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Abstract—We introduce a novel set of features for a challeng-
ing image analysis task in agriculture where cell phone camera
images of beet leaves are analyzed as to the presence of plant
diseases. Aiming at minimal computational costs on the cellular
device and highly accurate prediction results, we present an
efficient detector of potential disease regions and a robust clas-
sification method based on texture features. We evaluate several
first- and second-order statistical features for classifying textures
of leaf spots and we find that a combination of descriptors derived
on multiple erosion bands of the RGB color channels, as well as,
the local binary patterns of gradient magnitudes of the extracted
regions accurately distinguish between symptoms caused by five
diseases, including infections of the fungi Cercospora beticola,
Ramularia beticola, Uromyces betae, and Phoma betae, and the
bacterium Pseudomonas syringae pv. aptata.

I. INTRODUCTION

Mobile devices such as smart phones have become
widespread consumer products and the prevalence and ease
of use of smart phone cameras provides new challenges and
opportunities for image processing and analysis. Opportunities
arise from the availability of digital cameras in environments
where they were not naturally present only a few years ago.
Challenges are due to the fact that implementations of image
processing algorithms on a cell phone have to comply with
particular characteristics such as constrained battery life, re-
stricted computational power, or limited bandwidth. The work
reported here results from a project on using cell phone images
in an agricultural scenario. We are developing a system where
farmers take pictures of plants they suspect to be infected by
a disease such as shown in Figure 1(a). Information extracted
therefrom are then send to a central server and analysis results
are supposed to be reported back to the farmer while still in
the field. In this setting, efficient and reliable image analysis
is pivotal. Given the weak connection strengths out in the
fields or the increased fees for high volume data transfer, it
is hardly possible to transmit several pictures of sufficient
resolution. If, on the other hand, the extraction of regions of
interest or even the feature computation were performed by an

(a) cell phone image (b) color filter (c) extracted regions

Fig. 1. Cell phone camera image of a beet leaf suffering from Phoma betae
(a), and preprocessing steps: color filter (b) and extracted regions (c).

app running on the cell phone, transmission times and costs
reduce considerable. In this case, however, elaborate image
processing techniques being both robust and limited to the
restricted computational resources need to be applied.

Addressing these issues, we present a cascade of effi-
cient image preprocessing, feature extraction, and classification
steps tailored to the recognition of pathogens that infect beet
plants [1]. Beet is a widely cultivated commercial crop used,
e.g., to produce table sugar but fungal and bacterial attacks
frequently reduce yields. An early recognition of disease onsets
assisted by our system may limit the amount of fungicides
needed for pest control and can thus reduce costs and envi-
ronmental burden. In particular, we attempt to automatically
recognize symptoms of five common kinds of infections:

Cercospora beticola (cf. Fig. 2(a)) is a fungal plant pathogen.
Infected beet plants show leaf spots that are round blemishes
with a definite edge between infected and healthy leaf tissue;
while the border of a spot is typically darker and of brownish-
reddish hue, spot interiors appear bright with dark spores.

Ramularia beticola (cf. Fig. 2(b)), also a fungal pathogen
infecting beet plants, shows irregular leaf spots with light



(a) Cercospora (b) Ramularia (c) Pseudomonas (d) Rust (e) Phoma (f) Cercospora & Phoma

Fig. 2. Cell phone camera images of beet leaves showing leaf spots caused by (a) Cercospora beticola (cerc), (b) Ramularia beticola (ram), (c) Pseudomonas
syringae (pseu), (d) Uromyces betae (rust), (e) Phoma betae (phom), and (f) combined infestation of Cercospora and Phoma.

interior surrounded by a light brown to brown border. The
interior shows white spores. Leaf spots at a pronounced stage
are likely to chap or form coadunate regions.

Pseudomonas syringae pv. aptata (cf. Fig. 2(c)), the only con-
sidered bacterial pathogen commonly infecting beets, shows
light to dark brown spots potentially with a light interior. The
spots may have a brown to black edge.

Uromyces betae (cf. Fig. 2(d)) is a fungal pathogen causing
sugar beet rust. Typical symptoms are small reddish-brownish
spots surrounded by yellow areas.

Phoma betae (cf. Fig. 2(e)) is a soil-borne fungus and plant
pathogen showing rather large leaf spots of concentric rings
with irregular shape and less pronounced edges; borders of a
spot are yellowish or light brown, spot interiors are character-
ized by darker brownish hues; when several spots are present,
they can grow together and form larger blotches.

