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ABSTRACT
Many applications that aim at enhancing sustainability rely
on some sort of spatio-temporal model. The task can be
monitoring or prediction in traffic networks, power grids,
building energy management, river flow volume, and sea
level – to mention just a few. The positive effect on the en-
vironment is achieved by a better control, better planning of
processes or better disaster management. Spatio-temporal
models predict some states of variables over time that are
spatially ordered in some topology. They can be used in a
variety of applications, ranging from energy-saving techno-
logical administration to monitoring for early alarms or to
supporting better emergency plans. Graphical Models have
been successfully used for predictions based on structured
data. Here, we introduce a functional form for the model
parameters that allows a spatio-temporal predictive analy-
sis with continuous time. Though intended also to be used
in engineering approaches, there, we are missing public data
sets. Hence, the use of our model is demonstrated on two
exemplary applications, namely the prediction of sea-levels
for tsunami prediction and the prediction of traffic jam as a
consequence of a flow of refugees in case of a nuclear acci-
dent.

Categories and Subject Descriptors
V.2 [Transportation]; H.3 [Mining massive through-
put sensor streams]

General Terms
Spatio-Temporal Models, Graphical Models

1. INTRODUCTION
Sustainability applications [15] and data mining challenges
concerning climate change [4] often cope with spatio-temporal
data. For instance, the sea level data (http://ngdc.noaa.
gov/hazard/recenttsunamis.shtml) can be used in order
to answer queries like:
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• Given a high sea level near Shizuoka and near Tokyo
at time 1, what will be the level near San Francisco at
time t?

Answers to these questions can be used, e.g., for the tsunami
prediction.

Traffic data is important for logistics applications as well as
in scenarios of disaster management. Imagine, for instance,
that a hazard happens at a large industrial complex. People
will want to move away very fast and transporting their
minimal goods. The resulting traffic volume demands the
street network. Disaster management will act on that behalf
and this requires some facts. Here, we do not investigate the
disaster management but look at questions whose answers
might be useful input to the traffic administration. Traffic
data can be used to answer queries like:

• Given the traffic of all roads in a street network at
time points 1, 2, .., t − 1, what will be the traffic level
on road A at time t (or t+ h)?

• If there is a traffic jam at crossing (A,B) at time t
what will be the state of road C at time t+ h?

Queries need not be restricted to predict the next point in
time, but may ask for some point in the future within a
certain horizon, h. Our goal is to mine probabilistic answers
to those questions from spatio-temporal data.

Related Work.A view of data mining towards distributed
sensor measurements is presented in the book on ubiqui-
tous knowledge discovery [14]. There are several approaches
to distributed stream mining based on work like, e.g., [22]
or [18]. The goal in these approaches is a general model (or
function) which is built on the basis of local models while re-
stricting communication costs. Most often, the global model
allows to answer threshold queries, but also clustering of
nodes is sometimes handled. Although the function is more
complex, the model is global and not tailored for the predic-
tion of measurements at a particular location. In contrast,
our model can predict some sensor’s state at some point in
time given relevant previous and current measurements of
itself and other sensors.

Graphical models based on frequent set mining have been
used to model spatial movements over time, e.g., [9]. Such



models deliver all subgraphs that are more frequent than
a user-given threshold. They do not deliver any proba-
bilistic model, though. Where probabilistic modeling also
starts with counting, it does not ignore seldom events. If we
consider the minimal support of a subgraph a probability,
frequent set mining deletes events with a probability lower
than a threshold. It is hard to justify such a decision in
cases where the influence of low frequency events cannot be
excluded. Moreover, probabilities can be interpolated. A
probabilistic model covers the overall space of all possible
relations in a continuous way. If we know, for example, the
probability of a certain state at 3 o’clock and its probability
at 4 o’clock and miss any measurements in between, we can
estimate the probability at, say, 3:30 o’clock. In contrast,
frequent subgraph mining delivers patterns that do not allow
any interpolation.

Since his influential book, David Luckham has promoted
complex event processing successfully [12]. According to the
slogan Monitor, Mine, Manage [2], series of data from het-
erogeneous sources are to be put to good use in diverse ap-
plications. Detecting events in streams of data has been
modeled, e.g. in the context of monitoring hygiene in a hos-
pital [20]. However, in our case, the monitoring does not
imply certain events. We do not aim at finding patterns
that define an event, although they may show up as a side
effect. We rather want to predict a certain state at a partic-
ular sensor or set of sensors taking into account the context
of other locations and points in time. Although related, the
tasks differ.

