YALE: Yet Another Learning Environment

Oliver Ritthoff*, Ralf Klinkenberg*, Simon Fischer*, Ingo Mierswa*, and
Sven Felske**

* University of Dortmund, Department of Computer Science, Chair of Artificial Intelligence, 44221
Dortmund, Germany, E-Mail: {ritthoff,klinkenberg,fischer ,mierswva}@ls8.cs.uni-dortmund.de

** University of Dortmund, Department of Chemical Engineering, Chair of Plant Engineering, 44221
Dortmund, Germany, E-Mail: felske@chemietechnik.uni-dortmund.de

Abstract. In many data mining and knowledge discovery applications, the problem at hand cannot
be solved satisfactorily by just taking the raw data as it is and simply applying a single one-step
machine learning method. Instead, some data pre-processing and maybe representation changes are
necessary to provide the data in a form suitable for the learning task and the chosen learning
method and to improve the performance of the learned model. One example is the task of predicting
certain properties of a chemical given its chromatogram curve, i.e. a time series with concentrations
of the chemical measured at different points of time at the end of a column the chemical is sent
through. The sensor readings may be noisy and perhaps slightly shifted along the time axis between
different measurements, so that chromatograms looking very similar to a human expert, may seem
very different for a learning method depending on the chosen representation. The extraction or
construction of characteristic, robust features may significantly improve the result obtained by a
learning method. Hence in many data mining applications, like the one just mentioned, one rather
considers chains of pre-processing and learning steps rather than just a single one-step method. This
paper proposes YALE, yet another learning environment, which allows to easily specify and execute
such data mining operator chains for pre-processing, especially feature generation and selection, and
multistrategy learning. This modular, non-commercial environment supports nested operator chains
and the exchange of individual operators and thereby the systematic evaluation and comparison
of different operators and operator chains for the same (sub)task. This paper describes the basic
concepts underlying YALE, demonstrates how to describe data mining operator chains in YALE, and
provides an example application of YALE for feature generation and selection on chromatography
time series data comparing different data pre-processing approaches.

Keywords. machine learning environment, data mining, knowledge discovery, data pre-processing,
multistrategy learning, feature generation, feature selection

1 Motivation and Introduction
1.1 Data Pre-Processing and Data Mining

In many real-world data mining applications, the
data has to be pre-processed to be usable by
the chosen machine learning method and/or to
achieve an acceptable level of performance in pre-
diction. A central problem is the representation of
the examples by a good set of attributes, 1.e. a set
of attributes that allows the chosen learner to find
a candidate hypothesis solving the learning task
at hand within its hypothesis search space. With-
out meaningful attributes that together convey
sufficient information to make learning tractable,
no machine learning technique will be successful.
Hence finding a suitable set of attributes may be

far more important for the overall success than the
choice of a particular learning technique. There-
fore feature generation and feature selection are
helpful or even necessary for many data mining
tasks.

The remainer of the first part of this paper iden-
tifies advantages and some desired properties of
machine learning environments for our current re-
search and shows, that two of the most popu-
lar freely available machine learning environments
do not fully meet all of these requirements. In
the second part of this paper., we propose, YALE,
yet another learning environment, and describe
its underlying modular, 1.e. operator-based con-
cept. the realization of operator chains, and how
we try to meet the specified requirements. The
third part demonstrates how to describe the data

and an data mining operator chain for an exper-
iment. The fourth part of this paper shows how
the environment can be used to solve a practical
learning task in the field of chemical engineering
and provides a comparison of different operator
chains, reaching from simple learning chains to
complex operator chains combining different kinds
of pre-processing methods including feature selec-
tion and generation. In the last parts we give a
short summary of the current status and an out-
look on the most important planned extensions.

1.2 Usefulness and Desired Properties of
Machine Learning Environments

Many data mining tasks are solved best by not
just taking the raw data as it is and simply ap-
plying a single one-step machine learning method,
but by using a combination of data pre-processing
and machine learning methods. While such meth-
ods can be combined manually and/or by writting
special scripts whenever a new data mining task
arises, much less effort is required, if a flexible ma-
chine learning and data mining environment can

be used.

