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Abstract. Time seriesanalysisis animportantandcomple problemin machinelearningandstatistics Real-vorld
applicationscanconsistof very large andhigh dimensionatime seriesdata.SupportVectorMachines(SVMs) are
apopulartool for the analysisof suchdatasets.This paperpresentsomeSVM kernelfunctionsanddisussesheir

relatve merits,dependingn the type of datathatis used.
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1 Intr oduction

Time is a phenomenorwhich is both very complex
andvery importantin mary real-world problems.Its
importancecomesrom thefactthatalmosteverykind
of data containstime-dependeninformation, either
explicitly in the form of time stampsor implicitly in
the way thatthe datais collectedfrom a procesghat
varieswith time (e. g. a machinethatis gettingworn
out, salesthat are influencedby changingtastesor
changingcontentof websites).A reasorfor its com-
plexity is thattime canbe representedh a multitude
of differentrepresentationsAs always, an effect that
is obvious in one representationmay be very much
hiddenin anotherrepresentationin [8] Morik gives
a discussiorof differentrepresentationandlearning
tasksfor time phenomena.

Of all the possiblerepresentationf time, time series,
i. e.the representatiof a time dependenbbsena-
tion z; at (usuallyequidistanttime pointst astuples
(t, z;), arethemostcommon.Thisis thecasebecause
it is the easiestvay to aquiretime dependentlata- all
you needto have to gatherthe datais a clock. Also,
therearemary statisticalalgorithmsthat canbe used
on numericaltime seriesdata,e.g. ARIMA modeling
or Fouriertransforms.

Oneof the main problemsof time seriesanalysis the
forecastingof time series,can be very easily stated
as a pure numerical problem: Split the time series
Z1,---,xN iNto windows (z;, ... ,T;1kx—1) Of Size
k. Thenfind a function f : R*¥ — R suchthat
f(ﬂfi, . axi—i-k—l) = Titk for everyi € {O,N - k}

Other learning tasks, such as classificationor simi-

larity computationof time seriescan also be formu-

lated as purely numerical problems.SupportVector
Machines(SVMs, seesection2) have beensuccess-
fully appliedfor this kind of learningtasks([10], [9],
[5]).

Soif we have a purely numericalproblemandpurely
numericaldata,whatis the problemwith a purely nu-
merical algorithm?The reasonis that the real-world
processwhichliesbehindthedata,in generalill not
bethis simple.

Seethefollowing example:Supposeve aregiventhe

weekly salesof candlesin somestoreand we want
to use machinelearningto predict how mary can-
dleswill be sold next week.Obviously, therewill be

an extremely high peak of salesat Christmastime.

Theusual(numerical)solutionwould beto noticethat
thereis a cycle of oneyearin the data,so onecould

try to usethe salesof oneyearagoto predictthe next

sales- but asthe datais given per week, therecould

be 51 or 52 weeksbetweenwo Christmass, depend-
ing on the actualdate.The problemgetsmuchworse
for easteinsteadof Christmaspecause¢hedateof the

easteholidayscanvary aboutsix weeks.

As anotherexample,think of the problemof analyz-
ing datain intensive caremedicine.A time seriesin
this field, for examplesomeblood pressurejs char
acterizedby high variation, which is due to normal
physiologicaleffects and small variationsin the sen-
sors.Suchatime seriesmayexhibit threedifferentbe-
haviors: It could be stable,which in this casemeans
thatthe variationis not too high, it could have oneor
severaloutliers,i. e.obsenationthatlie outof thenor-
mal variationbut which arenot significantof the state
of thepatient(e. g. measuremerdrrors)or it maybea



significantchangen thetime seriesj. e.thestructure
of the time seriesitself changesTo decidewhich of

thethreecases givenobsenationbelonggto, is very

complicatecandmaydependnmary facts,including

very high level medicalreasoning.

As we see,thereis always a gap betweennumerical
analysisandhigh-level, symbolicreasoninghatneeds
to be bridged. To incorporatehigherlevel reasoning
and backgroundknowledgeinto the analysisof nu-

mericaltime seriestherearetwo possibleways:

1. Bring thedatato the high-level reasoningTrans-
form the time seriesinto a representationmore
suitablefor higherlevel reasoninge.g.discretize
thetime seriesandapply somelogical modeling.

