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Abstract: Solving inverse problems described by the Fredholm integral equation of first kind is a common
challenge in many particle and astroparticle physics experiments. Several algorithms for the solution of these
problems exist, most of them aiming at the determination of the response matrix on Monte Carlo simulations.
In this paper a novel data mining based approach towards unfolding is given, treating the inverse problem as
a multinominal classification task. This approach offers the advantage of an event-by-event unfolding, which
retains the full information on any given event. Treating the inverse problem as a classification task further offers
the possibility to use additional information on the geometry of the individual events. The algorithm is described
and toy Monte Carlo studies on the performance are presented.
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1 Introduction
It is a common challenge in particle and astroparticle
physics, that the true distributionf (x) of an attributex
cannot be accessed directly and a second distribution
g(y) is measured instead. Due to smearing effects and
a limited acceptance of the detector,g(y) cannot be
directly converted intof (x). Instead both distributions are
connected by the Fredholm integral of first kind:

g(y) =
∫ b

a
A(x,y) f (x)dx, (1)

where A(x,y) represents the response function of the
detector. This is commonly referred to as an inverse or
ill-posed problem. Several algorithms for the solution of
inverse problems exist, including regularised unfolding as
implemented in TRUEE [1] andRU N [2].
Most of these algorithms first convert the integral equation
in (1) into a matrix equation of the form:

~g(y) = A(x,y)~f (x), (2)

by a discretising operation. In general a solution can
be obtained by first determining the matrix on Monte
Carlo simulations, where~gMC(y) and~fMC(x) are exactly
known. The determination of~f (x) on real data utilizing
the estimation ofAMC(x,y) obtained on simulations differs
between individual unfolding approaches [3]. In general,
however, a simple inversion of the response matrix is not
feasible, as oscillating solutions might occur [1]. Thus,
a solution to equation (2) is obtained by maximizing a
log-likelihood expression which includes a regularisation
term [1].
The use of the matrix, however, poses a potential problem,
as in general only one such response matrix is obtained
for the entire detector. This approximation is fully valid
for small and homogeneous detectors but might become
problematic for large detectors utilising natural media,
e.g. large scale neutrino telescopes. In these experiments
particles of the same energy will cause significantly
different event patterns depending on where they enter

the detector. The same challenge emerges from the
fact that particles may be produced far outside the
detectors. Accordingly events can be starting, stopping or
through-going depending on their point of production. The
event pattern created by a through-going track, however,
is significantly distinct from the one of an event stopping
inside the detector.
Thus, geometrical information on the track of the
individual particles will provide useful information,
which can be utilised in order to improve the unfolding.
Unfortunately, the number of input variables is limited
in many unfolding procedures, e.g. to three in the most
recent version of TRUEE [1]. This limitation is inherent
in many unfolding approaches, as the determination of
the matrix corresponds to building a density based model.
The number of simulated events, required for a reliable
determination of a density based model is known to scale
exponentially with the number of input parameters.
Furthermore, after the sought distributionf (x) is
determined, all information on the individual events that
contributed to the distribution is lost. Thus, one is unable
to follow individual events through the complete unfolding
process, in order to determine where and how much they
contributed to the final spectrum. Moreover, physically
useful information, e.g on the zenith angle of an event, is
lost. Studies on changes of a spectrum with time or zenith
angle therefore require a number of individual unfoldings,
which all have to be tested and optimised separately.
In this paper a machine learning based approach to
unfolding is presented. The algorithm itself is outlined in
section 2, whereas a comparison of the results to those
obtained using the well known and well tested unfolding
software TRUEE is presented in section 3. section 4
discusses the dependency on the distribution used as input
for the learner. In section 5 an example on the utilisation
of the full event information is given. A summary is given
in section 6.
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Figure 1: Confidence distribution of a selected event after the
application of the forest.
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Figure 2: The outcome the DSEA unfolding in red compared to
the true distribution in black. The unfolding results are found to
agree with the true distribution within statistical uncertainties.