Such an environment should allow to easily spec-
ify and automatically execute data mining opera-
tor chains and to exchange operators in the chain
by alternative operators for the same (sub)task
and thereby support systematic comparisons and
evaluations of individual methods as well as com-
plex operator chains. For complex tasks and evalu-
tions, operator chains should be nestable. Section
3 provides an example application that requires
two nested cross-validations.

For the scalability and applicability of a learn-
ing environment, it should be able to read data
from files, main memory, or a database, which ever
seems to be most appropriate for the current task,
without making changes in the data mining oper-
ators necessary when changing the data source or
switching between keeping all or just one exam-
ple at a time in main memory. The latter may
be the preferable approach in case of very large
data sets. Ideally the source and the way of han-
dling the example set should be transparent to the
other operators in the data mining chain. For effi-
ciency reasons, a data mining enviroment should
not create copies of the data unless really neces-
sary for the task. To enhance the re-usability and
applicability to new tasks, the machine learning
environment should be easily extendable.

For our current research, a further requirement for
a learning environment is the support of feature
construction and selection methods, which often
play a central role in data mining.

1.3 Existing Environments

There already exists several machine learning and
data mining environments that provide a number
of methods from machine learning, statistics, and
pattern recognition. So one might wonder, why we
should come up with YALE, yet another learning
environment. This sections describes two of the
most popular existing non-commercial learning
environments and explains why they do not fully
meet our requirements. These two freely available
data mining enviroments are WEKA! (Waikato
Environment for Knowledge Analysis) [8], devel-
oped at University of Waikato, NZ, and MLC+42
[4], first developed at Stanford University, CA,
USA. and then extended by Silicon Graphics, Inc.
(SGT), CA, USA.

Weka is a collection of machine learning algo-
rithms implemented in Java. WEKA supports a
large number of learning schemes for classifica-
tion and regression (numeric prediction) like deci-
sion tree inducers, rule learners, support vector
machines, instance-based learners, naive Bayes,
multi-layer perceptrons etc. and basic evaluation
methods like cross-validation and bootstrapping
[1]. WEKA has some pre-processing algorithms
for the manipulation of attributes as well as three
basic feature selection schemes, namely the fea-
ture correlation based approach [2], a wrapper
approach [3] and a filter approach. Additionaly
WEKA provides meta classifiers like bagging and
boosting.

MLC++ is a library of C++ classes for super-
vised machine learning. It provides a number of
learning schemes similar to those used in WEKA.
Additionally wrappers around these basic induc-
ers like a discretization filter, a bagging wrapper
and a feature selection wrapper are provided.

Unfortunately neither of these two data min-
ing environments meets all of our requirements,
because for example both of them neither sup-
port the composition and analysis of complex op-
erator chains consisting of different nested pre-
processing, learning, and evaluation steps nor so-
phisticated feature generators for the introduc-
tion of new attributes. MLC++ supports operator
chains in a rather restrictive way. One can only
build wrappers around basic inducers (learning
schemes), but not around nested operator chains.
The same applies to WEKA, where nesting can
only be realized by numerous comand line calls,
by creating copies of (subsets of) the data set, and
manual data file management or by writting your

Ihttp://www.cs.waikato.ac.nz/ ml/weka/
’http://www.sgi.com/tech/mlc/

own experiment and data management program.
An additional shortcoming of WEKA is its lacking
scalability. It expects the example set to fit com-
pletely into main memory, which for many data
mining tasks is not possible, and it is very slow on
large data sets. For n-fold cross-validation WEKA
creates n copies of the original data set, only one
at a time, but still requiring the resources for the

copying.

2 Basic Concepts of YALE
2.1 Operators and Operator Chains

YALE is machine learning environment that allows
to describe and execute even complex data min-
ing operator chains and experiments in a relatively
simple way. Real-world data mining tasks are of-
ten solved by a sequence or combination of several
data pre-processing and machine learning meth-
ods. In YALE, each such method is considered an
operator.

A sequence of such operators is called an oper-
ator chain. An operator chain again is an op-
erator, both in the sense of a definition as well
as in the object-oriented programming sense. Op-
erators may enclose other operators or operator
chains and are then often refered to as wrappers.
Typical examples of wrappers are cross-validation
and feature selection wrappers (see e.g. [3]).