One of the tasks by which we illustrate our approach, namely,
predicting motorway traffic, has been performed using a street
network topology, that represents spatial relations [21]. The
training, however, was done using simply Kalman filters,
which do not allow to anwer questions as those listed above.
The prediction task of traffic forecasting is often solved using
simulations [13]. However, more recent articles report suc-
cessful learning approaches, e.g. using Markov Logic Net-
works [10]. We propose a spatio-temporal model which, in
contrast to standard MRF, is capable of expressing periodic
behavior by assuming temporal identity between future and
past events.

Time series mining and summarizing is undoubtedly a hot
research topic [1]. Dealing with sea level data, a cluster-
ing method has been proposed that forms effective indices
for time series of sea surface temperature or sea level pres-
sure [19]. Tracing evolving subspace clusters in temporal
climate data reduces the big data by selecting relevant at-
tributes [5]. Another data reduction approach points out,
that clustering streaming data requires to ignore some mea-
surements [17]. Again, these approaches do not solve the
problem of predicting future measurements at particular lo-
cations. Moreover, they don’t take into account the spatial
relations in the learned model.

Spatial relations are naturally expressed by graphical models.
For instance, in the course of analyzing video or image data,
graphical models such as Markov Random Fields (MRF)
have been used [23], [7]. The standard algorithm for train-
ing graphical models is Belief Propagation (BP). It converts
local parameters into local probabilities which fit nicely to-

gether, that is, making them globally consistent with respect
to the topology. BP is used for the distributed computa-
tion of the gradient when minimizing the error. Also stan-
dard, we use the Graphlab framework [11] for implementing
the new spatio-temporal model. This model itself, however,
moves beyond standard approaches. Where regular MRF
use just one weight per node and point in time (i.e. a linear,
pointwise parametrization), the new model, in contrast, fits
a function to the points over time (i.e. a compact piecewise
parametrization). This enhancement of MRF is one of the
contributions of this paper.

Although the here proposed spatio-temporal MRF is highly
related to Dynamic Bayesian Networks (DBN), DBNs use
directed acyclic graphs (DAG) to represent conditional de-
pendencies. In contrast, MRFs are undirected models which
allow cyclic probabilistic dependencies among sensor data.
In some cases, it might be hard to impose an ordering of the
sensors, which is needed to build the conditional dependency
structure of DBNs, e.g. in wireless sensor networks. Clearly,
if a set of temperature sensorsX is located in the same room,
their values are likely to depend on each other. This fact can
be intuitively encoded into an undirected model by placing
edges between nearby sensors. In case of DBNs, a similar
graphical model may be built, but it has to contain addi-
tional edges in order to encode all possible links of the undi-
rected MRFs dependency structure. Although both models
do result in the same joint density p(X), conditional depen-
dencies between sensors that are not neighbors w.r.t. their
physical deployment increase the communication overhead
if the model is implemented directly into a sensor network.
Furthermore, the additional edges induce a higher memory
complexity per node. Please note that the same holds if a
DAG structure has to be converted to an undirected model.
Nevertheless, an undirected model fits naturally to the phys-
ical deployment of sensors and no explicit ordering of the
sensors has to be choosen.

In this paper, we present a new approach to spatio-temporal
graphical models with applications for sustainability. Its
base model is described in Section 2. Applications illustrate
such models (Section 3). In Section 4, we indicate opportu-
nities for further work.

2. SPATIO-TEMPORAL MODELS
Spatio-temporal models enhance graphical models of dis-
crete random variables whose probability distributions are
represented by exponential families. The enhancement can
be combined with any kind of a graphical model. Without
loss of generality, we use Markov random fields (MRF). We
use |S| to denote the cardinality of a finite set S. Symbols
describing a vector entity are set in bold.

2.1 Graphical Models
MRF are based on a graph G = (V,E) representing the con-
ditional independency structure among nodes (sensors) v ∈
V by edges (connections) (v, w) ∈ E ⊂ V × V . Each node
is associated with a discrete random variable Xv : Ωv → Xv

for an event set Ωv and a set of states Xv. All variables are
stacked together to form one multivariate random variable
X. A binary vector φ(X) of length d > 0, contains the
states of nodes and the states of pairs of connected nodes.
The components of this vector for sensors v, w and states



a, b are defined as follows:

φv,a(X) :=

{

1 if Xv = a

0 otherwise,

φvw,ab(X) :=

{

1 if (Xv, Xw) = (a, b)

0 otherwise.

