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Chapter 1

Introduction

Deconvolution is the non-parametric estimation of the probability density function of a
target variable. When the variable cannot be measured directly, it has to be reconstructed
from contaminated observations. A popular application of deconvolution is the analysis of
γ particles in Cherenkov astronomy. Upon entering the atmosphere, the particles induce air
showers. Imaging Air Cherenkov Telescopes (IACTs) measure Cherenkov light emitted by
the air showers. To reconstruct the distribution of the particle energy from the measured
signal, deconvolution algorithms are used. A precise estimate of the density helps physicists
in verifying theoretical models and scientific assumptions.

The Dortmund Spectrum Estimation Algorithm (DSEA) [36, 37] formulates the problem
of deconvolution as a multinomial classification task where the relation between latent and
measured quantities is learned from training data by a classifier. A recently improved
version of DSEA, DSEA+ [8], achieves state-of-the-art performance on deconvolution tasks.
Since we are interested in the density of a continuous target variable (the particle energy
in the IACT domain), it may be more suitable to use regression techniques instead of
classifiers.

The present work is based on DSEA+ and extends it by the use of regression methods.
These will allow the prediction of real-valued target variables. As the energy of γ particles
is continuous and binning introduces discretization errors, direct predictions of the energy
is more precise and can lead to an increased accuracy of the deconvolution. To estimate
the distribution of the predictions, kernel density estimation (KDE) is used. KDE places
a basis function on each observation, then all basis functions are summed up to obtain the
estimation. This will allow for the estimation of a continuous distribution. Existing meth-
ods that estimate continuous densities revolve around fitting functions to the probabilities
assigned to the bins. However, fitting a continuous function to a handful of values conceals
the level of detail with which the estimate was fit to the data. The consideration of all
predictions for the density estimation leads to a more granular deconvolution and prevents
discretization errors.

1



2 CHAPTER 1. INTRODUCTION

1.1 Goals and Outline

The goal of the present thesis is to extend DSEA by the use of regression methods. The
current specification of the algorithm does not allow their use yet. To overcome this,
we explore appropriate regression techniques that meet our requirements. To fully adapt
DSEA to regression tasks and estimate continuous densities, the dependency on binning the
data is removed. Ways to incorporate a continuous density estimator are explored. Finally,
we evaluate the presented methods and compare the results to DSEA as the developed
algorithm should at least match the discrete estimations of DSEA in quality. The thesis is
structured as follows:

• Chapter 2: Deconvolution. This chapter opens with applied deconvolution in
Cherenkov astronomy to explain the basics of deconvolution. Existing approaches
are described afterwards. These are Iterative Bayesian Unfolding (IBU), Regularized
Unfolding (RUN) and eventually DSEA and DSEA+. At the end of the chapter,
modifications are listed that are necessary for DSEA to estimate continuous densities.

• Chapter 3: Regression Analysis. We begin with the basics of regression analysis.
The specific requirements for a regression method that are necessary for an iterative
deconvolution are addressed. These are the possibility to train from weighted data
and the output of uncertainties. In the course of the chapter the linear regression,
kernel ridge regression, Gaussian processes, random forests and Mondrian forests are
presented with special attention to the requirements. The methods are evaluated at
the end of the chapter.

• Chapter 4: Density Estimation. We briefly discuss the current density estimator,
the histogram used in DSEA, before moving on to kernel density estimation. Options
to embed the uncertainties returned by the regression method in the kernel density
estimation are investigated. The options comprise weighted and variable bandwidth
KDE.

• Chapter 5: Continuous Spectrum Estimation Algorithm. This chapter
presents the developed algorithm. Beforehand a number of changes to DSEA are
covered, namely changes to the weight update, the adaptive step size and an optional
calibration of the predictions. The calibration is deemed useful in some configura-
tions.

• Chapter 6: Evaluation. The algorithm is evaluated on different data sets using
various combinations of the aforementioned regression methods and density estima-
tors. Lastly, we explore how the distribution calibration and the variable bandwidth
KDE incorporating the uncertainties can improve the results. The deconvolution
results of CSEA and DSEA are compared with regard to their quality.
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• Chapter 7: Conclusion. The last chapter concludes the work with a brief summary
of the most important aspects. It also gives an outlook on possible improvements
and use cases of the algorithm.
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Chapter 2

Deconvolution

2.1 Deconvolution in Cherenkov Astronomy

The First G-APD Cherenkov Telescope (FACT) [1] and the Major Atmospheric Gamma
Imaging Cherenkov Telescopes (MAGIC) [45, 9] are two telescope systems in the Imaging
Atmospheric Cherenkov Telescope (IACT) domain for measuring cosmic showers caused
by the entrance of γ particles into the atmosphere. By interacting with particles in the
atmosphere, they emit Cherenkov light. The Cherenkov light is measured by the telescopes
(see figure 2.1).

One goal of analyzing the measured data is to draw conclusions about the γ particles.
Deconvolution can help to achieve this. Deconvolution estimates the distribution of a
relevant quantity Y . In the IACT domain, this is the energy of the γ particles. Since
this distribution cannot be measured directly, it must be reconstructed from observable
quantities X, the measurements of the telescopes:

g(x) =

∫

Y
R(x|y)f(y) dy. (2.1)

Chapter 1

Introduction

Obtaining the distribution of a physical quantity is a frequent objective in experimental
physics. A reliable estimate of such distribution can tell us a lot about the related phe-
nomena, allowing us to reconcile our scientific assumptions with the results obtained in an
experiment. In cases where the distribution of the relevant quantity cannot be measured
directly, it has to be reconstructed from distributions of related but different quantities
that are measured, instead. This reconstruction is called deconvolution.

Cherenkov astronomy is a deconvolution use case which studies the energy distribution
of cosmic γ radiation to reason about the characteristics of celestial objects emitting such
radiation. One prominent tool in this field are Imaging Air Cherenkov Telescopes (IACTs),
which are placed at high altitudes on the surface of our planet. Since it is not viable to
detect high-energy γ particles directly there, IACTs record Cherenkov light emitted by
a cascade of secondary particles, instead. Such cascades, called air showers, are induced
by γ particles interacting with Earth’s atmosphere. Since the γ radiation is not directly
measured by the telescopes, deconvolution is applied to reconstruct the energy distribution
from the related Cherenkov light recorded by IACTs. Figure 1.1 presents this setup.

Atmosphere

Telescope

γ Particle

Air Shower

Cherenkov Light

Reconstruction

Figure 1.1: A γ particle hitting Earth’s atmosphere produces a cascade of secondary particles, the
air shower. This shower emits Cherenkov light, which is measured by an IACT. The distribution
of γ particles is reconstructed from IACT measurements [1].

1

Figure 2.1: Reconstruction of the distribution of γ particles from measurements
of the telescope [4, 7].
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6 CHAPTER 2. DECONVOLUTION

The relationship between the observations and the target quantity is modeled by a De-
tector Response Function. R(xi, yi) represents the probability for the target value yi given
that the observation is xi. The interaction betweenX and Y is too complex to be encoded
manually in a function. Therefore, R is estimated using simulated data. The observations
are obtained by the convolution of R and the target Y . Of interest is the distribution f(y),
the distribution of particle energy. To get f(y) the model has to be inverted. Therefore,
this procedure is called deconvolution (or unfolding). In the continuous case there is no
closed form for the calculation, which is why there are different methods to iteratively
adjust f to g and R. Classical deconvolution methods discretize the measurements and
then solve the discretized problem. DSEA uses an alternative approach that incorporates
a classifier to estimate a discrete density. At the end of the chapter necessary steps are
presented to extend DSEA by a regression method. In this way the estimation of a contin-
uous density and thus the solution of the continuous problem (2.1) becomes feasible. For
a more detailed overview of the introduced deconvolution methods, please refer to [7].