By enclosing other operators or operator chains,
operators and operator chains are arbitrarily
nestable, so that even complex experimental set-
ups can be build. For example a nested cross-
validation could be used to first optimize some
parameters of a data pre-propessing and learn-
ing chain (inner validation) and to then evaluate
the performance of the whole experimental set-up
(outer validation). Section 3.3 describes an exam-
ple of such a nested cross-validation experiment
for the task of generating and selecting a good
attribute set to solve a regression learning task.

But before turning to complex scenarios, let us
first consider the simple learning chain shown in
figure 1 to explain some basic concepts behind op-
erator chains in YALE. This small and a little bit
abstract operator chain uses a learner operator to
construct a classification or regresion model from
labeled examples. The examples are represented
by attribute value vectors. The specification of the
underlying attributes is the topic of section 3.3.
The model could for example be a set of rules or
a decision tree in the case of classification and a
regression function in the case of regression.

The example set and the learned model are passed
to a model applier operator, that employes the

model to predict labels for the examples. Finally.
an evaluator operator takes the examples and
compares their original labels with those predicted
by the model to compute one or several perfor-
mance measures, like e.g. classification error in the
case of classification or like e.g. relative error or
squarred absolute error in the case of regression.
The performance results are then passed on in a
vector.

Of course this learning chain is very simplified,
because evaluating a learned model on the train-
ing data does not provide a good estimation of
the true performance on previously unseen data,
but this simple operator chain is only meant to il-
lustrate different types of operators, how they are
connected, and what types of things are passed
between them.

2.2 Hierarchy and Exchangability of Op-
erators

The simple operator chain in figure 1 showed
rather abstract operator types like learner, model
applier. and evaluator than concrete operators like
e.g. a specific decision tree learner. The different
types of operators can be organized in a hier-
archy in the object-oriented programming sense
with the class Operator at its top and for ex-
ample OperatorChain, Learner, ModelApplier,
and Evaluator as some of its descendants and
with e.g. DecisionTreeLearner as a subclass of
Learner, which again has C45Learner, a C4.5 de-
cision tree learner [5], as a subclass.

Similarly, the things passed between operators can
be organized in a hierarchy. As already explained
in the previous section, among the things passed
between operators in an operator chain are at-
tribute sets, example sets, classification and re-
gressions models, example sets with additional la-
bels, and performance evaluation results. Each
operator receives an I0Container as input that
may contain some of these things and delivers an
I0Container with such objects. During its exe-
cution. an operator may modify, remove, or add
objects in the IOContainer before passing it to
the next operator in the operator chain. Some op-
erators may require certain objects to be present
in their input and guarantee others to be in their
output. For example a Learner requires a labeled
set of examples as input and generates a model, a
ModelApplier requires a model and a set of exam-
ples, for which it should predict the labels, and so
on. Objects that are present in the input of an op-
erator without being required are usually ignored
and passed on to the next operator. YALE veri-
fies that each operator receives its required inputs

Example-Set
Example-Set Model- | Example-Set Performance
—— | Learner : — | Evaluator |yogr
Model Applier
—
Figure 1 A small example operator chain for learning, applying, and evaluating a classification or

regression model (all on the same example set, which is of course not advisable for any real evaluation).

before executing an operator chain.

In order to support the comparison of differ-
ent operators and operator chains for the same
(sub)tasks, operators are easily ezchangable by
other operators. The only premise is, that the sub-
sequent operators in an operator chain, or more
general all operators that share a common inter-
face, have fitting input/output types.

2.3 Technical Issues

YALE has been implemented in Java for several
reasons. First of all, Java is an object-oriented
programming language, which makes it very well
suited for handling operator chains as should have
become obvious in the previous sections. Second,
Java is available for all major computer platforms,
which guarantees the portability of YALE. Another
plus for Java is its JavaDoc tool that supports the
documentation of the implemented classes by au-
tomatically generating a hyperlinked HTML doc-
umentation from the commentsin the source code.

Some of the operators in YALE are simply wrap-
pers for e.g. external learners and model appliers
like e.g. the decision tree learner C4.5 [5] or the
support vector machine implementation mySVM
[6], which both are the original implementations
by the authors in C and C++ respectively. Hence
a re-implementation for these methods was not
necessary and future updates can be incorpated
without additional effort, as long as the data and
command line formats of these externals programs
remain unchanged. Since the learning step often
is one of the most time consuming steps in a data
mining chain, and fast execution speed is not the
most distinct property of Java programs, exter-
nal C and C++ programs like the ones mentioned
may help to speed up the run times of experiments
performed with YALE.

