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Abstract. Time seriesanalysisis animportantandcomplex problemin machinelearningandstatistics.Real-world
applicationscanconsistof very largeandhigh dimensionaltime seriesdata.SupportVectorMachines(SVMs) are
a populartool for theanalysisof suchdatasets.This paperpresentssomeSVM kernelfunctionsanddisussestheir
relative merits,dependingon thetypeof datathatis used.
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1 Intr oduction

Time is a phenomenonwhich is both very complex
andvery importantin many real-world problems.Its
importancecomesfrom thefactthatalmosteverykind
of data containstime-dependentinformation, either
explicitly in the form of time stampsor implicitly in
the way that the datais collectedfrom a processthat
varieswith time (e. g. a machinethat is gettingworn
out, salesthat are influencedby changingtastesor
changingcontentsof websites).A reasonfor its com-
plexity is that time canbe representedin a multitude
of differentrepresentations.As always,an effect that
is obvious in one representationmay be very much
hiddenin anotherrepresentation.In [8] Morik gives
a discussionof differentrepresentationsandlearning
tasksfor time phenomena.

Of all thepossiblerepresentationof time, time series,
i. e. the representationof a time dependentobserva-
tion ��� at (usuallyequidistant)time points

�
astuples� ��� ���
	 , arethemostcommon.This is thecasebecause

it is theeasiestway to aquiretimedependentdata- all
you needto have to gatherthe datais a clock. Also,
therearemany statisticalalgorithmsthat canbeused
on numericaltime seriesdata,e.g. ARIMA modeling
or Fouriertransforms.

Oneof themainproblemsof time seriesanalysis,the
forecastingof time series,can be very easily stated
as a pure numericalproblem: Split the time series��� ��
�
�
�� ��� into windows

� ��� ��
�
�
�� ������������	 of size
k. Then find a function �����! #" � such that� � ��� ��
�
�
�� ���$�%���&��	(')���$�%� for every *,+.-�/ �103254�6

.
Other learning tasks,such as classificationor simi-
larity computationof time seriescanalsobe formu-

lated as purely numericalproblems.SupportVector
Machines(SVMs, seesection2) have beensuccess-
fully appliedfor this kind of learningtasks([10], [9],
[5]).

So if we have a purelynumericalproblemandpurely
numericaldata,whatis theproblemwith a purelynu-
merical algorithm?The reasonis that the real-world
process,which liesbehindthedata,in generalwill not
bethis simple.

Seethefollowing example:Supposewe aregiventhe
weekly salesof candlesin somestoreand we want
to use machinelearning to predict how many can-
dleswill be sold next week.Obviously, therewill be
an extremely high peak of salesat Christmastime.
Theusual(numerical)solutionwouldbeto noticethat
thereis a cycle of oneyear in the data,so onecould
try to usethesalesof oneyearagoto predictthenext
sales- but asthe datais given per week,therecould
be51 or 52 weeksbetweentwo Christmas’s, depend-
ing on theactualdate.Theproblemgetsmuchworse
for easterinsteadof Christmas,becausethedateof the
easterholidayscanvaryaboutsix weeks.

As anotherexample,think of the problemof analyz-
ing datain intensive caremedicine.A time seriesin
this field, for examplesomeblood pressure,is char-
acterizedby high variation, which is due to normal
physiologicaleffectsandsmall variationsin the sen-
sors.Suchatimeseriesmayexhibit threedifferentbe-
haviors: It could be stable,which in this casemeans
that thevariationis not too high, it couldhave oneor
severaloutliers,i. e.observationthatlie outof thenor-
mal variationbut which arenot significantof thestate
of thepatient(e.g. measurementerrors)or it maybea



significantchangein thetime series,i. e. thestructure
of the time seriesitself changes.To decidewhich of
thethreecasesa givenobservationbelongsto, is very
complicatedandmaydependonmany facts,including
veryhigh level medicalreasoning.