Similar to existing approaches to plant disease classi-
fication as described in [2] and [3], we rely on texture
descriptors [4] for efficient and accurate classification. In
contrast to these existing approaches, however, we leverage
an ensemble of local features reflecting the spatial structure of
the considered leaf spots. This is necessary because we aim
to classify early stage symptoms where the leaf spots caused
by the considered diseases have a very similar appearance
making them even indistinguishable by human experts. Further,
data processing is performed on a cellular device requiring
resource constraint computations and the consulting system
should provide advice in an online fashion while the farmer
is still in field. The issues arising in such a scenario covering
efficient region detection and feature computation on the smart
phone followed by reliable disease classification have not been
addressed in previous approaches.

To deal with changes in illumination, scale and perspec-
tive changes we take a statistical approach using field data
reflecting the variety of the real environment. The data con-
sidered for learning and evaluation are cell phone images
from unconstrained settings – different camera types, different
resolutions, no constraints on how to take the image. Based
on the appearance of the infection symptoms, we develop
discriminant features by applying multiple erosion steps to
the extracted regions and computing several first- and second-
order statistical texture features on the RGB color channels,
as well as on the local binary patterns (LBPs) of the gradient

magnitude values [5]. The resulting erosion feature ensemble
(EFE) proves superior classification performance, in compar-
ison to solely applying the same texture descriptors to the
whole image regions, leading to disease detection rates of 95%
and classification accuracies of 84% in a challenging 6-class
classification problem. Erosion based texture descriptors are
well justified by the phenotype of the disease symptoms and
go beyond known approaches to plant disease classification.

The next section details the image processing steps in
our approach and introduces our newly developed erosion
band features for leaf spot classification. In Section III, we
present an extensive feature study comparing a wide range
of texture features computed on the proposed erosion bands
and we evaluate the best performing feature combination on
a comprehensive dataset of 2 957 regions extracted from 495
images recorded with six different cell phone camera types.

II. IMAGE PROCESSING

Our proposed classification method essentially consists
of three steps: region detection, feature extraction and class
prediction. Whereas the region extraction is applied to the
whole input image, feature computation and classification is
performed on each extracted region. This approach enables us
to identify leaves showing infection symptoms from multiple
diseases as illustrated in Figure 2(f). In the following, we give
a detailed description of each step in our approach.

A. Region Detection

The images that are to be analyzed in our scenario are
recorded under uncontrollable conditions. Whenever farmers
in the field take snapshots of plant leaves, scene illumina-
tion, camera angle, focal length, and distance to object are
essentially random variables (cf. Figure 2). In order to be
able to circumvent diminishing effects due to some of these
variables, the default setting of our system is to consider rather
high resolution images. Given an RGB image I of 5 resp. 8
megapixels in JPG format, the following preprocessing steps
yielded useful intermediate representations for later analysis:
1.) down-scale the input image I by 25%; the resulting image
D is of size 484 × 648 × 3 resp. 612 × 816 × 3 depending
on the used smart phone camera; this increases sharpness and
facilitates further computation; cf. Figure 1(a).
2.) compute a binary image B from D such that the foreground
pixels are the pixels with a red value higher than both the
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Fig. 3. (a) RGB image, (b) and (c) intensity-based images, and (d)-(f) gradient-based images of an example Cercospora region.

green and the blue value; this pronounces reddish/brownish
image regions which may hint at leaf spots caused by fungus
or bacteria; Figure 1(b) shows the maximal color values in D.
3.) compute a region image R from B; this subsumes median
filtering, connected component analysis, hole filling, filtering
of regions adjacent to the image borders, as well as filtering of
regions where the width/height ratio of their bounding boxes
is not in the interval [0.7, 2]; the latter is motivated from
biological expertise: since leaf spots tend to be compact, too
elongated regions can be discarded from further analysis.
4.) suppress all pixels in D that are background pixels in R;
the information in the new image G forms the basis for the
subsequent analysis; an image G is shown in Figure 1(c).

Note that up to this point none of the steps in our
processing cascade makes use of floating point operations. As
each of these intermediate steps can be computed using only
integer arithmetics, they admit implementations even on older
generation phones without processors with floating point units.

B. Statistical Texture Features

Feature computation and further classification is performed
on each detected region separately. A region ri is defined as
a connected component in R. Each ri is scaled such that its
larger image dimension measures 75 pixels. As we are not
assuming a particular stage of infection, the leaf spots are
typically indistinguishable by their forms and sizes. Hence,
established shape descriptors and shape recognition methods,
such as form factors [6], bounding box signatures [7], or
entropies of curves [8], [9] lack of discriminative power for the
classification task. We therefore resort to texture descriptors.