2. Bring the high-level reasoningto the data:
Choosethe hypothesisspaceand transformthe
datafor the numericallearnerin suchaway, that
resultsthat are meaningfulin someway canbe
found andare preferred.For examples,do some
higherlevel analysisof the dataand usethe re-
sultsas additionalfeaturesfor the numericalal-
gorithm, like flags for the occurrenceof special
holidaysin the salesdata,or choosea hypothesis
spacethatcorrespondso a meaningfulmodel.

This paperdealswith the secondapproach.In the
context of SupportVectorMachines kernelfunctions
(which definethe hypothesispaceprediscussedhat
canbeinterpretedassomekind of time seriesmodel.
Experimentsare madeto discover if thesedifferent
modelassumptionbave effectsin practiceandif there
exist kernelfunctionsthatallow time seriesdatato be
processedvith SupportVector Machineswithout in-
tensie preprocessing.

Theremaindeof this paperis organizedasfollows: In
thenext sectionashortintroductionto SupportVector
Machineswill be given.Section3 presentsomeker-
nel functionanddiscusseshe ideasabouttime series
that lies behindthem. In Section4, experimentsare
madeto seehow thesekernelsperformon real-world
data.

2 Support Vector Machines

SupportVector Machines(SVMs) are basedon the
work of Vladimir Vapnik in statisticallearning the-
ory [15]. Statistical learning theory dealswith the
guestion,how a function f from a classof functions
(fa)aeca canbe found, that minimizesthe expected
risk

R[f] = / / L(y, f(2))dPla)dP) (1)

with respectto a lossfunction L, whenthe distribu-
tions of the examplesP(z) and their classifications
P(y|z) areunknavn and have to be estimatedfrom
finitely mary examples(x;, y;)icr-

The SVM algorithmsolvesthis problemby minimiz-
ing theregularizedisk Rreg[f], whichis theweighted
sumof the empiricalrisk Remp f] with respecto the
data(z;, y;)i=1..., andacompleity term ||w||?

Rreg[f] = Remplf] + Allw||*.

In their basicformulation, SVMs find a linear deci-
sionfunctiony = f(z) = signw - z + b) thatboth
minimizesthe predictionerroron the training setand
promisesthe bestgeneralizatiorperformanceGiven
the examples(z1,41), ... , (zn,yn) this is done by
solvingthe following optimizationproblem:

* 1 -
(w e = Sw)+CY & ()
=0
— min
subjectto
yi(w' z; +b)
&
Thehyperplanevectorw hasarepresentatiom terms
of the training examples (z;,4;)icr and their La-
grangianmultipliers («;);c1, thatare calculateddur-
ing the optimizationprocess:

w = E Q3YiTi-

iel

1-¢&,i=1,....,n (3

<
> 0,i=1,...,n 4)

3 Kernel Functions

Oneof the majortricks of SVM learningis the useof
kernelfunctionsto extendthe classof decisionfunc-
tions to the non-linearcase.This is done by map-
ping the datafrom the input spaceX into a high-
dimensionafeaturespacet’ by afunction

®: X > X

andsolvingthelinearlearningproblemin X'. Theac-
tual function ® doesnot needto be known, it suffices
to have akernelfunction k which calculategheinner
productin thefeaturespace.

k(z,y) = ®(x) - 2(y)

It was noticed by Sclblkopf in [14] that the kernel
function definesa distancemeasured on the input
spacedy

d(z,y) = (B(z) - 2(y))° (5)
= k(z,2) — 2k(z,y) + k(y,y)- (6)
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Figurel AR[1]timeseries.

This shows the kernelfunction k(z, y) canbe inter
pretedas a measureof similarity betweenthe exam-
plesz andy.

3.1 Linear kernel

Thelinearkernelk(z,y) = x - y is the mostsimple
kernelfunction. The decisionfunction takesthe form
f(z) = w -z + b. Whenoneusesthelinearkernelto
predicttime seriesj. e.zr = f(xr—1,... ,Z1—) =
Z,’;l wyzr ¢ +b, thismeangheresultingmodelis an
statisticalutorggressve modelof theorderk (AR[K]).

With this kernel,time seriesaretakento be similar, if
they aregeneratedby the sameAR-model.