2.2 Classical Discrete Deconvolution

Classical deconvolution methods such as Iterative Bayesian Unfolding (IBU) and Regular-
ized Unfolding (RUN) solve a discrete reformulation of the continuous problem (2.1):

g = Rf . (2.2)

Discrete probability densities f , g and a matrix R as Detector Response Function are used
for this purpose. In the IACT domain, the target quantity (the energy γ) is one-dimensional
and can easily be discretized into equidistant intervals. There are several options to clus-
ter the usually multidimensional observations into a finite number of subspaces to get a
discretized one-dimensional representation. Decision trees showed promising results achiev-
ing such a clustering [5]. By interpreting the leaves of the tree as clusters the examples
are assigned a cluster depending on the leaf they end up. Decision trees are covered in
chapter 3.5.

The Detector Response Matrix indicates the relationship between the observations and
the target quantity which is estimated using training data. Each component of the matrix
is assigned the relative frequency Nj,i of the respective observation xj at a fixed target
value yi:

Rj,i =
Nj,i∑
j′ Nj′,i

.

This matrix is better conditioned when the computed clusters correlate with the target
quantity. This explains the advantage of the supervised clustering with decision trees over
classical clustering algorithms that disregard the target variable.
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To get the optimal solution for f in (2.2) one could simply invert R analogue to the
procedure of fitting linear models (see chapter 3.2). This leads to the solution with minimal
sum of squares of the residuals:

f̂ = R+g.

R+ denotes the pseudo inverse, which exists even in the case that R is singular. Unfortu-
nately, this solution has a very high variance. Also, the compliance with the Kolmogorov
axioms is not guaranteed, so that the calculated vector does not have to specify a valid
probability distribution. In addition, this procedure does not prevent a strong dependence
on the distribution of the training data, as these determine the Detector Response Matrix
R. Since this solution is unfavorable, a solution is approached iteratively by reducing the
influence of the distribution of training data in each iteration. This will introduce some bias
in exchange for a lower variance. Iterative Bayesian Unfolding and Regularized Unfolding
are two popular methods that accomplish this. They are described in the following.

2.2.1 Iterative Bayesian Unfolding

Iterative Bayesian Unfolding [10, 11] is an algorithm for the iterative deconvolution of
discrete probability densities. Bayes’ theorem is applied repeatedly so that the solution is
updated in each iteration. Starting from a prior distribution (e.g. uniform distribution)
the updates simply follow Bayes’ theorem:

P(yi|xj) =
P(xj |yi)P(yi)

P(xj)
=

P(xj |yi)P(yi)∑
i′ P(xj |yi′)P(yi′)

.

The conditional probabilities of X given Y are taken from the Detector Response Matrix
and the previous estimate is inserted for the probabilities of the target variable:

f̂
(k)

i =
∑

j

P̂(yi|xj)P̂(xj) =
∑

j

Rj,if̂
(k−1)
i∑

i′ Rj,i′ f̂
(k−1)
i′

gj .

Recall that the observations were clustered and g is the resulting vector containing the
probabilities of each cluster.

This process is repeated until the χ2 distance between two solutions is small enough.
We then assume convergence.

2.2.2 Regularized Unfolding

Regularized Unfolding [3] is another iterative approach to deconvolution. In each iteration
a new solution is estimated by the maximum likelihood method. This method selects
the distribution f of the target quantity that has the highest probability for the given
observation g. To substitute a density function for the likelihood we need to assume
a distribution. After clustering the input space, a Poisson distribution of the absolute
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frequencies Ng with expectations λi = NRi•f is a reasonable assumption. This leads to
the equivalent problem of minimizing the loss function

arg min
f

L(f |g) = arg min
f

− lnP(g|f)

= arg min
f

−
∑

i

ln exp(−NRi•f)
(NRi•f)Ngi

(Ngi)!

= arg min
f

∑

i

(NRi•f −Ngi ln (NRi•f))

︸ ︷︷ ︸
=:`(f)

.

To prevent overfitting, caused by correlation between adjacent bins, a regularization term
is added to the loss function:

`r(f) = `(f) +
τ

2

I−1∑

i=2

(−fi−1 + 2fi − fi+1)
2.

Using the square of the finite differences as approximation for the second derivative the
non-smoothness of f is clearly penalized, favoring smoother solutions. The regularization
parameter τ is not given by the user. Instead, he specifies a number of degrees of freedom for
the solution, which is internally translated to a corresponding value of τ by the algorithm.
This value might change in every iteration complying with the given degrees of freedom
which gives an advantage over using a constant value defined by the user.

Using a Newton optimizer [30] a new solution for the target density is computed in each
iteration. This procedure is repeated until convergence. Convergence is assumed, when
the likelihoods of two successive solutions do not differ enough.

In the original RUN publication [2] the estimated density was interpolated using B-
Splines. B-splines are smooth functions with optimal approximation properties [42] when
connecting a set of pairs (yi, pi). A cubic B-splines of order k fits polynomials of degree
k−1 for every interval [yi, yi+1]. At the interval boundaries the polynomials of the adjacent
intervals match in functions values and the first k − 2 derivatives. As a result, the whole
function is k − 2 times continuously differentiable. While the estimation is technically
continuous it only depends on the function values at the interval boundaries. In between,
the function is smoothly fit without knowledge about the underlying distribution in these
areas. In contract, histograms do not misguide the user by presenting a smoother solution
than the actual fit. The B-splines approach was dropped in later publications in favor of
histograms [3].
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2.3 Deconvolution as a Classification Task

2.3.1 DSEA

The deconvolution problem can be transformed into a multinomial classification problem.
This allows many tools from the field of machine learning to be used. DSEA and DSEA+

use a classifier to reconstruct the desired distribution. An advantage is that during the
reconstruction of the distribution the contributions of each example are accessible. This
enables the possibility of unfolding in a sliding window by aggregating only the contribu-
tions of individual examples, which is advantageous for analyses of IACT data where γ ray
sources change their emission over time.

In order to use DSEA [36, 37] with a classifier, the continuous state space of the
target variable is partitioned into half-open intervals. These correspond to the classes of
the classification, such that the classifier learns to predict the associated subspace of an
example. For partitioning, the same intervals can be selected as in the classical methods. It
is common to select equidistant intervals so that the resulting histogram is also equidistant.
For each observation, the classifier predicts a class that corresponds to an interval of the
target variable. After the aggregation of the classifier’s predictions, the target density
is obtained in a discretized form. Instead of aggregating only the predicted classes, the
probabilities of all classes are included. These so-called confidence values represent the
conditional probabilities of all classes given an observation:

cM (yi|x) = P̂(Y = yi|X = x).