As the main characteristics of the leaf spots caused by the
considered diseases illustrated in Figure 2 are based on color
values and intensity changes, we analyse color-, intensity-, and
gradient-based features. From the original RGB values of each
ri we compute the following values (cf. Fig. 3):

• red (R), green (G), blue (B) channels,
• intensities (INT) ,
• LBPs of intensities (INT LBP) ,
• gradient magnitudes (Gmag) ,
• gradient directions (Gdir), and
• LBPs of gradient magnitudes (Gmag LBP) ,

where LBP is the basic local binary pattern defined on an 8-
neighborhood. The LBP value for a pixel p is given by

LBP (p) =

7∑
n=0

s(qn − p)2n,

where qn is the n-th neighbour of pixel p and s(x) = 1 for
x ≥ 1 and s(x) = 0 otherwise. LBP descriptors [5] provide
an efficient way to characterize local textures and there are
numerous accounts in the recent literature where they were
reported to enable highly accurate classification [10], [11].

To analyse the color and gradient information of the
extracted regions, we consider simple and co-occurrence based
statistical texture features.
First-order statistics computed from the respective normal-
ized histogram hi of n bins lead to simple characteristics of
image texture. We consider:

• MEAN:
n∑
k=1

k hik = µi

• VARIANCE:
n∑
k=1

hik(k − µi)2

• ENTROPY: −
n∑
k=1

hik log(hik)

and set n = 256 for all computations.

Second-order statistics computed from the spatial co-
occurrence of pixel values analyse relationships among pairs
of pixels and therefore constitute more powerful texture de-
scriptors [4]. We consider seven statistics on the m ×m co-
occurrence matrix C(θ, d), where θ ∈ {0◦, 45◦, 90◦, 135◦}
defines the angle and d ∈ {1, 3, 5} defines the distance of the
pixel relation. Let the mean µ = 1

m2

∑
i,j C(i, j), the mean

of the row and column sums µi = 1
m

∑
i i
∑
j C(i, j) and

µj = 1
m

∑
j j
∑
i C(i, j), and the standard deviation of the

row and column sums σi = 1
m

∑
i(i − µi)

2
∑
j C(i, j) and

σj = 1
m

∑
j(j − µj)2

∑
i C(i, j). The second-order statistics

are

• CORRELATION:
∑
i,j

(i−µi)(j−µj)C(i,j)
σiσj

• ENTROPY: −
∑
i,j

C(i, j) logC(i, j)

• INVERSE DIFFERENCE MOMENT:
∑
i,j

1
1+(i−j)2 C(i, j)

• VARIANCE:
∑
i,j

C(i, j)(i− µ)2

where µ is the mean, µi and µj resp. σi and σj are the means
resp. standard deviations of row and column sums, and

• SUM ENTROPY: −
2m−1∑
k=1

p+(k) log p+(k) = se



(a) erosion bands

(b) masked RBG regions

Fig. 4. Erosion of the example Cercospora region shown in Figure 3(a).

• DIFFERENCE ENTROPY: −
m∑
k=1

p−(k) log p−(k)

• SUM VARIANCE:
2m−1∑
k=1

(k − se)2 p+(k)

where p+(k) =
∑
i,j C(i, j) with k = i + j and p−(k) =∑

i,j C(i, j) with k = |i − j|. To achieve rotation invariance,
each feature value is an average of the statistics computed
from C(θ, d) over the angles θ. The resulting texture descriptor
(TEXTURE) is a 7-dimensional feature vector only depending
on the distance d. We also tested ANGULAR SECOND MOMENT
and DIFFERENCE VARIANCE, however, adding these features
to the descriptor decreased classification performance in an
initial set of experiments on the training data. The considered
features covering gradient- and LBP-based texture descriptors
considerably extend those suggested in previous work [2], [3].