3.2 RBF kernels

Radial basis kernels take the form k,(z,y) =
exp (—||z — y||?). clearly, the similarity of two ex-
amplesis simply judgedby their euclidiandistance.

In termsof time series,this hasa parallelin the so-
called phasespacerepresentationAssumethe time

seriesis generateddy a function g suchthatzr =

g(xr_1,...,z7_k). If one takes the time series
Z1,.-. ,Tk,... ,xn andplotsthe(k+1)-dimensional
vectors (x4, Tyy1,--- ,Terk), the resultingplot is a
part of the graphof g, sothe function g canbe esti-
matedfrom thetime serieg(seeFiguresl and?2).

Especially assuminghatthe function g is linearand
thedatais generatety xr = g(z7r—1,... ,27-1)+7

wherey is aGaussiamoise(i. e.thetime seriesmodel
is AR[1]), it canbeshowvn thatmostof the dataliesin

anellipsoiddefinedby the meanof thetime seriesand
thevarianceof 7. In [1] thisis usedin the phasespace
procedurdor finding outliersin thetime series.

This shavsthatinformationaboutawindow of atime
seriescan be gottenfrom otherwindows of the time
seriesthat are similar in meansof the euclidiandis-
tance whichmakestheRBFkernelpromisingfor time

Figure2 Phasespaceembeddingf thetime seriesn
Figurel.
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Figure3 Fouriertransformof thetime seriesn Figure
1.

seriesanalysis.

3.3 Fourier Kernel

A commontransformatiorfor the analysisof time se-
ries datais to usethe Fourier transform(seeFigure
3). This representatiofis usefulif the information of
thetime seriesdoesnot lie in theindividual valuesat
eachtime pointbut in thefrequeng of someevents.It
wasnotedby Vapnik[15] thattheinnerproductof the
Fourier expansionof two time seriescan be directly
calculatedby theregularizedkernelfunction

1—¢?
2(1 — 2qcos(z —y)) + ¢’

kF(xay) =

3.4 Subsequencé&ernels

As mentionedn Sectionl, time dependenprocesses
may not shov themseles by certaineventshappen-
ing at a fixed time-point, but by a certainsequence
of events,independenof the actualtime. In between
this events,outliers or randomobsenationsmay oc-
cur. Therefore,mary algorithmsfor finding similar
time seriesdo not considerthe whole time seriesbut
look for informative subsequencd§?], [4]).



A subsequendeernelfor discretesequencewasused
for text classificationin [7]. However, the calculation
of this kerneldepend=on the discretenessf the se-
guencessoit is notapplicableto real-valuedtime se-
ries.

In section3.2, radial basiskernelswereusedfor time
seriesanalysison the basisthat similar time series(in
meanf theeuclidiandistanceshouldhave the same
properties Basedon the obsenation that time series
canbe viewed as similar if they have similar subse-
guencesa matchingkernelfunctioncanbe definedas

ksubseq(may) = Z K’Y(sxisy)a

Sx,8y

wheres, ands, aresubsequence x andy of afixed
size.As eachsubsequence-paof the kernelwill be
closeto zerofor all non-matchingsubsequenceshe
kerneleffectively is definedon only thematchingsub-
sequencesf thetime series.

As thereare (*)” pairs s, s,) of lengthk in atime

seriesof lengthn, for practicalpurpose®nehasto re-

strictthe setof subsequencdbatareused.A possible
solutionis to useonly connectecgubsequences) use
only subsequencesith the samendex setfor x andy

or to restrictk in someway. In theexperimentdn this

paperonly k = n — 1 wasused.

3.5 PHMM Kernels

Onecantake theideaof subsequencessafitting rep-
resentatiorof time seriesa bit further. The idea be-
hind the subsequenceepresentatioiis thatthereis a
processiddenbehindthedata,which canonly beob-
sened at certaintime pointsandis inactive or hidden
behindnoisethe othertimes.

Hidden Markov Models[11] offer a modelin which
theseassumptionareexplicitly modeledIn aHidden
Markov Model, the outputis assumedo be generated
by aprocesswhichis in oneof finitely mary statesat
eachtime. At every step,the procesgumpsfrom one
stateto the next statewith a giventransitionprobabil-
ity, which is only dependenbn the states.The state
sequencétself cannotbe obsened, all thatis known
arethe outputsthat aregeneratedy the processdy a
certainprobabilitydependenbn the state For a given
Hidden Markov Models and a sequencef obsena-
tions, the probability that this sequencés generated
by themodelcanbecalculated.