(1)

The vector is usually quite sparse, because only a rather
small number of states of a variable (values of an attribute)
are true, most being zero. This definition represents the
state of a entire graph G by the binary vector φ(X). For the
ease of notation, but without loss of generality, we use the
same set of states X for all random variables Xv, v ∈ V . In
this case the vector φ(X) is of length d = |V | × |X |+ |E| ×
|X |2. As an implication of the binary representation, the
expectation of a sufficient statistic is its marginal probability,
that is,

µv,a := E[φv,a(X)] = P[Xv = a],

µvw,ab := E[φvw,ab(X)] = P[Xv = a,Xw = b].

We can estimate these quantities from historical sensor read-
ings by counting occurrences, e.g. for N historical measure-
ments per sensor, we have

µ̃v,a := Ẽ[φv,a(X)] =
1

N

N
∑

i=1

φv,a(x
(i)),

µ̃vw,ab := Ẽ[φvw,ab(X)] =
1

N

N
∑

i=1

φvw,ab(x
(i)),

(2)

for all sensors v, w and states a, b. As a consequence of the
Hammersley-Clifford Theorem [6], each MRF corresponds to
an exponential family distribution parametrized by a vector
θ ∈ R

d, whose density can be written as

pθ(X) = exp{〈θ,φ(X)〉 −A(θ)}.

Note that the parameter vector θ and the vector of sufficient
statistics φ(X) have the same length d. The term A(θ) is
called the log partition function,

A(θ) := log

∫

Xm

exp{〈θ,φ(x)〉}ν(dx),

which is defined with respect to a reference measure dν such
that P[X ∈ S] =

∫

S
pθ(x)ν(dx) for any measurable set S.

The model smoothly assigns probabilities to all possible com-
binations. Graphical models cover all data, even those that
are rare. In contrast to frequent set mining, no data whose
frequency is below some threshold are ignored.

2.2 Modeling Temporal Dynamics
MRF do not yet model the temporal dynamics of random
variables over a certain time period of length T . Turning
them into a spatio-temporal model needs some enhance-
ment. In particular, a sequence of snapshots of a spatial
model needs to be defined. For many phenomena, as are
seasons, weeks, etc., there is also a period to be modeled.
Hence, the new spatio-temporal model should compose prob-
abilities from series of spatial models and observe periodic
phenomena.

For a formal description, we define the snapshot graph at
time t by Gt = (Vt, Et) for t = 1, 2, . . . , T . We create

Lt

φ(X)

}

θ

θ(t)

φ(t,X)

Gt+1

Gt

Gt−1

(a) (b)

G1

GT

Figure 1: The spatio-temporal model consists of
multiple snapshot graphs. The spatial and temporal
edges are represented by solid and dotted lines, re-
spectively. (a) A layer Lt (with simplified temporal
edges) and its corresponding subvectors φ(t,X) and
θ(t). (b) Detailed temporal dependency structure
with periodic connections between top and bottom
snapshot graphs.

each snapshot graph Gt by replicating a given protograph
G0 = (V0, E0). The protograph represents a physical deploy-
ment of sensors, encoding the “spatial” structure of random
variables that does not change over time. We also define the
set of “temporal” edges Et−1,t ⊂ Vt−1 × Vt for t = 2, . . . , T ,
to represent dependencies between adjacent snapshot graphs
Gt−1 and Gt, t = 2, . . . , T : we assume a Markov property
among snapshots, so that Et,t+h = ∅ whenever h > 1 for
any t. Note that the actual time gap between any two time-
frames t and t+ 1 can be chosen arbitrarily by users.

Periodicity is common to all random variables (given by T )
over time and can be given by the user. That is, we map

Gt := Gmod(t−1,T )+1,

Et−1,t := Emod(t−2,T )+1,mod(t−1,T )+1,

for t > T , where mod(a, b) is the remainder in scalar division
of a by b. Finally, we connect the first and the last snapshot
graphs, so that E0,1 = ET,1 ⊂ VT × V1. The entire graph,
denoted by G, consists of the snapshot graphs Gt stacked
in order for timeframes t = 1, 2, . . . , T and the temporal
edges connecting them: G := (V,E) for V := ∪T

t=1Vt and
E := ∪T

t=1{Et ∪ Et−1,t}. The structure of G is shown in
Figure 1.