C. Erosion Band Features

Following experts’ descriptions of the spots on beet leaves
caused by the considered diseases, we propose erosion band
features for disease classification. Similar to erosion band
signatures [12], we want to extract more fine grained texture
features following the circular structure of the leaf spots. Given
the erosion width w, we iteratively apply binary erosion to the
extracted region ri. Given the extracted region ri = r

(0)
i and

Ew a spherical structuring element, the erosion band at the
t-th erosion step b(t)i is computed as

b
(t)
i = r

(t−1)
i − r(t)i with r

(t)
i = r

(t−1)
i 	 Ew,

where 	 is the morphological erosion operator and t =
[1, . . . , tmax]. The erosion width can be deduced from a given
number of iterations tmax and the region dimensions. Figure 4
shows the erosion masks and eroded RBG regions of the
Cercospora region depicted in Figure 3 using four erosion
steps. For each erosion step we compute the desired texture
descriptors on the respective values of the masked regions
and concatenate the features. By limiting tmax and filling the
erosion band b

(tmax)
i in the last iteration, we ensure a fixed

feature dimension across all regions. We set tmax = 4 in all
experimental evaluations. Using less erosion steps produces
less discriminant features, whereas setting tmax > 4 unnec-
essarily increases the feature dimensionality. Note, that the
dimension of an erosion band feature is tmax times larger
than the dimension of the according feature computed on

TABLE I. NUMBER OF REGIONS PER CLASS FOR THE TWO
CONSIDERED DATASETS STUDY AND FULL.

classes

dataset n-inf cerc rust pseu ram phom total

STUDY 55 57 47 44 57 36 296
FULL 1105 1006 72 494 255 55 2957

the whole image region. Before we present our extensive
feature study comparing several traditional texture descriptors
and their erosion band versions for the problem of leaf spot
classification, we briefly introduce the used classifier.

D. Classification

To predict the disease per region we train a one-vs-one
multi-class support vector machine (SVM) using the radial
basis function (RBF) kernel

k(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
= exp(γ‖x− x′‖2),

where σ is the kernel width and γ = − 1
2σ2 . For all experiments

we learn the SVM-cost parameter c and the kernel parameter
γ via 10-fold cross validation on the respective training splits.
The considered parameter ranges are c ∈ {2−3, 2−2, . . . , 26}
and γ ∈ {0.01, 0.05, . . . 5.0, 10.0}. We train the classifier on
6 classes, where 5 are leaf spots caused by the previously
introduced pathogens Cercospora beticola (cerc), Ramularia
beticola (ram), Pseudomonas syringae (pseu), Uromyces betae
(rust), and Phoma betae (phom). To handle regions extracted
by the region detector not belonging to one of these classes we
consider a sixth class non-infected (n-inf ). Example regions of
this class could be healthy leaf parts, such as reflections or leaf
veins, dirt on the leave, holes, or earth on the ground. These
regions occur as we apply a simple and efficient region detector
being feasible on the smart phone. To analyse disease detection
rates, we therefore also evaluate a classification task, where
we consider the classes inf and n-inf, where inf subsumes
all regions labeled as being caused by one of the considered
diseases. For this binary task we also use a SVM with the same
kernel settings as described for the multi-class problem.

III. EXPERIMENTAL EVALUATION

In order to determine a small but meaningful feature en-
semble for robust leaf spot classification, we performed an ex-
tensive feature study extending previously suggested descrip-
tors [2], [3]. First, we evaluate each combination of statistical
texture feature and input value introduced in Section II-B on
the whole region and further on the erosion bands as described
in Section II-C. Then, we create a feature ensemble of the best
performing but most diverse feature/value combinations from
the first evaluation step. This feature ensemble, called erosion
feature ensemble, is then evaluated on a comprehensive dataset
of 2 957 regions extracted from 495 cell phone images.

A. Datasets

First, we introduce two datasets used for feature selection
and evaluation. The first one, called STUDY, is a subset of
all available regions extracted from 495 cell phone camera
images applying the region detector described above. It was
derived by manually selecting a balanced number of regions



TABLE II. AVERAGE ACCURACIES (%) OBTAINED BY 20-FOLD CROSS VALIDATION ON THE DATASET STUDY. MEMBERSHIP IN THE CANDIDATE
FEATURE SET FOR THE EROSION FEATURE ENSEMBLE DESCRIBED IN SECTION III-C IS INDICATED IN BOLD.