Pair Hidden Markov Models (PHMMs) are Markov
Models,which generatdwo outputsequencesimul-
taneouslyAt eachstate,eitheran outputfor the first
sequencenoutputfor thesecondsequencer acom-
monoutputfor bothsequencets generatedProbabil-
ity estimationfor PHMMSs canbe efficiently donein

c:@:y

Figure4 The PHMM used.Thick lines depicthigh
transitionprobabilities.
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Figure5 An exampleoutputsequencdor a PHMM
andcorrespondingtatesequence.

time O(s2k?), wheres is the numberof statesof the
PHMM andk is the lengthof the examplesequences
(se€[3]).

PHMMs for discretevaluedserieshave beenapplied
asSVM kernelsin [16], whereit hasbeenshowvn that
the joint probabilitiesof pairs of sequenceslefined
by PHMMs indeeddefinesa properkernelfunction.
The extensionto real valuedsequencess very easily
doneby replacingthe discreteprobabilitiesby contin-
uousprobability densitiesa standardrick for Hidden
Markov Models.Similar work canbefoundin [6].

In the experimentsin this paper the very simple
PHMM shownin Figure4 hasbeenused. The PHMM

consistsonly of three states.In states;; an output
(z,y) for bothsequences generateduchthatz — y

is normally distributed. In states;o (sp1) only a out-
put for the first (second)sequencés generatedin all

statesthetransitionprobability to states,; is A (usu-
ally nearl) andthe probability for a transitionto any

otherstateis (1 — \)/2. Informally speakingtheidea
behindthis modelis thattwo similar sequencesisu-
ally shouldlook the samejust thatoncein awhile an
extra outputis generatedn oneof the sequencesee
Figure5).

It is also possibleto learn the parametersof the
PHMM (i. e. the transitionand the output probabil-
ities) from the databy the useof a modified Baum-
Welchalgorithm([11], [3]). Theproblemis how to se-
lect the examplesfor learning:As the PHMM should
assigrhigh probabilitiesto similartime seriesandlow
probabilitiesto dissimilarones,it mustbe trainedon
similar time series,sothey have to be known before-
hand. A possiblesolution could be to estimatethe
PHMM parameter®n positive examplesalonein the
caseof classificatioror to manuallyselectsimilartime



series.But of coursethis caneasilyleadto a skewed
samplingof examplesandhenceto a bad parameter
estimationBecausef thisproblemsnoparametees-
timationfrom datawasdonein theexperimentf this
paper

3.6 Extensionto Multi variate Time Series

Until now, the focus has only been on univari-
ate time series. But how can multivariate series
(=M @Dy @, .., 2\ bedealtwith?

i, ,2
Thereis a simpletrick thatworks on every case:The
classof kernelfunctionsis closedunderadditionand
multiplication, so we canalways build a multivariate
modelby additionor multiplication of univariatetime
seriesmodels.This modelassumeshatthereis noin-

teractionbetweerthesingletimeseriesz:@, e T
For somekernels,thereare alsomore complex ways
to dealwith this modelingproblem.The RBF kernel
K(z,y) = exp(—||lz — y||?), for example,canbe
useddirectly with z andy representinghe multivari-
ate time serieswindows. This model assumes full

interactionbetweerthe singletime seriesandoverall
time pointsin the window, which may as easily be
wrongasthe assumptiorof no interaction.In particu-
lar, asingleoutlierin onetime serieson onetime point
will influencethewhole example.

A similar approachcan be usedin the subsequence
kernel.As well aslooking for matchingsubsequences
in thesingletime seriespnecanalsosearctmatching
subsequencead thewholetime series As well asfor
the RBF kernel,the choiceis betweenno intercation
andcompleteinteractionof all singletime series.

In the PHMM kernel, the extensionto the multivari-
atecasecanbedoneby defininga d-dimensionabut-
put probability on the states.Also, one can split up
eachof the statesS;1, S19 and Sp; into a numberof
stateswhereeachstatestill producesnly outputfor
both,thefirst or the secondsequenceagespectiely, but
with different probabilities. This can be usedto de-
fine several probabilitieson the multivariateoutputs.
Therefore the PHMM kernelcandefinea very com-
plex modelon the time series- on the costof having
to estimatehemodelparameters.