We define a layer Lt as the subgraph of G containing all
vertices of Vt and all edges of Et,t+1, for t = 1, 2, . . . , T . For
instance, a layer Lt is depicted with gray color and black
nodes in Figure 1 (a). We define the subvectors of φ(X)
and θ that correspond to a layer Lt as

φ(t,X) := (φv,a, φvw,ab | v ∈ Lt, (v, w) ∈ Lt, ∀a, b ∈ X ),

θ(t) := (θv,a, θvw,ab | v ∈ Lt, (v, w) ∈ Lt, ∀a, b ∈ X ),

which yields a functional form for the sufficient statistics and
the parameters. By construction, the layers L1, L2, . . . , LT

define a nonoverlapping partitioning of a graph G, which
allows us writing

〈φ(X),θ〉 =
T
∑

t=1

〈φ(t,X),θ(t)〉.
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vt : red

vt−1 : red

G0 v

Realizations of v

}
}
θ(t)

θ(t− 1)

Protograph: a sensor network

Figure 2: An example of indexing for a node:state
pair over time. A sensor modeled by the node v in
the protograph G0 has its “realizations” vt−1 and vt
at timeframes t−1 and t respectively. Then the pairs
vt−1, red and vt, red are located at the same index j
in the subvectors θ(t− 1) and θ(t), resp. We also call
the index j is “associated” with the sensor v.

The subvectors φ(t,X) and θ(t) have the same length d/T
for all t = 1, 2, . . . , T : we refer to as d′ := d/T . Note that
the subvectors should be“aligned”, in the sense that the j-th
elements in all subvectors must point to the same sensor(s)
over time. We illustrate this in Figure 2.

It is easy to adjust the model to a certain application. The
user can indicate, how much time a period should take. She
can also indicated the granularity of the model, i.e. the time
gap between layers. For instance, if the period is a day and
the gap between snapshots is 10 minutes, the model consists
of 144 layers, since 144 · 10 = 1440 which is the number of
minutes per day. In principle, the temporal distance between
two measurements might vary over the network, but using
equidistant measurements fits the behavior of most sensors.

2.3 Training and Prediction
The parameters θ ∈ R

d are obtained by Maximum Likeli-
hood Estimation, whereby the Likelihood of a particular θ

given some data set T is defined as

L(θ|T ) :=

N
∏

i=1

pθ(x
(i)). (3)

Here, T is a set of N = |T | historical sensor readings and

x(i) is the i-th joint reading of all sensors in the network.
If our model is implemented directly into a sensor, we do
not want it to store its complete history of measurements.
Therefore, we take the logarithm of the Likelihood (3) and
rearrange, such that it only depends on the average value or
the empirical expectation Ẽ [φ(x)] of our sufficient statistic.
Note that the extra 1

N
-factor does not change the optimal

solution.

ℓ(θ|T ) :=
1

N

N
∑

i=1

log pθ(x
(i)) =

〈

θ, Ẽ [φ(x)]
〉

−A(θ) (4)

This implies that each sensor has to store an aggregate of
historical readings instead of a full history. These aggregates

Figure 3: Spatial structures used in our exam-
ples. Left: Partial highway network of North Rhine-
Westphalia, Germany. Right: Bouy network in the
Pacific Ocean measuring the sea level.

are the empirical marginal probabilities presented in (2).
Taking derivatives of (4) it follows that

∂ℓ(θ|T )

∂θv,a
= Ẽ [φv,a(x)]− Ê [φv,a(x)] ,

whereby the estimated expectation Ê [φv,a(x)] is computed
by Belief Propagation (BP) [16]. BP is also known as Sum-
Product Algorithm in the context of factor graphs [8]. The
objective maxθ ℓ(θ|T ) can then be solved by any first-order
optimization method. We ran gradient descent optimization
with an elastic-net regularization [24] until convergence to
find proper model parameters.

The prediction (query) is executed by the BP algorithm.
For this purpose, we fix the measurements of some given
sensors, say u at time t− 1 and w at time t−h, and run BP
until convergence. The computed marginal probabilities for
any sensor vt will approximate pθ(Xvt = a | xut−1

, xwt−h
).

Thus, the predicted value of each sensor v at time t is

x∗

vt = argmax
a∈X

pθ(Xvt = a | xut−1
, xwt−h

). (5)

We will use this for our exemplary predictive analysis of
sensor networks in the following section.