INT
INT

R G B RG RB GB RGB Gmag Gdir
Gmag

LBP LBP
dim (1) (1) (1) (1) (1) (2) (2) (2) (3) (1) (1) (1)

w
ho

le
re

gi
on

MEAN (1) 35.1 42.4 32.7 41.5 42.9 42.2 42.9 43.1 47.0 21.6 32.4 35.5
VAR (1) 23.3 20.0 21.4 30.3 23.6 36.8 35.7 34.4 43.5 30.5 25.7 19.6
MEAN & VAR (2) 37.5 42.0 30.6 37.1 47.9 44.1 49.6 46.9 54.3 41.2 33.4 36.1
ENTROPY (1) 35.6 43.3 33.3 34.7 30.3 35.3 36.1 45.3 44.5 34.8 49.0 44.2

TEXTURE
(d = 1)

(7) 57.4 52.8 59.3 56.7 58.8 65.9 65.5 64.4 68.2 51.9 48.7 48.7

TEXTURE
(d = 3)

(7) 50.0 48.4 51.2 50.3 48.5 62.8 57.0 54.5 62.4 48.2 49.3 45.8

TEXTURE
(d = 5)

(7) 49.5 50.8 48.9 43.5 46.9 57.7 54.6 52.6 57.0 49.3 46.2 41.2

er
os

io
n

ba
nd

s

MEAN (4) 54.5 50.5 49.2 54.6 52.6 54.3 53.2 56.0 54.6 42.8 30.7 43.9
VAR (4) 45.1 29.0 42.5 45.1 45.5 52.6 50.7 44.5 52.3 36.7 38.2 32.8
MEAN & VAR (8) 58.7 51.0 56.6 60.1 55.4 60.8 59.0 60.4 61.7 48.3 37.1 42.8
ENTROPY (4) 43.2 54.0 44.5 42.8 47.2 47.3 50.0 50.3 55.3 47.2 43.6 52.9

TEXTURE
(d = 1)

(28) 67.7 55.4 69.0 65.8 64.8 71.8 68.8 71.3 71.9 48.9 51.4 53.7

TEXTURE
(d = 3)

(28) 62.4 54.4 67.0 67.1 60.7 69.1 66.8 63.8 67.7 47.2 51.4 44.2

TEXTURE
(d = 5)

(28) 63.8 57.8 66.2 65.5 62.5 69.1 68.8 64.2 70.9 47.2 48.0 46.6

(a) Pseudomonas (b) Cercospora (c) Ramularia

Fig. 5. Example regions with coadunate spots of three disease symptoms.

for each class and considering regions consisting of one single
leaf spot only as illustrated in Figure 3(a). This dataset is used
in our feature study and hence, can be seen as training dataset
for the feature selection process. The second dataset, FULL,
is composed of all 2957 extracted regions and it also contains
regions consisting of several coadunate leaf spots as illustrated
in Figure 5. This dataset also shows high class imbalance as
we did not meet many beet plants infected by Rust and Phoma
during data acquisition. The class frequencies of both datasets
are listed in Table I.

B. Feature Study

Before we describe the feature ensemble construction, we
discuss the results of our feature study on STUDY. Feature
performance is evaluated by running C-SVM classification as
described in Section II-D using libSVM (http://www.csie.ntu.
edu.tw/∼cjlin/libsvm/) on 20 randomly generated but fixed data
splits. Average accuracies for all feature/value combinations
are shown in Table II.

First, we observe that the performance is universally
improved by computing the texture features on the erosion
bands instead of on the whole regions. This result proves the
usefulness of our newly proposed erosion band features for
leaf spot classification. Further, we see that LBP images of
intensities (INT) and gradient magnitudes (Gmag) can improve
the performance of simple statistics, such as MEAN and EN-
TROPY confirming results presented in [5]. In general, second-

order statistics, denoted by TEXTURE, lead to better perfor-
mance compared to simple first-order statistics. Considering
distances d > 1, however, did decrease accuracy, leading to the
conclusion that for leaf spot classification in our scenario the
co-occurrence of neighbouring pixel pairs is most informative
about the disease. Note, that second-order texture descriptors
as well as erosion band features are of higher dimensionality.
The dimensionality of each feature/value pair can be computed
as the product of feature and value dimensionality indicated in
the second row and third column of Table II. Note that using all
feature/value combinations results in a 960-dimensional input
space leading to a less efficient classification cascade.

C. Erosion Feature Ensemble

To build a small, yet powerful and diverse feature ensemble
from these results, we consider the following grouping of
feature/value pairs: first, we contrast computation on the whole
region versus on erosion bands; second, we divide the values
in intensity-based, color-based and gradient-based; and then
we use the natural distinction of simple, i.e. first-order, versus
second-order statistics. This leads to 12 feature/value groups
including erosion and non-erosion based descriptors. Now,
we consider the best performing pair in each group to be
a candidate for our feature ensemble. The performances of
these candidates are marked bold in Table II; the groups are
indicated by blocks. The final feature ensemble is derived from
forward selection followed by backward elimination on the
candidate set. With this approach we traced the combination
of erosion band TEXTURE descriptors with d = 1 on the three
color channels (RGB) and on the gradient magnitude LBPs
(Gmag LBP). This best performing feature ensemble, named
erosion feature ensemble (EFE), has 112 dimensions and its
classification accuracy is 75.2% on the dataset STUDY.