By considering all conditional probabilities, the uncertainty of the respective estimate
is also taken into account. Neglecting these uncertainties leads to worse deconvolution
results [36]. According to the law of total probability the distribution of the target is
estimated by averaging the confidence values:

f̂i =
1

N

∑

n

cM(i|xn).

After the training, the output of the classifier depends on the distribution of the training
data. This prior distribution generally does not match the unknown distribution of the
target quantity. To reduce the influence of the prior, the solution is iteratively improved
by adjusting the distribution of the training data to the calculated intermediate solution.
For this purpose, the individual examples are re-weighted. Thus, the training distribution
approaches the (unknown) distribution of the target variable in each iteration. After each
update, the classifier is trained on the re-weighted training data. DSEA allows for the
specification of arbitrary prior distributions by weighting the training data ahead of the
first iteration.

The termination criterion of a minimum distance between two consecutive estimations
is parameterized using data from simulations and is therefore rarely used. Instead, the
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number of iterations is predefined. However, this number is also estimated from experi-
ments with simulated data. In [7] it was shown that the estimations can degrade when the
algorithm is not stopped after a suitable solution has been found. This problem is solved
in DSEA+ by adjusting the re-weighting of the training data.

2.3.2 DSEA+

DSEA+ [8] improves DSEA by two features. It solves an issue with the re-weighting of the
training data and introduces an adjustable step size between two estimations.

After the re-weighting step in DSEA, the distribution of the training data is intended
to match the current estimation. However, the class sizes are not taken into account, which
means that classes with many examples are weighted higher than they should be. DSEA+

solves this problem by correctly dividing the weights by the number of class examples.
Thus, the aggregated density at the location of the class matches the desired value:

w(k)+
n =

f̂
(k−1)
i(n)

f ti(n)
. (2.3)

f̂
(k−1)

is the estimated distribution of the target from the previous iteration and f t the
distribution of the training data. The corresponding index i of the bin, in which example xn
is located, is indicated here with i(n). Modifying the weight update resolves the divergence
problem of DSEA.

In addition, a step size α from one solution to the next is proposed to regulate conver-
gence. Alongside various decay strategies for the step size adjustment, an adaptive step
size using the regularized likelihood from RUN (section 2.2.2) has proven to be particularly
effective. This strategy chooses the step size that maximizes the regularized likelihood `r
in the search direction p(k):

α
(k)
RUN ← arg min

α≥0
`r

(
f̂
(k−1)

+ α · p(k)
)
.

The search direction is determined by DSEA by the difference between the current and
the previous estimation:

p
(k)
i =

1

N

∑

n

cM(i|xn)− f̂ (k−1)i .

The algorithm stops if the new estimation is too close to the previous estimation. The χ2

distance suggested for DSEA is used for this purpose. Since adaptive step sizes larger than
1 are also possible, DSEA+ can converge much faster. This allows the stopping criterion
to be reached earlier, saving time and resources. DSEA+ is specified in algorithm 1.
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Algorithm 1 DSEA+: Improved Dortmund Spectrum Estimation Algorithm
Input:
Observed data set Dobs = {xn ∈ X | 1 ≤ n ≤ N}
Training data set Dtrain = {(xn, yn) ∈ X × R | 1 ≤ n ≤ N ′}
Minimal χ2 distance ε > 0 between iterations (default: 10−6)
Prior density f̂

(0)
(default: f̂ (0)i = 1

I ∀1 ≤ i ≤ I)
Output:
Estimated target density f̂ ∈ RI

1: k ← 0

2: repeat
3: k ← k + 1

4: ∀1 ≤ n ≤ N ′ : w(k)+
n =

f̂
(k−1)
i(n)

f t
i(n)

5: InferM from Dtrain weighted by w(k)+

6: ∀1 ≤ i ≤ I : p
(k)
i ← 1

N

∑
n cM(i|xn)− f̂ (k−1)i

7: α
(k)
RUN ← arg minα≥0 `r

(
f̂
(k−1)

+ α · p(k)
)

8: f̂
(k) ← f̂

(k−1)
+ α

(k)
RUN · p(k)

9: until χ2
Sym

(
f̂
(k)
, f̂

(k−1)) ≤ ε

10: return f̂ ← f̂
(k)

2.4 Deconvolution as a Regression Task

In [8] deconvolution was formulated as a classification problem. Since we are interested in
the density of a continuous latent variable (the particle energy in the IACT domain), it
may be more suitable to use regression techniques instead of classifiers. Direct prediction of
target variables instead of representative bins will allow us to estimate a continuous density.
In doing so, the estimated target density depends on the prediction of every observation
instead of a fixed number of bins, as in the B-spline approach (see chapter 2.2.2). This leads
to more granular estimations and hopefully to an increased accuracy of the deconvolution.
Also, binning the data loses information about how far apart different bins are to each other
as each bin is considered an orthogonal direction. In reality some bins are nearer and this
information might be useful for the model. The current specification of the algorithm does
not allow the use of regression methods. To overcome this, we must explore appropriate
regression techniques that

• Support weighted training to re-weight the training samples in each iteration

• Return the uncertainty of each prediction as standard deviation or prediction interval
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In the following chapter 3 we explore different regression methods that satisfy these con-
ditions. To fully adapt DSEA to regression tasks and estimate continuous densities, larger
adjustments are required:

• Remove the dependency on binning the data

• Explore options for the estimation of a continuous target density from the predictions

Density estimators are reviewed in chapter 4.



Chapter 3

Regression Analysis

Classification and regression analysis are two types of supervised learning. The goal of
supervised learning is to infer the relation between a set of input variables X1, . . . ,Xn

and the output variable Y . The output can also be multidimensional, but is the one-
dimensional energy γ in our use case. Usually we have a training set (Xtrain,ytrain) of
measured values and target values and another set Xobs where values for the target variables
are missing. The supervised learning model learns about the relation between X and Y
using the training set. Then the model is used to make predictions about Y for Xobs.
Depending on the image of Y we call the method either classification (when we predict
quantitative outputs) or regression (when we predict qualitative outputs).

When employing a regression model the focus is usually on the predictions. The model
seeks a function for predicting output values given some values as input. The output can
be interpreted as expectation of the estimated conditional density:

f(x) = E(Y |X = x). (3.1)

But when additional properties of the random variable Y are of interest, regression mod-
els can be used as conditional density estimators. This is the case in DSEA where the
uncertainty, a quantification of the accuracy of the predictions, is used to improve the
estimation.

3.1 Uncertainty

For many applications returning the confidence of each estimation can be beneficial. In
DSEA, the conditional probabilities of all classes form the confidence values. These con-
ditional distributions are aggregated instead of just the predicted classes to improve the
estimation. When used with a regression method, at least a second value, the uncertainty
σ̂, must be returned in addition to the estimator ŷ from the regression. This allows any
confidence interval of the estimator to be calculated as [ŷ± qσ̂]. Here q is a suitable factor

13
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depending on the distribution of the estimator. Instead of a symmetric interval, there
are also approaches that return a lower and an upper uncertainty. Then the confidence
intervals can be calculated as [ŷ − qlσ̂l, ŷ + qrσ̂r].

If the distribution of the estimator is not known and no distribution assumption can
be made, confidence intervals can be determined by cross-validation. The model is trained
on the subset of the training data and evaluated using the remaining observation. To
reduce the variance, multiple rounds of cross-validations are performed, interchanging the
different partitions of the data. From the validation results the predictive performance of
the model can be estimated, but we also get a non-parametric estimation of the uncertainty.
Since this method is much more computationally demanding, we concentrate on regression
methods that allow direct access to the uncertainty of estimations.