As we see,thereis alwaysa gapbetweennumerical
analysisandhigh-level,symbolicreasoningthatneeds
to be bridged.To incorporatehigher level reasoning
and backgroundknowledgeinto the analysisof nu-
mericaltimeseriestherearetwo possibleways:

1. Bring thedatato thehigh-level reasoning:Trans-
form the time seriesinto a representationmore
suitablefor higherlevel reasoning,e.g.discretize
thetime seriesandapplysomelogical modeling.

2. Bring the high-level reasoning to the data:
Choosethe hypothesisspaceand transformthe
datafor thenumericallearnerin sucha way, that
resultsthat aremeaningfulin someway canbe
foundandarepreferred.For examples,do some
higher level analysisof the dataandusethe re-
sultsasadditionalfeaturesfor the numericalal-
gorithm, like flagsfor the occurrenceof special
holidaysin thesalesdata,or choosea hypothesis
spacethatcorrespondsto ameaningfulmodel.

This paperdealswith the secondapproach.In the
context of SupportVectorMachines,kernelfunctions
(whichdefinethehypothesisspace)arediscussedthat
canbeinterpretedassomekind of time seriesmodel.
Experimentsare madeto discover if thesedifferent
modelassumptionshaveeffectsin practiceandif there
exist kernelfunctionsthatallow time seriesdatato be
processedwith SupportVectorMachineswithout in-
tensivepreprocessing.

Theremainderof thispaperis organizedasfollows:In
thenext section,ashortintroductionto SupportVector
Machineswill begiven.Section3 presentssomeker-
nel functionanddiscussesthe ideasabouttime series
that lies behindthem. In Section4, experimentsare
madeto seehow thesekernelsperformon real-world
data.

2 Support Vector Machines

SupportVector Machines(SVMs) are basedon the
work of Vladimir Vapnik in statisticallearning the-
ory [15]. Statistical learning theory deals with the
question,how a function � from a classof functions� �87 	 7:9<; can be found, that minimizesthe expected
risk =?> ��@ 'BACAED �GF � � � ��	H	JILK �GF&M ��	JILK � ��	 (1)

with respectto a loss function D , whenthe distribu-
tions of the examples K � ��	 and their classificationsK �GF&M ��	 areunknown and have to be estimatedfrom
finitely many examples

� ��� � F �N	
� 98O .
TheSVM algorithmsolvesthis problemby minimiz-
ing theregularizedrisk

=
reg
> ��@ , whichis theweighted

sumof theempiricalrisk
=

emp
> ��@ with respectto the

data
� ��� � F �N	
��PQ�SRTRTR U anda complexity term

M$M VWM�M X
=

reg
> ��@ ' = emp

> ��@ZY\[ M�M V]M$M X 

In their basicformulation,SVMs find a linear deci-
sion function

F ' � � ��	]' sign
�^V`_ � Yba 	 that both

minimizesthepredictionerroron thetrainingsetand
promisesthe bestgeneralizationperformance.Given
the examples

� ��� � F �c	 ��
�
�
&� � ��U � F U:	 this is done by
solvingthefollowing optimizationproblem:

d �GV �HeZ�
e � 	f' gh �^VjiQV 	 Ylk Um ��P&n e � (2)

" o?p$q
subjecttoF � �^V i ��� Yla 	sr g 2te � � * ' g ��
�
�
��
u (3)e �wv / � * ' g ��
�
�
��
u (4)

Thehyperplanevector
V

hasarepresentationin terms
of the training examples

� ��� � F �N	
� 98O and their La-
grangianmultipliers

�Nx �y	J� 98O , that arecalculateddur-
ing theoptimizationprocess:V ' m � 98O x � F � � � 