3 Describing Operator Chains and
Experiments in YALE

Two types of text files are needed to set up ex-
periments in YALE. The data is described in an
attribute descriptions file (see section 3.1) and the

experiment is specified in a configuration file con-
taining a description of the employed data mining
operator chain (see section 3.3). Both types of files
use an XML format, because XML is well struc-
tured, easily human- as well as machine-readable.

Two additional types of files are needed to execute
an experiment. One file type contains the exam-
ples (attribute values file) and the other contains
the labels of the examples for a particular classifi-
cation or regression task (label file). These two file
types are also described in section 3.1.3

3.1 Describing the Data

YALE can process data sets that can be described
in a single table, i.e. in an attribute-value vector
format. in which each example is described by an
attribute-value vector of equal fixed length.* Fig-
ure 2 shows a description of a simple attribute set
in XML format. an attribute descriptions file. Ex-
amples based on the attribute set described here
contain a value series of 500 numeric values, e.g. a
time series, and a numeric label y, e.g. a function
value for a regression task or a class label.

Each attribute is identified by its index, no, in the
attribute vector and described by an <attribute
... /> block in the attribute descriptions file.
The name of the attribute can be arbitrarily cho-
sen. The examples in an examples set may have
no, one, or several labels, each of which 1s de-
scribed by a <label ... /> blockin the attribute
descriptions file.

While the valuetype of an attribute (or la-
bel) specifies the data type of the individual
attribute, the blocktype contains some meta-
data about the attribute, e.g. if it is just an
individual attribute or an interval boundary or
part of a time series. For the valuetype and
the blocktype, there exist two ontologies de-
scribing the hierarchical is-more-general-than- /is-
superset-of-relation relation between the differ-

3In a later version of YALE, these two latter file types
are planned to be readable from a database, alternatively.

4YaLEcannot handle multi-relational data, which
MLC+44 and WEKA cannot handle either.

<attributeset>
<label no="0" name="y"
<attribute no="1-498" name="x"
<attribute no='"499" name="x_end"
</attributeset>

valuetype='numeric"/>
<attribute no="0" name="x_start" valuetype='"numeric" blocktype='value_series_start' blocknumber="1"/>
valuetype="numeric" blocktype='"value_series"

valuetype=''numeric" blocktype=''value_series_end"

blocknumber="1"/>
blocknumber="1"/>

Figure 2 Description of a simple attribute set in XML format. Examples based on the described attribute
set contain a time series of numeric 501 values and a numeric label (e.g. function value).

ent types. The valuetype can for example be
nominal or ordered, where ordered has the
subtype numeric, which again has the subtypes
integer and real. The blocktype can for exam-
ple be single value or interval. In the latter
case, the attribute is the boundary of an inter-
val and there has to be a second attribute with
a neighboring index with the same blocktype,
which describes the other boundary of the inter-
val. If the block is a value series, e.g. a time se-
ries or a series of function values, there are three
blocktypes to describe the first, the last, and
any element in between: value_series start,
value series end. and value series, respec-
tively.

The blocknumber can for example be used to de-
termine, which attributes belong to the same value
series or which pair of attributes forms an inter-
val. This way, an example may be described by
several blocks of the same and/or different types
without loosing track which attributes belong to
the same block. The attribute set described in fig-
ure 2 contains only one value series (block) and
hence all elements of that series have the same
block number.

The information about the types and blocktypes
of attributes is useful for feature generators, which
can verify the types and blocktypes of attributes
to check their applicability. A generator extract-
ing the maximum value of a time series can for ex-
ample restrict its application to all value serieses
in the attribute value vector of an example and
generate the maximum for each such series sep-
arately while ignoring for example all individual
attributes and intervall attributes.

To each attribute, a construction description
can be added, which explains how a newly gener-
ated attribute has been generated. If for example
a new attribute z has been generated from the al-
ready existing attributes a;, a;, and aj using the
definition := a; — a;/a; for the computation
of its values, this definition can be stored as con-
struction description. So, if automatic feature gen-
eration and selection methods are used, their re-
sulting optimized feature sets are human-readable

and understandable.