Traditionally, statistics offer various approaches to calculating uncertainties. These
primarily include intervals based on the linear model:

• Point-wise confidence intervals

• Simultaneous confidence intervals and

• Prediction intervals.

In addition, there are methods from the field of machine learning that provide infor-
mation on uncertainty. For DSEA it is also necessary that these support a weighting of
the training data. The following regression methods have shown to be suitable for this
purpose:

• Kernel ridge regression,

• Gaussian process regression,

• Mondrian tree and Mondrian forest regression.

These methods are now described in detail with an emphasis on the output of uncer-
tainties.

3.2 Linear Regression

Linear models [16] are used for the statistical analysis of relationships between input vari-
ables and the target variable. The linear regression model is limited to a linear relationship:

y = Xβ + e.
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46 3. Linear Methods for Regression

x1

x2

y

ŷ

FIGURE 3.2. The N-dimensional geometry of least squares regression with two
predictors. The outcome vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection ŷ represents the vector
of the least squares predictions

The predicted values at an input vector x0 are given by f̂(x0) = (1 : x0)
T β̂;

the fitted values at the training inputs are

ŷ = Xβ̂ = X(XTX)−1XTy, (3.7)

where ŷi = f̂(xi). The matrix H = X(XTX)−1XT appearing in equation
(3.7) is sometimes called the “hat” matrix because it puts the hat on y.
Figure 3.2 shows a different geometrical representation of the least squares

estimate, this time in IRN . We denote the column vectors ofX by x0,x1, . . . ,xp,
with x0 ≡ 1. For much of what follows, this first column is treated like any
other. These vectors span a subspace of IRN , also referred to as the column
space of X. We minimize RSS(β) = ‖y −Xβ‖2 by choosing β̂ so that the
residual vector y − ŷ is orthogonal to this subspace. This orthogonality is
expressed in (3.5), and the resulting estimate ŷ is hence the orthogonal pro-
jection of y onto this subspace. The hat matrix H computes the orthogonal
projection, and hence it is also known as a projection matrix.
It might happen that the columns of X are not linearly independent, so

that X is not of full rank. This would occur, for example, if two of the
inputs were perfectly correlated, (e.g., x2 = 3x1). Then XTX is singular

and the least squares coefficients β̂ are not uniquely defined. However,
the fitted values ŷ = Xβ̂ are still the projection of y onto the column
space of X; there is just more than one way to express that projection
in terms of the column vectors of X. The non-full-rank case occurs most
often when one or more qualitative inputs are coded in a redundant fashion.
There is usually a natural way to resolve the non-unique representation,
by recoding and/or dropping redundant columns in X. Most regression
software packages detect these redundancies and automatically implement

Figure 3.1: Least squares linear regression with two predictors. The outcome
vector y is orthogonally projected onto im (X), the hyperplane spanned by the
vectors x1 and x2. The projection ŷ = Xβ̂ represents the vector of predictions by
the model [16].

In this section X refers to the design matrix

X =




1 x1,1 x1,2 ... x1,d

1 x2,1 x2,2 ... x2,d

... ... ... ... ...

1 xn,1 xn,2 ... xn,d



,

β to the regression coefficients and e with E(e) = 0 and Cov(e) = σ2I to the unobservable
measuring errors, such that the expected value of the target variable E(y) = Xβ is linear
in the regression coefficients β. The optimization problem is

β̂ = arg min
β

‖y −Xβ‖ .

A solution is obtained by the projection theorem [35].

3.2.1 Theorem (Projection theorem). For the minimization problem minη∈U ‖y − η‖
there exists a unique solution η̂ with

y − η̂ ⊥ U, that is (y − η̂)Tη = 0 ∀η ∈ U ⊆ Rd.

The optimal solution η̂ is obtained by orthogonal projection onto the vector subspace U.

The theorem is visualized in figure 3.1. It follows from the projection theorem with η = Xβ
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and U = im (X) that a unique minimum norm solution β̂ for the minimization problem
minβ ‖y −Xβ‖ exists. It is obtained from the normal equations

(
y −Xβ̂

)
∈ im (X)⊥ = ker

(
XT
)

⇔ XT
(
y −Xβ̂

)T
= 0

⇔ XTXβ̂ = XTy.

im (A), ker (A) and A⊥ denote the column space, the null space and the orthogonal
complement of A respectively. If

(
XTX

)−1 exists, we obtain the least squares estimator

β̂ =
(
XTX

)−1
XTy. (3.2)

By the Gauss-Markov theorem we know that this is the best linear unbiased estimator
(BLUE), as it has the smallest variance of all linear estimators. If XTX is singular the
least squares estimator can be calculated using the pseudo inverse [27] X+:

β̂ = X+y.

For each matrix A there is a unique pseudo inverse A+. If A is invertible, then A+ = A−1

holds. This means that using the pseudo inverse also yields the Gauss-Markov estimator
if it exists.

The prediction from a linear regression model is obtained by ŷ = Xβ̂. An unbiased
estimator for the variance is the mean squares error (MSE)

σ̂2 =
1

ndf
‖y − ŷ‖2 . (3.3)

The degrees of freedom ndf are determined by n − rank (X) for the number of training
samples n.

3.2.1 Confidence and Prediction Intervals

The MSE is used for the construction of various confidence intervals [38]. Confidence
intervals specify a range for the parameter of interest. Each interval is associated with a
certain probability (1−α) that the true parameter is captured by the interval. α is referred
to as the significance level of the interval. Due to

xTn+1β̂ ∼ N
(
xTn+1β, σ

2
(
xn+1

T
(
XTX

)+
xn+1

))

we can use the variance of the estimation to construct point-wise (1−α) confidence intervals
for the expectation E(y|xn+1) at the location xn+1:

[
xTn+1β̂ ± σ̂t1−α2

√
xTn+1 (XTX)+ xn+1

]
. (3.4)
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Here t1−α
2
denotes the (1 − α

2 ) quantile of the t-distribution. It is used instead of the
quantile of the normal distribution because the variance is estimated from the data. In
contrast to the confidence intervals for the expected value, the prediction interval specifies
an interval for a prediction itself. Because of y(xn+1) ∼ N

(
xTn+1β, σ

2
)
and y(xn+1) is

stochastically independent of y1, . . . , yn we obtain the distribution of the residuals:

xTn+1β̂ − y ∼ N
(
xTn+1β, σ

2
(

1 + xn+1
T
(
XTX

)+
xn+1

))
.

The consequential (1− α) prediction interval
[
xTn+1β̂ ± σ̂t1−α2

√
1 + xTn+1 (XTX)+ xn+1

]
(3.5)

contains on average (1−α) ·100% of all predictions (if test and training data come from the
same distribution). Note the additional 1 within the square root compared to the point-wise
confidence interval (3.4). In addition to the uncertainty of the parameter estimation, the
random dispersion of the individual values is also included. Thus, the prediction interval
is always greater than the confidence interval of the same significance level. Prediction
intervals are of more practical use than confidence intervals. This is because they are
not only concerned with the accuracy of predicting the true regression, but also with the
accuracy of predicting the target values.