4 Experiments

To testthe performancef thesekernelson real-world

data sets,some experimentswere made.In all ex-

periments,10-fold cross-alidation was usedto get
an estimationof the meanabsoluteerror (MAE) and
meansquareckerror(MSE) resp.theaccurag onthese
datasets TheSVM implementatiormySVM [13] was
usedin the experiments.

4.1 Chromatography

This datacomesfrom the chemicalprocessof Chro-
matographyChromatographys usedin chemicalin-
dustryto separatéemperatureensitve substancesA
mixture of componentss injectedinto a columnfilled
with porousparticles Thecomponentith thehighest
adsorptiorability hasthelongestresidencéimein the
columnandthecomponentvith thelowestadsorption
ability reacheghe column end at first. The concen-
tration of the componentss measuredver time and
givesatime serieswhich is characteristiof the com-
ponents.

The learningtaskin this exampleis to identify the
componentsy the approximationof a certainreal-
valuedparametercalled Henry, that is characteristic
of thecomponents.

At all there were 500 time-points for each cunve.
From thesetime-points, only 275 points had non-
zero values and were used. To reducethe size of
the data set further, only eachk-th time-point for
k € {1,5,10,30,50} wasused,giving five different
datasetsvith attributessetsizesof 275,55, 27,9 and
5 attributes.

4.1.1 Dot Kernel
Dataset| MAE | MSE

1 0534 | 0.630
5 0,501 | 0515
10 0529 | 0530
30 0.744| 0913
50 1189 | 2478

4.1.2 RBF Kernel

Previous investigationshaved that usablevalues of
the parametery of the RBF kernelwerein the range
of 0.001t0 0.1.

Dataset| gamma| MAE | MSE

1 0.001| 0.201| 0452
1 0.01| 0.417| 0.896
1 0.1] 1.124| 3.029
5 0.001| 0.189| 0.215
5 0.01| 0.189| 0.344
5 0.1| 0.493| 1.079
10 0.001| 0.239| 0.166
10 0.01| 0.175| 0.237
10 0.1| 0.321| 0.622
30 0.001| 0.609| 0.713
30 0.01| 0.309| 0.305
30 0.1| 0.257| 0.390
50 0.001| 1.015| 1.865
50 0.01| 0.591| 0.682
50 0.1 0.386| 0571




4.1.3 Fourier Kernel

Dataset ¢ | MAE | MSE
1 0.25| 2058 | 6.161
1 0.5 2059 | 6.140
1 0.75| 2,059 | 6.140
5 0.25| 2046 | 6.117
5 0.5 | 0815 1.065
5 0.75| 2059 | 6.140
10 0.25| 0559 | 0.464
10 0.5 | 0461 | 0.222
10 0.75| 2,059 | 6.140
30 0.25| 0.300 | 0.123
30 0.5 | 0399 | 0.183
30 0.75| 0466 | 0.214
50 0.25| 0435 | 0.407
50 0.5 | 0406 | 0.323
50 0.75| 0400 .184

4.1.4 Subsequenc&ernel

Dataset| MAE | MSE

1 - -
5 0.578| 1574
10 0.584| 0.776
30 1.082 | 2.322
50 1.805| 4.397

This experimentshaws the limitations of the subse-
guencekernel: Theruntimeon dataseb, i. e. with 55
attributes,wasin therangeof severaldays.Therefore,
the experimentswith the even larger datasetl (275
attributes) were omitted. Clearly this type of kernel
function canonly be usedfor very low dimensional
data.

415 PHMM Kernel

Dataset| MAE | MSE

1 - -

5 0.786| 1.853
10 0.589| 1.285
30 0.359| 0.738
50 0.488| 0.998

Theruntimeof the SVM with the PHMM kernelwas
betterthanwith the subsequendeernel,but still in the
rangeof somedaysfor the 55-attribute datasetAs in
the casefor the subsequenckernel,the experiments
with the 275-attritute datasetvereomitted.

All in all, the RBF kernelwith v = 0.01 on the 27-
attribute dataseshows the bestperformancd MAE =
0.175). The Fourier kernel performsworse (MAE =
0.300), but still with good results(9 attributes,q =

0.25). The PHMM kernel on the 9-attritute dataset
comesghird (MAE = 0.359).Thedotandsubsequence
kernelsshowv the worst performance MAE = 0.501
andMAE = 0.578,respectiely).