3.2 Handling the Data

For almost all operators in YALE it is transparent,
whether the examples are read in from a text file,
from main memory or (as planned as an option
later) from a database, and whether only one or
all examples are kept in main memory at a time.
They only use an internal structure to iterate over
the instances in an example set and hence do not
need to distinguish between the different possi-
ble data sources and ways of managing the data.
The source and way of handling the data depends
only on the chosen example source operator and
its parametrization.

If the examples are read from a text file, 1.e. an at-
tribute values file, each line of the file correspondes
to one example and the attribute values of one ex-
ample are separated by one or several white-space
characters (or some other user-defined separating
character(s)) within the corresponding line of the
file. The labels of the examples for a particular
classification or regression task are stored in a sep-
arate file, a labels file. Depending on the learning
task(s) at hand, there may be several labels files
for the same data set. The label(s) of an example
are stored in the same line in the labels file(s) as
the attribute values of the example in the corre-
sponding attribute values file.

3.3 Describing Operator Chains and Ex-
periments

This section describes an example of a complex
experimental set-up with nested cross-validations
for the task of generating and selecting a good at-
tribute set to solve an exemplary regression learn-
ing task (figure 4) and how it is represented in
YALE in a configuration file in XML format (fig-
ure 5).

The learning task considered here is the regression
task already mentioned in the abstract of this pa-
per. Given the chromatogram curve of a chemical,
i.e. a time series with concentrations of the chemi-
cal measured at different points of time at the end
of a column the chemical is sent through, a prop-

Concentration

Maximum

Turning-
Point 1 Turning-

‘Point 2

Figure 3 A chromatogram as a time series and
some of its characteristic points.

Original
Data Feature Generation
—_—
;
Generated Cross Validation (for Genetic Algorithm)
Features
—_—
ggi?ing Genetic Algorithnm Wrapper
Training Set i.j
SVMLearner
Model
Model Test Set i
SVMApplier
Classified
Test Seti.j
Evaluation
Evaluatlonl lAttrlbuteSet i
Attribute Seti
Training Set i SVMLearner
Model
Model Attribute Seti
Test Seti SVMApplier
Average Classified
Evaluation Test Seti
-~ Evaluator
Attribute X
Sets Evaluation

Figure 4 Nested operator chain for feature gen-
eration and selection.

Time

<operator name='"global" class="OperatorChain'>

<!'-- Parameters for all SVM learners & appliers -->
<parameter key='"kernel_type" value='"radial"/>
value="1"/>

<parameter key='"complexity" value=''1000"/>
value="0.1"/>

<parameter key='gamma"

<parameter key=''epsilon"

<operator name="DataSource"
class="EzxampleSource">
<parameter key='"attribute_descriptions"
value="attribute_descriptions.xml"/>
<parameter key=''attribute_values"
value="attribute_values.txt'/>
<parameter key='"labels'" value='"labels.txt"/>
</operator>

<operator name='"InitialFeatureGenerator"
class="Feature Generator">
<parameter key=''function_characteristica"
value="true"/>
</operator>

<operator name="QuterValidation"
class="Cross Validation">
<parameter key="number_of_folds" value="4"/>

<operator name="GA' class="GeneticAlgorithm'">
<{parameter key="'optimization_direction'
value="minimize" />
<parameter key='"maximum_number_of_generations"
value="200"/>
<parameter key=''generations_without_improvement"
value="10"/>
<parameter key=''population_size" value="20"/>
<{parameter key=''crossover_type'
value="uniform"/>
value="0.5"/>
value="0.01"/>
value="0.5"/>

<parameter key='"p_initialize"
<parameter key="p_mutation'
<parameter key='"p_crossover"

<operator name='"InnerValidation'
class="Cross Validation">
<parameter key='number_of_folds' value="4"/>

<operator name="GA_SVMLearner"
class="SVMLearner'>

<operator name="GA_ApplierChain"
class="OperatorChain">
<operator name="GA_SVMApplier"
class="SVMApplier">
<operator name="GA _Evaluator"
class="PerformanceEvaluator'>
<parameter key=''performance_measures'
value="absolute_error"/>
</operator>
</operator>
</operator>
</operator>

<operator name="Learner" class="SVMLearner'">

<operator name="ApplierChain"
class="OperatorChain">
<operator name="Applier" class="SVMApplier'>
<operator name="ExperimentEvaluator"
class="Performance Evaluator">
<parameter key='"performance_measures"
value="absolute_error
squared_error"/>

</operator>

</operator>

</operator>
</operator>

=

Figure 5 Nested operator chain for feature gen-
eration and selection described in XML for YALE.

erty of the chemical is to be predicted in the form
of a specific numerical constant.