3.3 Kernel Ridge Regression

Regularization techniques try to reduce the variance of the estimate to avoid overfitting
to the training data. This can be done, for example, by punishing high parameter values.
Ridge regression [20] regularizes the optimization problem of the linear model with the `2
norm of the regression coefficients. The solution extends to

β̂ = arg min
β

‖y −Xβ‖2 + λ ‖β‖2

= arg min
β

∥∥∥∥∥

(
y

0n×1

)
−
(

X√
λIn×n

)
β

∥∥∥∥∥

2

(3.2)
=



(

X√
λIn×n

)T (
X√
λIn×n

)

−1(

X√
λIn×n

)T (
y

0n×1

)

=
(
XTX + λI

)−1
XTy

= XT
(
XXT + λI

)−1
y.

The last step follows from the push-through identity [17]. The regularization parameter
λ controls the amount of penalty. The higher the value for λ is selected, the smaller the
calculated regression coefficients become.
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Kernel ridge regression [28] additionally uses the kernel trick [26], which allows for
non-linear regression planes. The data is transformed into a high-dimensional space by
a feature map φ. A linear function is fitted in the feature space, which corresponds to
a non-linear function in the original space. The feature mapping does not have to be
calculated explicitly and does not even have to be known. It is sufficient to specify the
similarity of any pair xi,xj as scalar product in the feature space by a using a kernel
K(xi,xj) = φ(xi)

Tφ(xj). By defining the kernel matrices Σ to contain the kernel of each
pair of elements the prediction of a kernel ridge model can be written as

ŷn+1 = φ (xn+1)
T β̂φ(X)

= ΣxTn+1,X
T

(
ΣX,XT + λI

)−1
y.

3.3.1 Asymptotic Prediction Interval

Härdle [14] gives an asymptotic distributional approximation relating to the Nadaraya-
Watson estimator [29]:

√
n
ŷ(xn+1)− y(xn+1)√

σ2(xn+1)‖K‖2
f(xn+1)

→ N (b, 1) . (3.6)

where the bias b is a complicated function of f(xn+1) and y(xn+1). If it would be possible
to compute the bias, we should have done that in the first place to arrive at a better
estimator. Instead, he assumes the bias is of negligible size compared to the variance. By
deploying natural estimators for the variance σ2 (3.3) and the density f (see section 4.2) we
use this convergence to compute asymptotic (1−α) prediction intervals analogue to (3.5):

[
ŷ(xn+1)± σ̂(xn+1)t1−α

2

√
1 +

‖K‖2

f̂(xn+1)

]
.

3.4 Gaussian Processes

A Gaussian process [47] is a stochastic process in which each function value is modeled
by a normal distribution. The normal distributions are stochastically dependent on each
other. The dependencies are determined by their proximity using a kernel K:

ΣX,XT =




K(x1,x1) K(x1,x2) ... K(x1,xn)

K(x2,x1) K(x2,x2) ... K(x2,xn)

... ... ... ...

K(xn,x1) K(xn,x2) ... K(xn,xn)



.

Gaussian processes can be used for regression to make probabilistic predictions. Given
an expectation and a learned covariance matrix, a conditional distribution is calculated
at any new location. This procedure is made possible by the following property of the
multivariate normal distribution.
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3.4.1 Theorem (Conditional normal distribution). Let X1,X2 be jointly normally

distributed:

(
X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

))
. Then X2 is conditionally normally

distributed given X1 = x1 with

X2|X1 = x1 ∼ N
(
µ2 + Σ2,1Σ

−1
1,1(x1 − µ1),Σ2,2 −Σ2,1Σ

−1
1,1Σ1,2

)
.

To use the theorem, the joint distribution of the training data X = x, which are
assumed to make up a multivariate normal distribution, and a new observation xn+1 is
formed. The joint covariance matrix is modeled using the kernel K again:

ΣX∪xn+1,(X∪xn+1)
T =




ΣX,XT K(x1,xn+1)

...

K(xn+1,x1) ... K(xn+1,xn+1)




=

(
ΣX,XT ΣX,xn+1

ΣxTn+1,X
T K(xn+1,xn+1)

)
.

A prediction is then made as the expected value of the distribution at the desired location
conditional on the distribution of the training data. From theorem 3.4.1 follows:

f̂(xn+1) = µxn+1 + ΣxTn+1,X
TΣ−1

X,XT (y − µX). (3.7)

The expected values µxn+1 ,µX are usually set to zero or to the mean value of the training
data. Alternatively, a trend can be modeled by using estimated regression coefficients to
specify a mean vector.

In addition, an estimated uncertainty of the prediction can be obtained from the vari-
ance of the conditional distribution:

σ̂2(xn+1) = K(xn+1,xn+1)−ΣxTn+1,X
TΣ−1

X,XTΣX,xn+1 .

3.4.1 Regularization

In its basic form the Gaussian process interpolates the training data: f(x) = f̂(x). The
prediction uncertainty at these points is σ̂2(x) = 0. If this is not desirable because the
data itself is stochastic or even necessary when identical observations have different tar-
get values, then noise is added to the diagonal of the learned covariance matrix (i.e. the
modeled variance of the data). This regularizes the model. Another interpretation moti-
vates the prevention of the singularity of the matrix by adding a scaled unit matrix to the
covariance matrix. In addition, high variances of the calculated solution that occur with
multicollinearity can be counteracted as it reduces the condition number of the matrix,
making the inversion numerically more stable. Consequently, the prediction becomes as
follows:

f̂(xn+1) = µxn+1 + ΣxTn+1,X
T

(
ΣX,XT + λI

)−1
(y − µX). (3.8)
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Note the equivalence of (3.8) to kernel ridge regression (section 3.3) when using zero mean.
Despite this, the solution can still differ since the hyperparameters of the kernel function
are optimized differently. In addition, Gaussian processes are capable of estimating the
variance due to their stronger theoretical foundation. For the variance estimator follows
analogously:

σ̂2(xn+1) = K(xn+1,xn+1)−ΣxTn+1,X
T

(
ΣX,XT + λI

)−1
ΣX,xn+1 .

In this termK(xn+1,xn+1) is simply the prior covariance. Subtracted is a term representing
the information the data gives us about the distribution at xn+1. To get the predictive
distribution we simply add λ to the variance as in (3.5). By using the

(
1− α

2

)
-quantile of

the standard normal distribution we obtain the prediction intervals:

[
f̂(xn+1)± z1−α

2

√
λ+ σ̂2(xn+1)

]
.

3.4.2 Weighted Training

The implementation of Gaussian processes in scikit-learn [32] does not support weighted
training. Re-weighting the training set in every iteration is mandatory for good deconvo-
lution results with DSEA. To enhance Gaussian processes by weighted training we take
a closer look at the prediction function (3.8). The influence of input variables x1, . . . ,xn

takes place in the kernel matrices Σxn+1,X and ΣX + λI. To have some observations have
higher influence than others we could scale the kernel function depending on the obser-
vations. Alternatively, we could vary the noise level λ for each observation. We compare
both approaches.

We begin with the varying noise level approach. For every observation we compute an
individual noise level be factoring in their weight wi:

λ′i =
λ

wi
. (3.9)

This causes the impact of observations to be proportional to their weight. When the weight
is 1 this reduces to λ which matches the unweighted training. When the weight decreases,
the noise approaches infinity.