2 DSEA
Solving the matrix equation (2) is sufficient for the
application of an unfolding algorithm in a physics
experiment, as~f (x) serves as a reliable approximation of
f (x). From the machine learning point of view, however,
the individual binsf j of ~f (x) can be interpreted as different
classes of events. The unfolding can thus be treated as a
multinominal classification task. Several algorithms for
the solution of multinominal classification problems exist.
All studies presented in the following were carried
out using toy Monte Carlo simulations produced with
Gaussian smearing. A Random Forest [4] was used as
a learning algorithm. In total 2.6× 106 examples were
evaluated in a 5-fold cross validation. The number of
events used for training was limited to 8× 104. A stable
and reliable performance without any signs of overtraining
was observed for the forest. Our studies showed, however,
that treating an unfolding as a simple classification
task does not restore the true distribution. This is due
to the fact that similar attribute values are observed
for neighbouring classes, due to the detector smearing.
Thus, the ordinary classification via the maximum of the
confidence distribution leads to not very distinct results.
The confidence distribution of a selected event, as obtained
from the application of the forest is shown in Fig. 1.
One finds that the differences in confidence are small for
neighbouring classes.
Within the Dortmund Spectrum Estimation Algorithm

(DSEA) the confidence values obtained for individual
events can be interpreted as conditional probability
densities. The confidence valueci j , describing the
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Figure 3: Deviation of the DSEA unfolding results from the true
distribution in units of the statistical uncertaintyσ . Only two bins
were found to lie above the 1σ limit.
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Figure 4: Average deviation of the DSEA result from the true
distribution obtained via bootstrapping in units of the statistical
uncertaintyσ . A fraction of 10% of the events was drawn at
random in each iteration and the deviation of the unfolding result
to the true distribution was computed in units of the estimated
statistical uncertainty. The average deviation of both distributions
(pull mean) is shown on the y-axis.

contribution of the i-th observation to thej-th bin,
coresponds to ˆp( j|di), the probability for the event to lie
in bin j given the observed datadi . These conditional
probability densities can then be utilised to reconstruct the
spectrum in a simple summation. The bin contentf j of bin
j, for example is obtained via:

f j =
N

∑
i=1

ci j , (3)

whereN, represents the number of events, utilized in the
unfolding process. The outcome of the unfolding using
DSEA is depicted in Fig. 2, where the true distribution
(solid black line) is shown for comparison. One finds that
both distributions agree within statistical uncertainties.
Figure 3 shows the deviation of the unfolding result
obtained using DSEA from the true distribution in units
of the estimated statistical uncertaintyσ . In the current
version of DSEA σ is estimated as the square root of
the bin content according to a compound poisson model.
Only two bins were found to lie above the 1σ limit. No
deviations larger than 3σ were observed.
A bootstrapping procedure was used in order to test the

statistical reliability of DSEA. In each iteration 10% of
the events corresponding to 2.6× 105 examples, were
drawn at random and unfolded accordingly. After each
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Figure 5: Comparison of the results obtained using D-SEA
to results of the TRUEE unfolding. The results of both
unfolding algorithms were found to agree within the statistical
uncertainties.

unfolding the deviation of the unfolding result from the
true deviation was calculated in units of the estimated
statistical uncertaintyσ . Finally the average deviation was
computed. The outcome of the bootstrapping procedure is
depicted in Fig. 4. One finds that on average no deviations
larger than 1σ are observed for any of the bins, which
indicates a stable behaviour of the unfolding using DSEA.
Slight oscillations of the unfolding result are observed.
Such a behaviour is typical for solutions of inverse
problems and in general suppressed by the use of
regularisation. Regularisation is not directly implemented
in DSEA, but one of the key topics for the future
development of the algorithm. One should, however, note
that the observed oscillations are well below the 1σ limit
and can therefore be tolerated.

3 Comparison to TRUEE
In order to further validate the results obtained with
DSEA the toy Monte Carlo simulation was unfolded using
TRUEE. Both results are depicted in Fig. 5. The true
distribution is shown for comparsion. One finds that the
unfolding results obtained with the different algorithms
agree within the statistical uncertainties.
No oscillations were observed for the result obtained with
TRUEE, which can be attributed to the explicit use of
regularisation within the algorithm. Furthermore, smaller
statistical uncertainties were obtained for the DSEA result.