Since the sensor readings may be noisy and per-
haps slightly shifted along the time axis between
different measurements, the individual attribute
in the time series of an example, i.e. the concen-
tration measured at one individual point of time,
is not very reliable. The construction of more ro-
bust features may significantly improve the result
of the learning step. Therefore, in the operator
chain depicted in figure 4 the original data is pre-
processed by a feature generator adding more ro-
bust attributes to the example description. These
new features include the position (time point) and
the value (concentration) of the maximum of the
chromatogram, the positions and values of the two
turning points left and right of the maximum, and
several distances and ratios computed from these
function characteristics (see figure 3).

Since it is not obvious, which of the new and
which of the original attributes are really help-
ful in solving the learning task, a feature selection
step is performed to select an attribute set that
is well-suited for the learning task. Here a feature
selection wrapper based on a genetic algorithm,
a probabilistically guided search heuristic, selects
an appropriate attribute set, because a complete
search of the space of all possible subsets of the
attribute set would produce an infeasably large
number of candidate attribute sets to be tested.
Each candidate attribute (sub)set is evaluated by
training a regression SVM on a subset of the ex-
amples available and testing its performance on
the remainder of the available examples. To do
this, the genetic algorithm operator includes two
operator chains, a learning chain containing an
SVM learner and an evaluation chain containing
an SVM model applier and a performance eval-
uator, which computes for example the absolute
error of the predictions of the SVM model on the
evaluation examples.

If the genetic algorithm fulfills its termination
criterion, e.g. a maximum number of iterations,
it delivers its best attribute (sub)set found to
an SVM learner that induces the final regression
model, which is then evaluated by another evalu-
ation chain containing an SVM applier and a pre-
formance evaluator. This final evaluation deter-
mines, how well the combination of the genetic al-
gorithm for the feature selection and the SVM for
the regression task performs. In order to achieve
a good estimation of this performance, a n-fold
cross-validation wrapper repeats this feature se-
lection and regression learning n times and aver-

ages the results of this n runs. This outer cross-
validation is named “Cross Validation (for Genetic
Algorithm)” in figure 4.

The outer cross-validation wrapper randomly
splits the original data set into n equally sized
parts. For each run, the i-th part is kept as a test
set, while the remaining n — 1 parts, “Training
Set i”, are passed to the genetic algorithm and
the subsequent final SVM learner, whose learned
model is then evaluated with the ¢-th part of the
data set, “Test Set i”. The performance is evalu-
ated on the hold out test set to avoid an overly
positive bias of the performance evaluation that
would occur, if the regression model was evalu-
ated with the same data that is was trained on.

Since the “Genetic Algorithm Wrapper” for fea-
ture selection estimates the performance of each
candidate attribute set that it considers, it should
also avoid such a bias. Hence this wrapper em-
ployes an wnner cross-validation to estimate the
performance of the SVM on the current candidate
attribute set more robustly.® It splits the “Train-
ing Set 1”7 into m folds and holds out the j-th part
of this split in the j-th run of this inner cross-
validation, so that the inner training is performed
on the remainder of “Training Set 17, i.e. “Train-
ing Set 1.)”, and the validation is performed using
the j-th part, i.e. “Test Set 1.3”.

The complete experiment now consists of
two nested cross-validations. The inner cross-
validation trains a model on the training data
“Train Set 1.)” and optimizes the choice of an
attribute set using the disjunct evaluation data
“Test Set 1.J” to avoid a bias in the selection of the
attribute set. The union of these two inner data
sets, 1.e. “Irain Set i”, becomes the training set for
the final model in the outer cross-validation, which
evaluates the final model on the disjunct test data
“Test Set 1”. For a reliable performance estimation
of the complete operator chain for feature selec-
tion and regression learning, the training, evalua-
tion, and test data sets need to be disjunct, which
is guaranteed here by the nested cross-validations.

