. Springer (2002)

3. Hand, D.: Pattern detection and discovery. In Hand, D., Adams, N., Bolton, R.,
eds.: Pattern Detection and Discovery. Springer (2002)

4. Siebes, A., Struzik, Z.: Complex data mining using patterns. In Hand, D., Adams,
N., Bolton, R., eds.: Pattern Detection and Discovery. Springer (2002)

5. Morik, K.: Detecting interesting instances. In Hand, D.J., Adams, N.M., Bolton,
R.J., eds.: Proceedings of the ESF Exploratory Workshop on Pattern Detection
and Discovery. Volume 2447 of LNAI., Berlin, Springer Verlag (2002) 13–23

6. Paul Cohen, Brent Heeringa, Niall M. Adams: An unsupervised algorithm for
segmenting categorical timeseries into episodes. In Hand, D.J., Adams, N.M.,
Bolton, R.J., eds.: Pattern Detection and Discovery. Volume 2447 of Lecture notes
in computer science., London, UK, ESF Exploratory Workshop, Springer (2002)
1–12



Features for Learning Local Patterns in Time-Stamped Data 113

7. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis. Forecasting and
Control. Third edn. Prentice Hall, Englewood Cliffs (1994)

8. Schlittgen, R., Streitberg, B.H.J.: Zeitreihenanalyse. 9. edn. Oldenburg (2001)
9. Keogh, E., Pazzani, M.: Scaling up dynamic time warping for datamining appli-

cations. In: Proceedings of the 6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM Press (2000) 285–289

10. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence
databases. In: Proceedings of the 4th International Conference on Foundations of
Data Organization and Algorithms. Volume 730., Springer (1993) 69–84

11. Oates, T., Firoiu, L., Cohen, P.R.: Using dynamic time warping to bootstrap hmm-
based clustering of time series. In: Sequence Learning ? Paradigms, Algorithms,
and Applications. Volume 1828 of Lecture Notes in Computer Science. Springer
Verlag (2001) 35?–52

12. Geurts, P.: Pattern extraction for time series classification. In: Pro-ceedings of
the 5th European Conference on the Principles of Data Mining and Knowledge
Discovery. Volume 2168 of Lecture Notes in Computer Science., Springer (2001)
115–127

13. Lausen, G., Savnik, I., Dougarjapov, A.: Msts: A system for mining sets of time
series. In: Proceedings of the 4th European Conference on the Principles of Data
Mining and Knowledge Discovery. Volume 1910 of Lecture Notes in Computer
Science., Springer Verlag (2000) 289–298

14. Das, G., Lin, K.I., Mannila, H., Renganathan, G., Smyth, P.: Rule Discovery from
Time Series. In Agrawal, R., Stolorz, P.E., Piatetsky-Shapiro, G., eds.: Proceedings
of the Fourth International Conference on Knowledge Discovery and Data Mining
(KDD-98), New York City, AAAI Press (1998) 16 – 22

15. Guralnik, V., Srivastava, J.: Event detection from time series data. In: Proceedings
of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining, San Diego, USA (1999) 33 – 42

16. Morik, K., Wessel, S.: Incremental signal to symbol processing. In Morik, K.,
Kaiser, M., Klingspor, V., eds.: Making Robots Smarter – Combining Sensing and
Action through Robot Learning. Kluwer Academic Publ. (1999) 185 –198

17. Salatian, A., Hunter, J.: Deriving trends in historical and real-time continuously
sampled medical data. Journal of Intelligent Information Systems 13 (1999) 47–71

18. Agrawal, R., Psaila, G., Wimmers, E.L., Zäıt, M.: Querying shapes of histories. In:
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