In case of continues t ∈ R, a prediction can still be made by
interpolating the probability between the two surrounding
layers ⌊t⌋ and ⌈t⌉ and choosing its maximum point. A first-
order interpolation is given by

p̄θ(Xvt) = pθ(Xv⌊t⌋) + (pθ(Xv⌈t⌉)− pθ(Xv⌊t⌋))(t− ⌊t⌋).

3. APPLICATIONS
Graphical models produce probabilistic answers for queries.
This gives a good picture of situations as is needed for de-
cision makers. First experiments with traffic and tsunami
data show that, indeed, the new spatio-temporal model can
answer questions as those listed in the introduction. This is
promising for its use in contexts of monitoring and disaster
management.

We use two real-world data sets for evaluation, where each
data set consists of a spatial protograph G0 = (V0, E0)
with a set of sensors V0 and connections E0 and a set T
of historical sensor readings. Our open source implemen-
tation of spatio-temporal MRF is available for download
(http://sfb876.tu-dortmund.de/stmrf).



3.1 Data Sets
Traffic. The first set comes from the traffic situation data
on German highways, available at the Online Traffic Infor-
mation System (http://autobahn.nrw.de). We take the
measurements for highways in the state of North Rhine-
Westphalia of Germany, consisting of the number of vehicles
and their average speed per minute, and the occupancy rate
of the highway region covered by each sensor. The locations
of the corresponding sensors are shown in Figure 4(a). We
use the data from July to October in 2010 for training. In
total, the data set containes more than 200 million sensor
readings.

To prepare a protograph, we first split highways into seg-
ments and create a node for the segments with high pop-
ulation around, since we want to make predictions on such
segments. The rest segments are considered to be edges con-
necting the nodes. If there are more than one sensor in a
node, we use an average of sensor readings as a measurement
for the node. The measurements are discretized into the
four states X = {free,low congestion, medium congestion,
high congestion} as suggested by the german Bundesanstalt
für Straßenwesen (BASt) for this kind of measurements [3].
After removing completely faulty sensors, our protograph
contained 186 nodes and 237 edges.

Sea-Level.We use the sea level measurements from the
Deep-ocean Assessment and Reporting Tsunamis (DART)
buoys on the Pacific Ocean (available at http://ngdc.noaa.
gov/hazard/recenttsunamis.shtml). Among the seven re-
cent tsunamis with available data, we use six, discarding
the “Solomon Islands” tsunami (August 1st, 2007) due to
too many faulty measurements. A protograph of selected
DART buoys is created based on a nearest neighbor graph,
where distances between buoys are determined by their lo-
cations on the Pacific: the graph contained 33 nodes and
114 edges.

We take the measurements of each tsunami for four days, so
that each tsunami event will locate on the second day. We
set the sampling rate to be one per every 15 minutes, since
it was the majority value among sensors, taking averages
whenever we have finer resolution data around a sampling
point. We normalized the data, discretizing them into ten
equal-sized bins. This results in X = {1, 2, . . . , 10} for each
sensor. The data set consists of 1.4 million sensor readings
in total and all of them where used for training since each
sensor is covered by only few tsunamis.

3.2 Modelling Traffic Networks
The Tihange Nuclear Power Station (NPS) is one of the two
large-scale nuclear power plants in Belgium. It is located on
the right bank of the Meuse River in the Belgian district of
Tihange, part of Huy municipality in the Walloon province
of Liège. The plant has three pressurized water reactors,
with a total capacity of 2985 megawatts and makes 52 per-
cent of the total Belgian nuclear generating capacity. The
plant began operation in 1975. The distance between Ti-
hange NPS and the nearest sensor in the German Ruhr area
amounts to 88.8 miles.

One immediately sees that the street network is dense (w.r.t.
average node degree) in and near the Ruhr area and is rather

(a)

(b)

Figure 4: Image (a) show the sensor network which
generated the traffic data set. Each flag indicates
a single sensor. The second image (b) shows the
beeline between the traffic network and the belgium
nuclear power station Tihange.

sparse outside. In case of a nuclear disaster in Tihange, it
is reasonable to expect a large amount of citizens to flee in
north-east direction. Hence, heavy traffic at the south-west
corner of the traffic network is to be expected. If there,
the heavy traffic arrives at time t, what will the traffic be
at time t + h at other points? The spatio-temporal model
is trained on the regular traffic given in the traffic data.
The assumption is, that the probabilities as learned from
these data, do express the dynamics of the network. The
correlations of all nodes over all times are characterized.
Hence, the model can answer the probability of heavy traffic
at any point and for any h, given heavy traffic in the south-
west Ruhr area. Inspecting this helps to decide, e.g., where
to open areas for traffic. In this example, we built a small
model with 12 layers, each covering a timeframe of 2 hours.
Our query asks which way the majority of the refugees will
take:

“Given the highest congestion level at the red sensors (Figure
4(a)) at 6 o’clock, how will the expected congestion level at
the green sensors change?”