After illustrating the experimental set-up with
figure 4 let us now take a closer look figure 5
at how this experimental set-up can be speficied
in an XML file in YALE. Each operator instance
is enclosed in a <operator ...>...</operator>
block specifying the operator class this instance
belongs to, its individual name, and optionally
some parameters. The outer most operator always

5This inner cross-validation is not explicitly shown here,
but only implicitly by the indexing of the training and test
sets.

is an OperatorChain named global enclosing the
entire experiment.

The first operator inside the global chain is
an data source, i.e. a ExampleSource opera-
tor, reading the attribute descriptions from the
XML file attribute descriptions.xml, the at-
tribute value vectors of the examples from the
file attribute_values.txt, and the labels of the
examples from the file labels.txt. The second
operator is the initial feature generator extend-
ing the examples with the function characteristica
described above. The third operator is the outer
cross-validation enclosing the genetic algorithm
for the feature selection, the final SVM learner,
and the final SVM applier and experiment per-
formance evaluator, which computes the absolute
and the squarred error results, that are then av-
eraged by the outer cross-validation.

The genetic algorithm contains the inner cross-
validation chain just as described above. In addi-
tion it contains some parameter definitions setting
the optimization direction to the minimization of
the result returned by the peformance evaluation
in the inner cross-validation, here the average ab-
solute error, limiting the maximum number of it-
erations without improvement and in total, spec-
ifying the population size and some genetic oper-
ator application probabilitie, etc..

Since any SVM model should be applied with
the same parameters that it was learned with,
the SVM parameters are specified only once here
and moved to the top of the configuration file. If
a parameter is not specified within an operator
instance, YALE uses a parent look-up mechanism
checking the enclosing operator instances for such
a specification.

Obviously the transfer from the experiment de-
sign (figure 4) to the YALE configuration file (5)
was quite straight forward and the resulting XML
description is still quite readable considering the
complexity of the experiment.

4 Example Application

The example application already shortly intro-
duced 1n the abstract and in section 3. the re-
gression learning task from chromatography time
series data, was used for feature generation and se-
lection experiments in this domain. Chromatogra-
phy is used in chemical industry to separate tem-
perature sensitive substances. A mixture of com-
ponents is injected for a certain amount of time
into a column filled with porous particles. Due to
the different adsorption strength of the substances
on the porous particles, the components have var-

ious velocities in the column and reach its end at
different times, where they can be separated. The
learning task considered here is to predict one of
two characteristic constants of a substance given
its chromatogram time series. These two constants
are called Henry and Langmuir. The data sets con-
tained 200 examples with 500 attributes each (500
equidistant time points of the chromatogram time
series). The labels for parameter Henry were real
numbers between 1 and 10 and the labels for pa-
rameter Langmuir were real numbers ranging from

1 to 100.

Based on the structure of the overall learning task
described in the previous section, we compared
the performance of a number of different learning
chains. Table 1 shows the results of the accom-
plished experiments. The learner, that was used
througout the following experiments was a regres-
sion SVM (see [7], [6]). We chose a radial-basis
kernel with a gamma value of 1, a complexity
value of 1000 and an espilon value of 0.1. The
evaluation of the learning performance was done
using absolute error and standard deviation com-
paring predicted and real parameter values (for
Henry and Langmuir). In the first experiment we
simply used the original (time series) features to
learn and evaluate a SVM model without any pre-
processing step - the corresponding learning chain
(comprising learner, model applier and evalua-
tor) was enclosed by a four-fold cross-validation.
The second chain additionaly contained an, al-
ready mentioned, pre-processing (feature genera-
tion) operator, that generated numeric character-
istics from the initial time series. This operator
significantly reduced the given attribute/feature
space from formely 500 to finally six features (see
figure 3). For the next three chains we used dif-
ferent feature selection wrappers (namely forward
selection, backward elimination and a genetic al-
gorithm) that further reduced the set of possible
attributes/features by selecting only the relevant
features. The applied genetic algorithm uses a bit-
string representation, i.e. an attribute set contain-
ing n attributes is represented by a single indi-
vidual (a bitstring) of length n, whereas a sin-
gle bit in the bitstring indicates that the corre-
sponding attribute is selected (value 1) resp. de-
selected (value 0). The setting is that of a stan-
dard GA, using 200 generations, a population size
of 20 individuals, a mutation probability of 0.01,
a crossover probability of 0.5, fitness proportional
selection and uniform crossover. The feature se-
lection wrappers again are enclosed by an outer
and an inner four-fold cross-validation.