3 Kernel Functions

Oneof themajortricks of SVM learningis theuseof
kernelfunctionsto extendthe classof decisionfunc-
tions to the non-linearcase.This is done by map-
ping the data from the input space z into a high-
dimensionalfeaturespace{ by a function| �8z}"~{
andsolvingthelinearlearningproblemin { . Theac-
tual function

|
doesnot needto beknown, it suffices

to have a kernelfunction
4

which calculatestheinner
productin thefeaturespace.4 � � � F 	(' | � ��	 _ | �^F 	
It was noticedby Scḧolkopf in [14] that the kernel
function definesa distancemeasureI on the input
spacebyI X � � � F 	�' � | � ��	 2 | �^F 	H	 X (5)' 4 � � � ��	 2 h 4 � � � F 	 Y 4 �^F � F 	 
 (6)
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Figure1 AR[1] timeseries.

This shows the kernel function
4 � � � F 	 can be inter-

pretedasa measureof similarity betweenthe exam-
ples � and

F
.

3.1 Linear kernel

The linear kernel
4 � � � F 	]'�� _<F is the mostsimple

kernelfunction.Thedecisionfunction takesthe form� � ��	�' V)_ � Y�a . Whenoneusesthelinearkernelto
predicttime series,i. e. � i ' � � � i �&� ��
�
�
�� � i ���<	�'� �� P�� V � � i � � Y�a , thismeanstheresultingmodelis an
statisticalautoregressivemodelof theorderk (AR[k]).

With this kernel,time seriesaretakento besimilar, if
they aregeneratedby thesameAR-model.

3.2 RBF kernels

Radial basis kernels take the form
4<� � � � F 	�'�c�Z� � 2�� M$M � 2 F&M�M X 	 . clearly, the similarity of two ex-

amplesis simply judgedby their euclidiandistance.

In termsof time series,this hasa parallel in the so-
called phasespacerepresentation.Assumethe time
seriesis generatedby a function � suchthat � i '� � � i ��� ��
�
�
�� � i ���<	 . If one takes the time series��� ��
�
�
�� ��� ��
�
�
%� ��� andplotsthe

� 4 Y g 	 -dimensional
vectors

� � � � � � �Q� ��
�
�
�� � � �%��	 , the resulting plot is a
part of the graphof g, so the function g canbe esti-
matedfrom thetimeseries(seeFigures1 and2).

Especially, assumingthat the function � is linearand
thedatais generatedby � i ' � � � i ��� ��
�
�
�� � i ���<	 Y��
where� is aGaussiannoise(i. e.thetimeseriesmodel
is AR[1]), it canbeshown thatmostof thedatalies in
anellipsoiddefinedby themeanof thetimeseriesand
thevarianceof � . In [1] this is usedin thephasespace
procedurefor findingoutliersin thetimeseries.

Thisshowsthatinformationaboutawindow of a time
seriescanbe gottenfrom otherwindows of the time
seriesthat aresimilar in meansof the euclidiandis-
tance,whichmakestheRBFkernelpromisingfor time

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

Figure2 Phasespaceembeddingof thetimeseriesin
Figure1.
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Figure3 Fouriertransformof thetimeseriesin Figure
1.

seriesanalysis.

3.3 Fourier Kernel

A commontransformationfor theanalysisof time se-
ries datais to usethe Fourier transform(seeFigure
3). This representationis useful if the informationof
the time seriesdoesnot lie in the individual valuesat
eachtimepointbut in thefrequency of someevents.It
wasnotedby Vapnik[15] thattheinnerproductof the
Fourier expansionof two time seriescanbe directly
calculatedby theregularizedkernelfunction

4�� � � � F 	(' g 2.� Xh � g 2 h ������� � � 2 F 	H	 Y � X 

3.4 SubsequenceKernels

As mentionedin Section1, time dependentprocesses
may not show themselvesby certaineventshappen-
ing at a fixed time-point, but by a certainsequence
of events,independentof theactualtime. In between
this events,outliersor randomobservationsmay oc-
cur. Therefore,many algorithmsfor finding similar
time seriesdo not considerthe whole time seriesbut
look for informativesubsequences([2], [4]).