Some results are shown in Table 1. The model generates
several tables indicating the probabilities for all the dif-
ferent states of all sensors in the network as well as joint
probabilities of sensor pairs. For illustration, the estimated
probabilities are shown for the sensors (I) to (V) which are



marked green in Figure 4(a). The first column lists the time.
The second column contains the prior probabilities without
any given event or observation. The third column contains
the conditional probabilities given induced measurements of
high congestion at the red sensors (Figure 4(a)) at 6 o’clock.

Some sensors are more sensitive to the highly congested re-
gions than others. In this setup, only sensor (III) has a lower
conditional probability than prior probability at 8 o’clock,
directly after the induction. This is actually what one could
expect, because sensor (III) measures traffic back into the
south-west direction, which is the origin of our hypothetic
disaster. Note, that this behavior is extracted from the
training data without selecting a special subset of measure-
ments. It is just the model as trained from regular measure-
ments, once given heavy traffic at 6 o’clock (column -post)
and once for the usual distribution of states at 6 o’clock
(column -pre) on the red sensors. This shows that even very
rare events are captured correctly by the generative model.

3.3 Modelling Buoy Networks
Recent Tsunami events shows the demand for predictive
analysis of sea-level data. We illustrate how answers will
look like in a hypothetical tsunami situation similar to the
one in Section 1, e.g.

“Given a high sea level near Tokyo, what will be level near
San Francisco after 3, 6, 9, and 12 hours?”

To simulate the situation, we pick two DART stations“21418”
near Tokyo and “46411” near San Francisco in our Tsunami
sensor graph (Figure 5). Our spatio-temporal model for the
network has 384 snapshot graphs corresponding to sampling
points at every 15 minutes. The training data covers four
days by 384 snapshot graphs and a tsunami event occurs
the second day. The state of station “21418” was fixed to
“9”, which stands for “maximally high” at the 97-th snap-
shot graph (beginning of the second day). Then we make
predictions for the station “46411” at the 109th (+3 hours),
121st (+6 hours), 133rd (+9 hours), and 145th (+12 hours)
snapshot. The results are summarized in Figure 6. We can
see the distribution for +9 and +12 after the event is shifted
toward right, i.e. high sea level (the plot on the right), com-
pared to the distribution of a normal situation (on the left).
This result matches well with the Tsunami wave propa-
gation prediction on http://ngdc.noaa.gov/hazard/dart/

2011honshu_dart.html, which tells the wave arrival will be
between +10 and +11 hours after the event.

4. CONCLUSIONS
There are several applications where data mining needs to
take into account spatial as well as temporal information.
If such a spatio-temporal model is probabilistic, it allows a
prediction for any point in time and any location. In this
paper, we have presented such a model. It is built on top
of graphical models. We described training, prediction and
interpolation of our models. Two example applications are
designed for a better planning of processes or better disaster
management. The spatio-temporal model gives probabilis-
tic answers to complex queries which might become critical

(I)-pre (I)-post
6:00 am 0.0304424 0.0407377
8:00 am 0.0162724 0.0209663

10:00 am 0.0103336 0.00900889
12:00 0.00759318 0.00625894

14:00 pm 0.00636271 0.00523515
16:00 pm 0.00586461 0.00484635
18:00 pm 0.0059501 0.00496732
20:00 pm 0.00645001 0.00542935
22:00 pm 0.0100356 0.00861825

(II)-pre (II)-post
6:00 am 0.0214906 0.0351695
8:00 am 0.009977 0.0148234

10:00 am 0.00583667 0.00509503
12:00 0.004288 0.00353086

14:00 pm 0.00360725 0.00294739
16:00 pm 0.00340079 0.00278669
18:00 pm 0.00342298 0.00283451
20:00 pm 0.00362761 0.00306696
22:00 pm 0.00536169 0.00473857