The first experiment acted as a baseline for the

Operator chain Absolute error (std. dev.) | Absolute error (std. deu.)
for Henry constant for Langmuir constant
Original data 2.067 (0.299) 24.125 (2.970)
Feature generation 0.167 (0.044) 3.078 (0.9204)
Feature generation & forward selection 0.057 (0.0016) 1.348 (0.3312)
Feature generation & backward elimination 0.056 (0.0557) 0.997 (0.1459)
Feature generation & genetic algorithm 0.054 (0.0021) 1.037 (0.0331)

Table 1 Absolute error and standard deviation for the target values Henry constant and Langmuir
constant for operator chains with and without feature generation and selection.

evaluation of more sophisticated operator chains
and showed, as expected, that using only the orig-
inal attributes results in a poor performance. Gen-
erating characteric and more robust (time series)
features significantly improved the overall perfor-
mance. In case of parameter Henry, the usage of
the generated feature set lead to a reduction in the
absolute error of 92%. In case of parameter Lang-
muir, the reduction amounted to 87%. A further
improvement in the learning performance could
be achieved by applying an operator chain that
included an additional feature selection wrapper
past the feature generation operator. Compared
to the result using only a feature generator the
error amounted to about 30% of the former error
for parameter Henry and to about 40% for param-
eter Langmuir.

5 Conclusions and Outlook

We proposed YALE as machine learning environ-
ment that allows to easily describe even complex
nested data mining operator chains and demon-
strated its applicapility to an exemplary feature
generation and selection application. The real-
ization of the complex experimental set-up was
straight forward and the exchange and comparison
of different operator chains were not much of an
additional effort. The experimental results showed
significant improvements through the generation
and selection of characteristic, robust features.

For the future, we plan to add a database inter-
face to YALEto alternatively read the examples
from a database. Furthermore we intent to im-
plement an interface to WEKA to make use of
its large number of learning methods and pre-
processing operators, which seems more sensible
than re-implementing them. We also plan to im-
plement further data pre-processing operators.

6 Acknowledgments

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG), Collaborative
Research Center on Computational Intelligence
(SFB 531) at University of Dortmund.

References

1. B. Efron and R. Tibshirani. An introduction to the
bootstrap. Chapman & Hall, New York, USA, 1993.

2. M.A. Hall. Correlation-based feature selection for
machine learning. Dissertation, Department of
Computer Science, University of Waikato, Hamil-
ton, New Zealand, 1999.

3. Ron Kohavi and G.H. John. Wrappers for fea-
ture subset selection. Artificial Intelligence Jour-
nal, Special Issue on Relevance, 97(1-2):273-324,
1997.

4. Ron Kohavi, Dan Sommerfield, and James
Dougherty. Data mining using MLC+4: A ma-
chine learning library in C++. In Tools with Ar-
tificial Intelligence, pages 234-245, Los Alamitos,
CA, USA, 1996. IEEE Computer Society Press.
http://www.sgi.com/tech/mlc/.

5. John Ross Quinlan. C4.5: Programs for Machine
Learning. Machine Learning. Morgan Kaufmann,
San Mateo, CA, USA, 1993.

6. Stefan Riiping.
mySVM Manual. Universitat Dortmund, Lehr-
stuhl Informatik VIII, 2000. http://www-ai.cs.uni-
dortmund.de/SOFTWARE/MYSVM/.

7. Vladimir N. Vapnik. Statistical Learning Theory.
Wiley, Chichester, UK, 1998.

8. lan H. Witten and Eibe Frank. Data mining: Prac-
tical machine learning tools and techniques with
Java tmplementations.
Morgan Kaufman, San Francisco, CA, USA, 2000.
http://www.cs.waikato.ac.nz/ nl/weka/.