A subsequencekernelfor discretesequenceswasused
for text classificationin [7]. However, thecalculation
of this kerneldependson the discretenessof the se-
quences,soit is not applicableto real-valuedtime se-
ries.

In section3.2,radialbasiskernelswereusedfor time
seriesanalysison thebasisthatsimilar time series(in
meansof theeuclidiandistance)shouldhavethesame
properties.Basedon the observation that time series
canbe viewed assimilar if they have similar subse-
quences,amatchingkernelfunctioncanbedefinedas4��J���y�J�
� � � � F 	(' m�J�<� ����� � �¡ �¢ �  �£ 	 �
where

  ¢
and

  £
aresubsequencesof � and

F
of afixed

size.As eachsubsequence-partof the kernelwill be
closeto zerofor all non-matchingsubsequences,the
kerneleffectively is definedononly thematchingsub-
sequencesof thetime series.

As thereare ¤ U ��¥ X pairs
�N  ¢ �   £ 	 of lengthk in a time

seriesof lengthn, for practicalpurposesonehasto re-
strict thesetof subsequencesthatareused.A possible
solutionis to useonly connectedsubsequences,to use
only subsequenceswith thesameindex setfor x andy
or to restrictk in someway. In theexperimentsin this
paper, only

4 ' u¦2 g wasused.

3.5 PHMM Kernels

Onecantake theideaof subsequencesasafitting rep-
resentationof time seriesa bit further. The idea be-
hind the subsequencerepresentationis that thereis a
processhiddenbehindthedata,whichcanonly beob-
servedat certaintime pointsandis inactive or hidden
behindnoisetheothertimes.

HiddenMarkov Models [11] offer a model in which
theseassumptionsareexplicitly modeled.In aHidden
Markov Model, theoutputis assumedto begenerated
by a process,which is in oneof finitely many statesat
eachtime. At every step,theprocessjumpsfrom one
stateto thenext statewith a giventransitionprobabil-
ity, which is only dependenton the states.The state
sequenceitself cannotbe observed,all that is known
aretheoutputsthataregeneratedby theprocessby a
certainprobabilitydependenton thestate.For a given
Hidden Markov Models and a sequenceof observa-
tions, the probability that this sequenceis generated
by themodelcanbecalculated.

Pair Hidden Markov Models (PHMMs) are Markov
Models,which generatetwo outputsequencessimul-
taneously. At eachstate,eitheran outputfor the first
sequence,anoutputfor thesecondsequenceor acom-
monoutputfor bothsequencesis generated.Probabil-
ity estimationfor PHMMs canbe efficiently donein

SS S01 11 10

Figure4 The PHMM used.Thick lines depicthigh
transitionprobabilities.
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Figure5 An exampleoutputsequencefor a PHMM
andcorrespondingstatesequence.

time § �N �X 4 X 	 , where
 

is the numberof statesof the
PHMM and

4
is the lengthof theexamplesequences

(see[3]).

PHMMs for discretevaluedserieshave beenapplied
asSVM kernelsin [16], whereit hasbeenshown that
the joint probabilitiesof pairs of sequencesdefined
by PHMMs indeeddefinesa properkernel function.
The extensionto real valuedsequencesis very easily
doneby replacingthediscreteprobabilitiesby contin-
uousprobabilitydensities,a standardtrick for Hidden
Markov Models.Similar work canbefoundin [6].

In the experimentsin this paper, the very simple
PHMM shown in Figure4 hasbeenused.ThePHMM
consistsonly of three states.In state

  �H� an output� � � F 	 for bothsequencesis generatedsuchthat � 2 F
is normally distributed.In state

  �Jn (
  nc� ) only a out-

put for thefirst (second)sequenceis generated.In all
states,thetransitionprobability to state

  �1� is [ (usu-
ally near1) andtheprobability for a transitionto any
otherstateis

� g 2 [ 	1¨ h . Informally speaking,theidea
behindthis model is that two similar sequencesusu-
ally shouldlook thesame,just thatoncein a while an
extra outputis generatedin oneof thesequences(see
Figure5).