On the other hand, the weighted Gaussian process regression scales each kernel by the
root of the corresponding weights so that the prediction function accumulates to

f̂(xn+1) = µxn+1 +wT
r �ΣxTn+1,X

T

(
wrw

T
r �ΣX,XT + λI

)−1
wr � (y − µX)

= µxn+1 + ΣxTn+1,X
T diag (wr)

(
diag (wr) ΣX,XT diag (wr) + λI

)−1 diag (wr) (y − µX)

where wr is the element-wise root of w and � denotes the Hadamard product (element-
wise product). We assume that the weights sum up to n:

∑
iwi = n. Note, that the labels
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Figure 3.2: Weighted Gaussian process regression on a small synthetic data set.
The data was sampled from two distributions, one of which represents a noise
cluster. The observations were weighted according to the distribution from which
they were obtained. The larger the point in the plot, the higher the weight. The left
panel shows the fit on unweighted data. When assuming that the bottom cluster is
of greater importance by assigning them higher weights the model adjusts the fit
in the region of the cluster (center). Provided that noise points can be detected to
adjust the weights accordingly, the Gaussian process can find a much better fit for
the remaining observations (right).

y must be weighted, too. Let D be the diagonal matrix D = diag (wr), therefore D−1

exist:

f̂(xn+1) = µxn+1 + ΣxTn+1,X
TD

(
DΣX,XTD + λI

)−1
D(y − µX)

= µxn+1 + ΣxTn+1,X
T

(
D−1

(
DΣX,XTD + λI

)
D−1

)−1
(y − µX)

= µxn+1 + ΣxTn+1,X
T

(
ΣX,XT + λD−1D−1

)−1
(y − µX)

= µxn+1 + ΣxTn+1,X
T

(
ΣX,XT + λdiag

(
1

w1
, . . . ,

1

wn

))−1
(y − µX).

Comparing this result to the variable noise Gaussian process regression we observe that
the prediction functions match when using a noise level as in (3.9). We proved that both
approaches are equivalent.

As seen in figure 3.2 using weighted observations can improve the estimation signifi-
cantly when assigning reasonable weights. The possibility of a weighted training makes
Gaussian processes usable for our application.
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3.5 Decision Trees

A decision tree [6] divides the feature space recursively. The splits are determined during
training by greedily maximizing a purity measure. In this way, an attempt is made to
separate the data into groups that are as pure as possible. Regression trees often minimize
the variance of the target variable in the nodes induced by the split. For inference, the
tree is tracked from the root to a leaf through the usually binary decisions and then the
representative class of the leaf is returned. In regression analysis, the returned value is the
arithmetic mean of all target values of the training data that ended up in the relevant leaf.

A random forest combines several decision trees to form an ensemble. Decorrelation of
the individual models is a key factor in minimizing generalization errors. If no action is
taken, all models may learn the same and the ensemble may no longer offer benefits. To
support diversity, each tree is trained with its own bootstrap (subsample of the training
data). In addition, only a random subset of all features are available in each split (typically√
d many for the number of features d). In order to infer from a forest, the outputs of the

individual trees are aggregated to form a single output.

3.6 Mondrian Trees

Since the subspaces in the binary splits of the decision trees extend infinitely, data in
unknown areas is also located in a subspace and is assigned the value of the corresponding
leaf, although there is great uncertainty. Generally, there is no specification about the
uncertainty of an output. Mondrian Trees [22, 23] try to solve these problems by taking
into account the boundaries of the training data when passing through each node and by
considering not only the leaf but all nodes on the path for the prediction. As with decision
trees, multiple Mondrian trees can be combined to form an ensemble. The ensemble is
called Mondrian forest.

Mondrian Trees select the feature for the next split randomly proportional to its range
of values. The threshold of the split is selected randomly from a uniform distribution. The
minima and maxima are determined by the training data set. Thus, features with a wide
range of values are drawn more frequently. The impurity does not matter for the split.

Each new node j stores a bounding box (lj ,uj) that surrounds all training data within
the subspace defined by the node. In addition, for each node the mean value and the
standard deviation of the respective observations are stored and a value τ is assigned. τ
is called the time of the split and is drawn from the exponential distribution with λ =

‖uj − lj‖1. Large bounding boxes result in large values for τ . The differences to ordinary
decision trees are illustrated in figure 3.3.
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Figure 1: Example of a decision tree in [0, 1]2 where x1 and x2 denote horizontal and vertical axis respectively:
Figure 1(a) shows tree structure and partition of a decision tree, while Figure 1(b) shows a Mondrian tree. Note
that the Mondrian tree is embedded on a vertical time axis, with each node associated with a time of split and
the splits are committed only within the range of the training data in each block (denoted by gray rectangles).
Let j denote the left child of the root: Bj = (0, 0.37]× (0, 1] denotes the block associated with red circles and
Bx

j ⊆ Bj is the smallest rectangle enclosing the two data points.

processes on RD are, in general, infinite structures that we cannot represent all at once. Because we
only care about the partition on a finite set of observed data, we introduce Mondrian trees, which
are restrictions of Mondrian processes to a finite set of points. A Mondrian tree T can be represented
by a tuple (T, δ, ξ, τ ), where (T, δ, ξ) is a decision tree and τ = {τj}j∈T associates a time of split
τj ≥ 0 with each node j. Split times increase with depth, i.e., τj > τparent(j). We abuse notation and
define τparent(ε) = 0.

Given a non-negative lifetime parameter λ and training data D1:n, the generative process for sampling
Mondrian trees from MT (λ,D1:n) is described in the following two algorithms:

Algorithm 1 SampleMondrianTree
(
λ,D1:n

)

1: Initialize: T = ∅, leaves(T) = ∅, δ = ∅, ξ = ∅, τ = ∅, N(ε) = {1, 2, . . . , n}
2: SampleMondrianBlock

(
ε,DN(ε), λ

)
� Algorithm 2

Algorithm 2 SampleMondrianBlock
(
j,DN(j), λ

)

1: Add j to T
2: For all d, set �xjd = min(XN(j),d), u

x
jd = max(XN(j),d) � dimension-wise min and max

3: Sample E from exponential distribution with rate
∑

d(u
x
jd − �xjd)

4: if τparent(j) + E < λ then � j is an internal node
5: Set τj = τparent(j) + E
6: Sample split dimension δj , choosing d with probability proportional to ux

jd − �xjd
7: Sample split location ξj uniformly from interval [�xjδj , u

x
jδj

]

8: Set N(left(j)) = {n ∈ N(j) : Xn,δj ≤ ξj} and N(right(j)) = {n ∈ N(j) : Xn,δj > ξj}
9: SampleMondrianBlock

(
left(j),DN(left(j)), λ

)

10: SampleMondrianBlock
(
right(j),DN(right(j)), λ

)
11: else � j is a leaf node
12: Set τj = λ and add j to leaves(T)

The procedure starts with the root node ε and recurses down the tree. In Algorithm 2, we first
compute the �xε and ux

ε i.e. the lower and upper bounds of Bx
ε , the smallest rectangle enclosing

XN(ε). We sample E from an exponential distribution whose rate is the so-called linear dimension
of Bx

ε , given by
∑

d(u
x
εd − �xεd). Since τparent(ε) = 0, E + τparent(ε) = E. If E ≥ λ, the time of split

is not within the lifetime λ; hence, we assign ε to be a leaf node and the procedure halts. (Since
E[E] = 1/

(∑
d(u

x
jd − �xjd)

)
, bigger rectangles are less likely to be leaf nodes.) Else, ε is an internal

node and we sample a split (δε, ξε) from the uniform split distribution on Bx
ε . More precisely, we

first sample the dimension δε, taking the value d with probability proportional to ux
εd − �xεd, and then

sample the split location ξε uniformly from the interval [�xεδε , u
x
εδε

]. The procedure then recurses
along the left and right children.