D. Results

We performed a 20-fold cross validation to evaluate EFE on
the full dataset covering all extracted regions from the available
495 cell phone images. We study two tasks, disease detection



TABLE III. AVERAGE ACCURACIES AND STANDARD DEVIATIONS IN % (AVERAGE PREDICTION TIME IN SECONDS) OF THE EROSION FEATURE
ENSEMBLE (EFE), ALL FEATURES (ALL), MOST FREQUENT CLASS (MFC) AND RANDOM (RAND) FOR DISEASE DETECTION AND CLASSIFICATION.

disease detection disease classification
EFE ALL MFC RAND EFE ALL MFC RAND

STUDY 93.9± 8.4 (0.00′′) 92.5± 7.0 (0.00′′) 81.3 50.0 75.2± 8.6 (0.00′′) 77.0± 11.8 (0.01′′) 19.3 16.7
FULL 93.3± 1.7 (0.02′′) 95.4± 2.1 (0.15′′) 62.6 50.0 83.8± 3.3 (0.04′′) 87.6± 2.5 (0.38′′) 37.4 16.7

to predict whether a leaf spot is caused by an infection or
not and disease classification, where we predict one out of six
classes (cerc, ram, pseu, rust, phom, and n-inf ) per region.

For disease detection we consider two classes, inf and n-
inf, where the former subsumes all infected regions. Using EFE
we achieve 93.3% accuracy on FULL (93.9% on STUDY), cf.
Table III. When detecting diseases we are especially interested
in a high recall. We detect 95.4% (FULL), respectively 99.2%
(STUDY), of all infected leaf spots as being caused by a disease.
Without feature selection (ALL) detection accuracy is worse
for STUDY and only slightly higher for FULL while requiring
more computation time. These results clearly show that erosion
band features are highly appropriate for the identification of
leaf spots caused by fungal and bacterial diseases.

For disease classification EFE leads to an average accuracy
of 83.7% whereas the use of all descriptor/value combinations
(ALL) achieves 87.6% on the dataset FULL. This is a highly
convincing result as the classification problem has six classes.
Random class assignment results in an accuracy of 16.7% and
predicting the most frequent class yields 37.5%. ALL does
outperform EFE, however, feature computation and prediction
times increase by an order of magnitude as the dimension of
the considered feature space increases from 112 to 960. These
results, summarized in Table III, confirm the power of erosion
based texture descriptors for leaf spot classification and justify
our proposed feature selection method. For FULL the confusion
matrix to analyse the per class performance of EFE is

M =


1009 26 2 58 15 6
39 891 0 94 28 14
2 0 65 1 0 0
44 64 5 335 17 3
9 24 0 6 163 16
2 1 0 0 2 16


n-inf
cerc
rust
pseu
ram

phom

where the off-diagonals of the rows (columns) show the
number of false positives (false negatives). All classes ex-
cept phom have a classification accuracy above 67%. The
misclassified leaf spots caused by Phoma where frequently
labeled as Cercospora or Ramularia. This is due to their similar
appearance and the lack of sufficient training data in this class;
less than 2% of the regions have the label phom. These results
suggest that we can achieve even higher performance rates for
this class once having access to more training data.

IV. CONCLUSIONS

We introduced a new feature derivation scheme for leaf spot
classification based on statistical texture features computed on
multiple erosion bands of regions of interest extracted from
cell phone images of beet leaves. In addition, we conducted an
extensive feature study and systematically derived the erosion
feature ensemble, a discriminative, diverse, and robust feature
ensemble for leaf spot classification. Although our feature de-
sign allows for easy and efficient computation, it goes beyond
the use of descriptors simply computed on the whole extracted

regions as previously used for plant disease classification.
In summary, we presented an efficient holistic approach to
classify leaf spots extracted from cell phone images of beet
leaves as being caused by one out of five different diseases.

The success of erosion-based texture features suggests
to apply similar techniques to disease classification of other
plants, such as wheat or cotton in the future. Further, we plan to
integrate the developed erosion band features in an automatic
consultation system reliably helping farmers in the field to
assess the kind and amount of fungicides needed for pest
control. This will result in reduced costs and environmental
burden due to a more targeted treatment.
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