It is also possible to learn the parametersof the
PHMM (i. e. the transitionand the output probabil-
ities) from the databy the useof a modified Baum-
Welchalgorithm([11], [3]). Theproblemis how to se-
lect theexamplesfor learning:As thePHMM should
assignhighprobabilitiesto similar timeseriesandlow
probabilitiesto dissimilarones,it mustbe trainedon
similar time series,so they have to be known before-
hand. A possiblesolution could be to estimatethe
PHMM parameterson positive examplesalonein the
caseof classificationor to manuallyselectsimilartime



series.But of coursethis caneasily leadto a skewed
samplingof examplesandhenceto a badparameter
estimation.Becauseof thisproblems,noparameteres-
timationfrom datawasdonein theexperimentsof this
paper.

3.6 Extensionto Multi variate Time Series

Until now, the focus has only been on univari-
ate time series. But how can multivariate series� �%© �
ª� ��
�
�
�� �%©$« ª� 	 ��
�
�
&� � �&© �
ªi ��
�
�
�� �&©$« ªi 	 bedealtwith?

Thereis a simpletrick thatworkson every case:The
classof kernelfunctionsis closedunderadditionand
multiplication,so we canalwaysbuild a multivariate
modelby additionor multiplicationof univariatetime
seriesmodels.Thismodelassumesthatthereis no in-
teractionbetweenthesingletimeseries�%© ��ª� ��
�
�
&� �%© �$ªi .

For somekernels,therearealsomorecomplex ways
to dealwith this modelingproblem.The RBF kernel� � � � F 	¦' ���¬� � 2�� M$M � 2 F&M$M X 	 , for example,can be
useddirectly with � and

F
representingthemultivari-

ate time serieswindows. This model assumesa full
interactionbetweenthesingletime seriesandoverall
time points in the window, which may as easily be
wrongastheassumptionof no interaction.In particu-
lar, asingleoutlier in onetimeseriesononetimepoint
will influencethewholeexample.

A similar approachcan be usedin the subsequence
kernel.As well aslooking for matchingsubsequences
in thesingletimeseries,onecanalsosearchmatching
subsequencesof thewholetime series.As well asfor
the RBF kernel,the choiceis betweenno intercation
andcompleteinteractionof all singletime series.

In the PHMM kernel,the extensionto the multivari-
atecasecanbedoneby defininga d-dimensionalout-
put probability on the states.Also, one can split up
eachof the states­ �1� � ­ �Jn and ­ nc� into a numberof
states,whereeachstatestill producesonly outputfor
both,thefirst or thesecondsequence,respectively, but
with different probabilities.This can be usedto de-
fine several probabilitieson the multivariateoutputs.
Therefore,the PHMM kernelcandefinea very com-
plex modelon the time series- on the costof having
to estimatethemodelparameters.

4 Experiments

To testtheperformanceof thesekernelsonreal-world
data sets,someexperimentswere made.In all ex-
periments,10-fold cross-validation was usedto get
an estimationof the meanabsoluteerror (MAE) and
meansquarederror(MSE)resp.theaccuracy on these
datasets.TheSVM implementationmySVM [13] was
usedin theexperiments.

4.1 Chromatography

This datacomesfrom the chemicalprocessof Chro-
matography. Chromatographyis usedin chemicalin-
dustryto separatetemperaturesensitivesubstances.A
mixtureof componentsis injectedinto acolumnfilled
with porousparticles.Thecomponentwith thehighest
adsorptionability hasthelongestresidencetimein the
columnandthecomponentwith thelowestadsorption
ability reachesthe column end at first. The concen-
tration of the componentsis measuredover time and
givesa time serieswhich is characteristicof thecom-
ponents.