Mondrian trees differ from standard decision trees (e.g. CART, C4.5) in the following ways: (i)
the splits are sampled independent of the labels YN(j); (ii) every node j is associated with a split

3

Figure 3.3: Panel (a) shows tree structure and partition of a decision tree, while
panel (b) shows the corresponding Mondrian tree. Each node in the Mondrian tree
is associated with a time τ ∈ (0,∞) of the split. Also, the splits are committed only
within the range of the training data in each block (denoted by gray rectangles). For
example, consider the rectangle Bj associated with the red circles: Bj = [0, 0.37]×
[0, 1] and B∗

j ⊆ Bj is the smallest rectangle enclosing the two data points. [22]

Inferring from the model aggregates the distribution of all nodes on the path to the
predicted leaf:

P(y|X = x) =
∑

i

wiPµi,σi .

For this mixture distribution, the expectation

µ =
∑

i

wiµi (3.10)

and the variance

σ2 =
∑

i

wiµ
(2)
i −

(∑

i

wiµi

)2

=
∑

i

wi
(
µ2i + σ2i

)
− µ2 (3.11)

can be calculated from its components. µ(2)i denotes the second moment of the i-th com-
ponent. The weighting of the distributions is described in the following section.

3.6.1 Calculating the Node Weights

Two factors are used to determine the weights wj of all nodes j when predicting the target
value for a new observation xn+1. ∆j indicates how much a bounding box decreases in
comparison to the parent node, while ηj indicates the distance to the bounding box if the
point is located outside:

∆j = τj − τparent(j)
ηj =

∑

i

(max(xn+1,i − uj,i, 0) + max(lj,i − xn+1,i, 0)) .
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pj is defined as the probability of separation: the probability that xn+1 does not fit into
the subspaces of the training data. The higher ∆j and ηj , the higher the probability of
separation:

pj(xn+1) = 1− exp (−∆jηj(xn+1)) .

The weight of a node indicates the probability that xn+1 will not fit into the subspaces of
the training data starting from this node. For this, pj is multiplied by the complementary
probabilities that the point already did not fit at the parent nodes. The remaining weight
is assigned to the leaf nodes causing the weights of each path to add up to 1:

wj(xn+1) =





1−∑k

(
pk(xn+1)

∏
i∈anc(k)(1− pi(xn+1))

)
if j is leaf

pj(xn+1)
∏
i∈anc(j)(1− pi(xn+1)) else.

(3.12)

By using a probability model, the bounding boxes do not impose hard thresholds.
Instead, the more the bounding boxes are exceeded, the smaller are the weights of the
child nodes. If the distance of a new observation to the training data is very large, the
weights approach zero and the distribution of the root will be output. This is the prior
distribution determined by the entire training data. On the other hand, an observation
from the training set lies within all bounding boxes on its path, so all probabilities of
separation are zero. The leaf is assigned weight 1 and all other nodes are assigned zero
weight. This is ordinary decision tree inference.

3.6.2 Prediction Interval

In order to determine a prediction interval from the calculated variance (3.11), the dis-
tribution of the estimator must be known. We consider two methods based on different
assumptions. Assuming that the target variable is distributed normally in each node, the
aggregated distribution is a mixture of Gaussians

FY (y) =

∫ x

−∞

∑

i

wiPµi,σi(x) dx

=
∑

i

wi

∫ x

−∞
Pµi,σi(x) dx

=
∑

i

wiΦ

(
x− µi
σi

)
(3.13)

with the cumulative distribution function Φ of the standard normal distribution. Unfortu-
nately, there is no closed form for the quantile function F−1Y . We can still get any q-quantile
numerically by computing the root of FY − q (see figure 3.4).

Because any quantile falls between the minimum and the maximum of the quantiles of
the components, the search interval can be restricted to
[
min
i

(
Φ−1

(
x− µi
σi

))
,max

i

(
Φ−1

(
x− µi
σi

))]
=

[
min
i

(µi + σizq),max
i

(µi + σizq)

]
.
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Figure 3.4: Quantile computation for the mixture of two equally weighted
Gaussian distributions N (10, 1) and N (13, 1). The cumulative distribution func-
tion FY (y) of the mixture is given by (3.13). The 0.05-quantile is the root of
FY (y) − 0.05 ≈ 11.15. Note that the F−1

Y (q) cannot be computed as a linear
combination of the quantiles of the components, since the cumulative distribution
functions are aggregated vertically, not horizontally.

The quantiles allow us to compute the prediction interval of arbitrary significance levels α:

[
F−1Y

(α
2

)
, F−1Y

(
1− α

2

)]
.

Note, that the prediction intervals are likely to be asymmetric about the mean. Since the
quantile computation using the proposed method above is unusually expensive we consider
the simpler interval

[
µ± t1−α

2
σ
]

using equations (3.10) and (3.11). This assumes a normal distribution of the mixture. The
components of the mixture correspond to a decision path from the root of the tree to the
relevant leaf. It follows that each component after the first is estimated from a subsample of
the observations that are used to estimate the previous component. The mixture aggregates
normal distribution that are estimated using highly similar data. Considering this, the
mixture distribution should be sufficiently normal in most cases. Since the variance is
estimated we use the quantiles of the t-distribution again.
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3.7 Other Regression Methods

A variety of other regression methods were considered. These include another tree-based
method, the gradient boosting regression, which allows for optimization of arbitrary dif-
ferentiable loss functions. The Huber loss function

`δ(y, ŷ) =





1
2(y − ŷ)2 for |y − ŷ| ≤ δ,
δ |y − ŷ| − 1

2δ
2 else

is a piece-wise composition of squared and absolute loss functions. The transition point δ
defines points further away to be outliers, where the absolute loss is used. By choosing the
values of δ to be the α-quantile of the distribution y− ŷ, gradient boosting can be used to
predict arbitrary quantiles of the output variable. In this way prediction intervals of any
significance level can be estimated. As with Mondrian trees, the prediction intervals are
asymmetric about the mean.

Another method uses two separate models. One predicts the output, the other predicts
the confidence of the first model. This composite approach is very flexible, since both
models can be built by any regression method.

Improvements in neural networks have undoubtedly led to major advances in supervised
learning. We can use a neural network with an output layer of two neurons to predict the
target variable as well as the confidence of the prediction. An extension for asymmetric
intervals can easily be achieved by selecting three output neurons.

All methods from this chapter are evaluated in the next section with regard to their
output of uncertainties.

3.8 Evaluation

Appropriate regression methods return the local uncertainty of a data point. When the
data point has many neighbors the uncertainty of the prediction should be low, it should
be high with very few or no neighbors. Similarly, the uncertainty should increase with the
variance of the target variable at the location of the data point. These limitations sound
simple and intuitive, yet a short experiment on the Iris flower data set showed that several
regression methods do not satisfy them.