(III)-pre (III)-post
6:00 am 0.0451546 0.0445284
8:00 am 0.0242879 0.0223179

10:00 am 0.0157111 0.0131034
12:00 0.0125312 0.0102323

14:00 pm 0.0120291 0.00979062
16:00 pm 0.0135301 0.0111008
18:00 pm 0.0172476 0.0147254
20:00 pm 0.022562 0.02058
22:00 pm 0.0293905 0.0278761

(IV)-pre (IV)-post
6:00 am 0.01818 0.0277054
8:00 am 0.00876866 0.0112617

10:00 am 0.00572315 0.00409307
12:00 0.0047374 0.00322085

14:00 pm 0.00465079 0.00319654
16:00 pm 0.00512045 0.00357861
18:00 pm 0.0061346 0.00438186
20:00 pm 0.00848675 0.00641204
22:00 pm 0.0165911 0.0138931

(V)-pre (V)-post
6:00 am 0.0144675 0.02355
8:00 am 0.00718417 0.0108755

10:00 am 0.00455275 0.00356956
12:00 0.00345458 0.00255771

14:00 pm 0.00300312 0.00222569
16:00 pm 0.00292774 0.00218345
18:00 pm 0.00322762 0.00245241
20:00 pm 0.00405396 0.00319741
22:00 pm 0.00796892 0.00665439

Table 1: This table shows probabilities for the high
congestion state of sensors (I) to (V) over time. The
”-pre” column shows prior probabilities for being in
high congestion state without any given event and
the ”-post” column shows the conditional probabili-
ties given that the event high congestion from south-

west occurs at 6:00 am.



Figure 5: Buoy network on the Pacific Ocean. Each
diamond represents a single bouy. Bouy “21418”
near Tokyo is highlighted in red and bouy “46411”
near San Francisco in green.
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Figure 6: Probabilistic answers to a hypothetical
Tsunami query, “What will happen near San Fran-
cisco +3, +6, +9 and +12 hours after a Tsunami
has been detected near Tokyo?” The left plot is the
prediction on sea level near San Francisco without
the event, and the right is after the event.

in disaster scenarios. The first example was an hypothetic
nuclear disaster in a Nuclear Power Station in Belgium. The
effect of fleeing people is to be predicted for managing the
traffic in the Ruhr area. The model is trained on regular
behavior of traffic in the highway network of the Ruhr area.
The model is then applied with a high volume traffic at the
first local node where the fleeing people from Belgium would
enter the Ruhr area. The results show that even very rare
events with low probability might give some insight into the
interaction of measured entities. This is in contrast to fre-
quent set based approaches which delete events with a prob-
ability lower than a threshold. Frequent set based methods
would deliver patterns including heavy traffic at a certain
node, e.g., the south-west corner of the Ruhr area. A user
may inspect what other states co-occur in these patterns.
Depending on the threshold for minimal support several in-
teresting correlations are excluded. Moreover, we cannot an-
swer any question about what would happen, if there were
an unusual traffic jam, because the patterns are found from
the training set and fixed. The patterns do not model the
situation, but only characterize the situations that have been
perceived. Emergency cases are not given by the data. In
contrast, probabilistic modeling the traffic allows to propa-
gate assumed, not perceived states to the network.

In contrast to other existing spatio-temporal graphical model
approaches, e.g. [23] or [7], our approach is generic in the
sense that we do not make any assumptions on the spatial-
structure of a model. Although we used a temporal first-
order dependency between layers in this paper, the user of
our model is free to choose a different order.

The second example dealt with sea-level prediction in the
Pacific Ocean which might become an important prerequi-
site for disaster management in tsunami scenarios. It illus-
trates that the once trained model answers questions for all
points in time and all locations. The output can graphically
be presented as curves of probabilities. The example pic-
ture showed that after 9 hours, the likelihood of a sea level
of 6 m or higher at San Francisco is more than 80%, if an
extremely high sea level has occurred at Tokyo. It is not
necessary that this high level at Tokyo has ever been mea-
sured. The trained model is applied to the high sea level
value at Tokyo and delivers probabilities for all sea levels at
all nodes.

For future work, it is planned to enhance our method by
stream/real-time processing. This will allow evaluations
where our model is implemented directly into the sensor
network. Another possible extension is the processing of
heterogeneous sensor data. Actually, the model does not
require homogeneity of the nodes, but its current implemen-
tation uses a common scheme of attributes for all nodes.
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