The learning task in this example is to identify the
componentsby the approximationof a certain real-
valuedparametercalled Henry, that is characteristic
of thecomponents.

At all there were 500 time-points for each curve.
From thesetime-points, only 275 points had non-
zero values and were used. To reducethe size of
the data set further, only each k-th time-point for4 +®- g �S¯Z� g / �1° / �1¯ / 6 wasused,giving five different
datasetswith attributessetsizesof 275,55, 27, 9 and
5 attributes.

4.1.1 Dot Kernel

Dataset MAE MSE

1 0.534 0.630
5 0.501 0.515
10 0.529 0.530
30 0.744 0.913
50 1.189 2.478

4.1.2 RBF Kernel
Previous investigationshowed that usablevaluesof
the parameter

�
of the RBF kernelwerein the range

of / 
 /8/ g to / 
 g .
Dataset gamma MAE MSE

1 0.001 0.201 0.452
1 0.01 0.417 0.896
1 0.1 1.124 3.029
5 0.001 0.189 0.215
5 0.01 0.189 0.344
5 0.1 0.493 1.079
10 0.001 0.239 0.166
10 0.01 0.175 0.237
10 0.1 0.321 0.622
30 0.001 0.609 0.713
30 0.01 0.309 0.305
30 0.1 0.257 0.390
50 0.001 1.015 1.865
50 0.01 0.591 0.682
50 0.1 0.386 0.571



4.1.3 Fourier Kernel

Dataset q MAE MSE

1 0.25 2.058 6.161
1 0.5 2.059 6.140
1 0.75 2.059 6.140
5 0.25 2.046 6.117
5 0.5 0.815 1.065
5 0.75 2.059 6.140
10 0.25 0.559 0.464
10 0.5 0.461 0.222
10 0.75 2.059 6.140
30 0.25 0.300 0.123
30 0.5 0.399 0.183
30 0.75 0.466 0.214
50 0.25 0.435 0.407
50 0.5 0.406 0.323
50 0.75 0.400 .184

4.1.4 SubsequenceKernel

Dataset MAE MSE

1 - -
5 0.578 1.574
10 0.584 0.776
30 1.082 2.322
50 1.805 4.397

This experimentshows the limitations of the subse-
quencekernel:Theruntimeon dataset5, i. e. with 55
attributes,wasin therangeof severaldays.Therefore,
the experimentswith the even larger dataset1 (275
attributes)were omitted. Clearly this type of kernel
function can only be usedfor very low dimensional
data.

4.1.5 PHMM Kernel

Dataset MAE MSE

1 - -
5 0.786 1.853
10 0.589 1.285
30 0.359 0.738
50 0.488 0.998

Theruntimeof theSVM with thePHMM kernelwas
betterthanwith thesubsequencekernel,but still in the
rangeof somedaysfor the55-attributedataset.As in
the casefor the subsequencekernel,the experiments
with the275-attributedatasetwereomitted.

All in all, the RBF kernelwith
� ' / 
 / g on the 27-

attributedatasetshows thebestperformance(MAE =
0.175).The Fourier kernel performsworse(MAE =
0.300),but still with good results(9 attributes,

� '

/ 
 h ¯ ). The PHMM kernel on the 9-attribute dataset
comesthird (MAE = 0.359).Thedotandsubsequence
kernelsshow the worst performance(MAE = 0.501
andMAE = 0.578,respectively).

In anotherexperimentwith this dataset[12] reports
thatevenbetterresultsfor this datasetwerefoundby
usingaspeciallyconstructionaggregatefeaturesof the
timeseriessuchaslocationof themaximumandturn-
ing points.Thisshowsthattheimportantcharacteristic
of a timeseriesin thiscaseis its similarity to othersin
its overall shape.Thisexplainswhy theRBF kernelis
suitedfor this task.