4 Dependency on the Input Distribution
In order to study the dependency of the unfolding result on
the distribution of events used for the training, a uniform
distribution was chosen as input for the learner. This is the
most reasonable distribution to commence with, in case
no additional information, experimental or theoretical, is
available. One should note, however, that in general at least
some information on the sought distribution is available.
The outcome of utilising a uniform distribution as input
for unfolding is shown in Fig. 6. The sought distribution
is depicted in black, whereas the unfolding result is shown
in red. Despite the fact that the true distribution is not
reconstructed to the full extend, the positions of the
two peaks are reconstructed correctly. This implies that
certain features of unknown distributions can be correctly
reconstructed, even if not directly simulated. Furthermore,
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Figure 6: Unfolding result (red) obtained using a uniform
distribution as input for the training of the classifier. Although the
true distribution (black) is not reconstructed to the full extent, the
positions of the two peaks are reconstructed correctly.
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Figure 7: Average deviation of the unfolding result from the true
distribution in units of the statistical uncertaintyσ , obtained in an
iterative unfolding. The first iteration is shown in black, whereas
the 7th iteration is depicted in red.. The unfolding result obtained
in iterationi, was used to generate Monte Carlo events utilised as
input for iterationi+1. A uniform distribution was used as input
in the first iteration. The oscillating behaviour is found decrease
significantly between the first and the 7th iteration.

the unfolded distribution clearly deviates from a uniform
distribution.
In addition, the unfolding can be carried out in an iterative
procedure. In that case the unfolding result obtained in
iteration i is utilised for the generation of Monte Carlo
events used for the training of the learner in iteration
i +1. The pull distributions for such an iterative unfolding
are presented in Fig. 7. In these pulls the unfolding is
carried out on a randomly drawn subset of events and
the deviation from the true distribution is calculated in
units of the statistical uncertaintyσ . One finds that the
observed deviations decrease significantly between the
first and the 7th iteration. In fact, the pull distribution of
the 7th iteration is found to deviate only marginally from
the pull distribution obtained using the correct distribution
of events as input for the learning algorithm.

5 Utilising the Additional Information
Compared to most other unfolding approaches DSEA offers
the advantage of retaining all information on the individual
events. This information can then be utilised in analyses
aiming at studying changes of a spectrum with a second
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Figure 8: Sought two-dimensional distribution. Two distinct
peaks are observed.
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Figure 9: Reconstructed two-dimensional distribution after
application of DSEA. Although the resolution of the plot is not
comparable to that of the true distribution, the major features are
clearly reconstructed.

quantity of interestu. Note that this is not to be confused
with a two-dimensional unfolding as no additional
smearing inu is introduced.
The true two-dimensional distribution is shown in Fig. 8.
Two distinct peaks are observed. The two-dimensional
distribution, reconstructed by utilising the DSEA output
is shown in Fig. 9. Again the major features of the
distribution, the two distinct peaks, are reconstructed
correctly. The resolution inx is limited by the binning
of the unfolded distribution, while the binning inu can
in principle be chosen arbitrarily but was adjusted to
match the binning inx. Note that the reconstruction of the
distribution shown in Fig. 9 would require a number of
different unfoldings using other unfolding algorithms. In
DSEA, however, no additional unfolding is required as
the information on individual events can be utilised once
a properly trained learning algorithm has been applied to
the data set.
Figure 10 shows the deviation of the DSEA result from the
true distribution in units of the statistical uncertaintyσ . No
deviations exceeding the 3σ limit are observed. Several
bins with discrepancies exceeding 1σ were observed. One
should note, however, that the number of bins in Fig. 10 is
nbins= 400. Thus, 128 bins are expected with a deviation
of 1σ or more.

6 Summary
A novel unfolding approach treating inverse problems as
multinominal classification tasks and utilising the output
of state of the art machine learning algorithms has been
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Figure 10: Deviation of the unfolded and the true
two-dimensional distribution in units of the estimated statistical
uncertainty, depicted as the colour column. No deviations above
3σ were observed. Note that the number of bins isnbins = 400.
Deviations exceeding the 1σ limit are therefore expected for as
many as 128 bins.

presented. Excellent results were obtained on toy Monte
Carlo simulations produced with Gaussian smearing.
The unfolding result was found to agree with the true
distribution within the obtained statistical uncertainty.
Tests comparing the result of the novel approach to
unfolding results obtained with TRUEE showed that both
algorithms deliver the same results within the statistical
uncertainties.
The DSEA solution was found to show a slightly oscillating
behaviour inherent to the solution of inverse problems.
These oscillations, however, can be suppressed utilising
regularisation algorithms. One should, however, notice
that the observed fluctuations were small, as none of the
average deviations exceeded the 1σ limit.
No regularisation is implemented for the current version
of DSEA but different regularisation methods considered
for the use in DSEA are currently under investigation.
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