In anotherexperimentwith this datasef12] reports
thateven betterresultsfor this datasetverefound by
usingaspeciallyconstructioraggreyatefeatureof the
time seriessuchaslocationof themaximumandturn-
ing points.Thisshavsthattheimportantcharacteristic
of atime seriedn this caseis its similarity to othersin
its overall shapeThis explainswhy the RBF kernelis
suitedfor this task.

Also the bad performanceof the subsequenckernel
canbe explained: The equidistanfeatureselectionin
theseexperimentgogethemith the high reductionof
theinputdimensionalityfrom 275to 9 in theextreme
case)eadsto a high gapbetweertwo successie time
pointsin the time series.Therefore,the comparison
of differenttime pointsandthusthe useof the subse-
guencekernelis notreasonable.

4.2 Retail Store Data

Thisdataconsistof theweeklysalesn selectedtores
of aretail storechain.20 itemsthatsoldabout3 times
a weekwere randomly collectedandtheir salesin a
periodof four monthwererecorded The taskwasto

predictnext weekssaleshasedn the salesof the past
four weeks.

Kernel | MAE | MSE

dot 2.532| 18600
RBF, v =0.1 2.333| 16365
RBEvy=1 2.023| 15067
RBF v =10 1.217| 12429
RBF v = 100 1.637| 4.518
fourier,q = 0.25 | 2.851 | 24137
fourier,¢q = 0.5 | 2.885| 24955
fourier,q = 0.75 | 2.975| 24767
subseqy = 0.1 | 2.621| 20221
subseqy =1 2.650| 20.761
subseqy =10 | 2.749| 22140
subseqy =100 | 2.788 | 22874
PHMM 2.722| 22488

As canbe seenthe RBF kernelwith parametery =
10 shows the bestresults followed by the RBF kernel
with v = 100. All otherkernelsshav quite similar
performance.

This is consistentwith previous experimentswith
thesetime series As only slow selling productswere
regarded,eachweek’s salescan be very much at-
tributedto randomeffectsor effectsthatcannotbe ex-
plainedin termsof previous salesfigures. Therefore,



thetime seriesmodelsthatweredescribedn the pre-
vioussectiondo notapply.

4.3 Intensive Care Data

This dataconsistsof the minutely measurementef

differentvital signsof intensive care patients.These
univariatetime serieshave beenclassifiedby an ex-

periencedintensvist into three groups: Time series
wherea significantchangen thelevel of the obsena-
tionsoccurs(level change)time serieswith anoutlier
andtime serieswithout any changeA sequencef 20

minutesthat containedthe point of the changein the
patternof thetime serieshave beenextractedandused
astheexamples.

The learning task was to distinguishlevel changes
againstthe otherclassesresultingin 18 positive and
80 negative examples.

Kernel | Accurag
dot 622%
RBF, v = 0.01 733%
RBEy=1 822%
RBF, v = 100 811%
fourier,¢ = 0.25 | 811%
fourier,g = 0.5 | 811%
fourier,¢ = 0.75 | 788%
subseqy =1 811%
PHMM 835%

Thedotkernelcompletelyfailsto graspthe concepto
belearned All otherkernelsperformsimilar, with the
PHMM kernelbest.

The time seriesmodelsthat are basedon sequences
work well with this datasetbecauseof the way the
exampleswere generatedAs the point of the pattern
changecouldlie anywherein thewindows of thetime
seriesthat wasusedasan examples the matchingof
two time seriesrequiresto adjustbothtime indexesto
eachother

5 Conclusions

The paperhas presentediifferent SVM kernelsthat
can be usedfor univariateand multivariatetime se-
ries analysis.Eachof thesekernelsmodelsdifferent
assumptionsnthe procesghatgeneratethetime se-
ries. How to efficiently find out which kernelis opti-
mal for agivenlearningtaskis still anunsohed prob-
lem.

TheexperimentshovedthattheRBF kernelperforms
verywell ondifferenttypesof time seriesandlearning
tasks.However, in specializedapplicationst may pay

to have a closelook on the time seriesmodel to be
used.
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