Also the badperformanceof the subsequencekernel
canbeexplained:Theequidistantfeatureselectionin
theseexperimentstogetherwith thehigh reductionof
theinputdimensionality(from 275to 9 in theextreme
case)leadsto a highgapbetweentwo successive time
points in the time series.Therefore,the comparison
of differenttime pointsandthustheuseof thesubse-
quencekernelis not reasonable.

4.2 Retail StoreData

Thisdataconsistsof theweeklysalesin selectedstores
of a retail storechain.20 itemsthatsoldabout3 times
a weekwererandomlycollectedand their salesin a
periodof four monthwererecorded.The taskwasto
predictnext weekssalesbasedon thesalesof thepast
four weeks.

Kernel MAE MSE

dot 2.532 18.600
RBF,

� ' / 
 g 2.333 16.365
RBF,

� ' g 2.023 15.067
RBF,

� ' g / 1.217 12.429
RBF,

� ' g /8/ 1.637 4.518
fourier,

� ' / 
 h ¯ 2.851 24.137
fourier,

� ' / 
 ¯ 2.885 24.955
fourier,

� ' / 
T±8¯ 2.975 24.767
subseq,

� ' / 
 g 2.621 20.221
subseq,

� ' g 2.650 20.761
subseq,

� ' g / 2.749 22.140
subseq,

� ' g /8/ 2.788 22.874
PHMM 2.722 22.488

As canbe seen,the RBF kernelwith parameter
� 'g / shows thebestresults,followedby theRBF kernel

with
� ' g /�/ . All other kernelsshow quite similar

performance.

This is consistentwith previous experimentswith
thesetime series.As only slow selling productswere
regarded,each week’s salescan be very much at-
tributedto randomeffectsor effectsthatcannotbeex-
plainedin termsof previous salesfigures.Therefore,



the time seriesmodelsthatweredescribedin thepre-
vioussectiondonot apply.

4.3 Intensive CareData

This dataconsistsof the minutely measurementsof
differentvital signsof intensive carepatients.These
univariatetime serieshave beenclassifiedby an ex-
periencedintensivist into three groups:Time series
wherea significantchangein thelevel of theobserva-
tionsoccurs(level change),timeserieswith anoutlier
andtimeserieswithout any change.A sequenceof 20
minutesthat containedthe point of the changein the
patternof thetimeserieshavebeenextractedandused
astheexamples.

The learning task was to distinguish level changes
againstthe otherclasses,resultingin 18 positive and
80 negativeexamples.

Kernel Accuracy

dot 62.2%
RBF,

� ' / 
 / g 73.3%
RBF,

� ' g 82.2%
RBF,

� ' g /�/ 81.1%
fourier,

� ' / 
 h ¯ 81.1%
fourier,

� ' / 
T¯ 81.1%
fourier,

� ' / 
²±<¯ 78.8%
subseq,

� ' g 81.1%
PHMM 83.5%

Thedotkernelcompletelyfails to grasptheconceptto
belearned.All otherkernelsperformsimilar, with the
PHMM kernelbest.

The time seriesmodelsthat are basedon sequences
work well with this datasetbecauseof the way the
examplesweregenerated:As the point of the pattern
changecouldlie anywherein thewindowsof thetime
seriesthat wasusedasan examples,the matchingof
two timeseriesrequiresto adjustbothtime indexesto
eachother.

5 Conclusions

The paperhaspresenteddifferent SVM kernelsthat
can be usedfor univariateand multivariatetime se-
ries analysis.Eachof thesekernelsmodelsdifferent
assumptionson theprocessthatgeneratesthetimese-
ries.How to efficiently find out which kernelis opti-
mal for agivenlearningtaskis still anunsolvedprob-
lem.

TheexperimentsshowedthattheRBFkernelperforms
verywell ondifferenttypesof timeseriesandlearning
tasks.However, in specializedapplicationsit maypay

to have a closelook on the time seriesmodel to be
used.
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