The Iris flower data set is a multivariate data set that was introduced as an example of
linear discriminant analysis. It became a typical test case for many statistical techniques
in machine learning. The data set consists of 50 samples from each of three species of the
Iris flower. Four features were measured from each sample: the length and the width of
the sepals and petals. We use the Petal length to predict the petal width of the samples.
The species, sepal length and sepal width are disregarded. The evaluated methods are:
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• Ordinary least squares linear regression with point-wise confidence intervals and pre-
diction intervals.

• Kernel ridge regression with asymptotic prediction intervals. For the kernel the
Gaussian kernel was chosen.

• Gaussian process regression with 95% prediction intervals. The target values are
normalized to fall back to the mean of the target values in regions where data is
sparse. The regularization parameters α is set to 0.1.

• Mondrian tree and Mondrian forest regression. We use the simple and the numerically
computed 95% prediction intervals.

• Gradient boosting regression with 2.5% and 97.5% quantiles.

• Random forest regression where kernel ridge regression is used to estimate the ab-
solute residuals σ̂ of the random forest. As a local regression method, the kernel
ridge regression predicts zero in regions with no data points. This behavior is not de-
sired in our case. Instead, the model should predict high values in these regions. To
fall back to another prior σ̂prior the standard deviations are shifted before training:
σ̂′ = σ̂− σ̂prior. The shift is reversed after prediction. σ̂prior was chosen as 2 ·max(σ̂).
We use the intervals [ŷi ± t0.975σ̂i] for comparison with the other methods. The kernel
was chosen as Gaussian kernel.

• A Multi-layer perceptron with prediction and standard deviation outputs. The true
standard deviation of the predictions is not known before training. To estimate them,
the same σ̂prior as above is used as the target standard deviation in a first training
session. The network is then re-trained while updating the target standard deviations
to the absolute residuals |y − ŷ|. We use the intervals [ŷi ± t0.975σ̂i] for comparison
with the other methods. The network consists of three hidden layers of size 10 and
is trained with batch size 10. The inputs are chosen as all polynomial combinations
of the features with degree less than or equal 3.

We use the implementation of Mondrian forests in scikit-garden1 and the implementations
in scikit-learn2 for all other methods. Unless otherwise stated default values are used for
all parameters.

As seen in the figure 3.5, linear regression and gradient boosting do not represent
uncertainty particularly well in locations with unknown data. The neural network approach
leads to very different results after each run, none of them significantly better than the
one shown. This is probably due to the small data set. However, since these methods are

1https://github.com/scikit-garden/scikit-garden
2https://github.com/scikit-learn/scikit-learn

https://github.com/scikit-garden/scikit-garden
https://github.com/scikit-learn/scikit-learn
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Figure 3.5: Comparison of the uncertainty estimations of the presented regression
models. In a simple experiment on the Iris flower data set several regression tech-
niques were compared regarding their modeling of uncertainty. Mondrian forests,
Gaussian processes and kernel ridge regression showed promising results as they
increase the uncertainty in locations exempt from data. The composite model is
another option worth exploring but has less theoretical foundation than the afore-
mentioned models. Linear regression, gradient boosting and neural networks are
discarded because their output of uncertainties do not meet our requirements.

not convincing in this simple example, they are not considered further. The uncertainty
was best modeled by Mondrian forests, Gaussian processes and Kernel regression. The
composite model, where the second model predicts the uncertainty of the first, is another
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promising method worth investigating. By using a kernel ridge regression as the second
model any regression model can be amplified to return uncertainties.

We have now found useful regression methods to replace the classifier in the DSEA
algorithm. In the next chapter we explore how we can use the uncertainties returned by
the regression method to improve the estimation of continuous densities.
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Chapter 4

Density Estimation

Statistics deals with tools that allow conclusions to be drawn about the total population
from an observed sample. The density estimation assumes that the sample comes from
an unknown distribution and tries to estimate it using the sample. On the one hand,
there are parametric approaches in which a known distribution family is assumed. Then
only the parameters of the distribution have to be estimated. On the other hand, there
are non-parametric approaches that estimate a density without making any distributional
assumptions. These are more flexible and therefore more relevant for estimating the distri-
bution of γ particle energy in Cherenkov astronomy. For this reason, the present chapter
is limited to non-parametric methods. Before we move onto continuous density estimation
we review the current method for estimation: the histogram.

4.1 Histogram

The oldest and most popular density estimator is the histogram [40]. For histograms,
the value range is divided into usually equidistant intervals and the numbers of sample
elements in the individual ranges are counted. The relative number gives the value of the
density at the respective position. The equidistant intervals are calculated as

[x0 +mh, x0 + (m+ 1)h),m ∈ Z.

with x0 the starting point and h the bin width. The density is then defined as

f̂(x) =
number of Xi in the same bin as x

nh
.

This histogram estimates a discrete density that has steps at the interval boundaries. It
thus assigns the same estimate to each location within a bin. This makes histograms an easy
to use and to interpret density estimator and an excellent choice for data representation.
This advantage diminishes in an iterative application of density estimation, where the
individual densities are not examined. As we see later in this chapter the histogram is, in
fact, an inefficient use of the data.

31
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Figure 4.1: Impact of starting point selection for histograms. A major problem
with histograms is that the choice of binning can have an excessive effect on the
resulting visualization. Not only the choice of the bin width and the number of
bins, but also the choice of the starting point of the bins are non-trivial decisions.
Both histograms are over the same data, but the histogram in the right panel has its
bins shifted (by shifting the starting point x0). The results of the two visualizations
look very different. This might lead to contrasting interpretations of the data.

4.1.1 Bin Width and Starting Point

To construct a histogram, it is necessary to specify a bin width. It controls the trade-off
between bias and variance. A low bin width results in a high variance estimator that may
fit too well to the random noise in the observations. The higher the bin width, the higher
the bias to the uniform distribution. The impact of the bin width is obvious, but also the
chosen starting point of the bins can have major impact on the histogram estimation as
shown in figure 4.1.

4.1.2 Weighted Estimation

Histograms can be adapted to estimate densities of weighted data sets. The weighted
estimator computes a weighted sum of the observations in the same bin instead of just
counting them:

f̂(x) =
sum of weights of Xi in the same bin as x

nh
.

It is assumed that the weights add up to 1. We investigate how the weighted histograms
can improve the estimation when incorporating uncertainties to weight the observations.
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4.2 Kernel Density Estimation

A popular approach in non-parametric density estimation is the kernel density estimator
(KDE) [14, 46]. Intuitively, a kernel K is placed on each observation. Then all kernels are
summed up to obtain the estimation:

f̂(x) =
1

n

∑

i

Kh (x− xi) =
1

nh

∑

i

K
(
x− xi
h

)
. (4.1)

In dense locations many kernels are added on top of each other, resulting in a high value
of the estimated density. The estimator can also be interpreted as a weighted sum of
individually scaled kernels. The kernel determines the shape and the range of the estimated
density. When the kernel function is continuous, the estimation will be too. When the
kernel function has finite support, the estimation will too. A popular kernel is the radial
basis function (RBF) or Gaussian kernel

KGauss(x) =
1√
2π

exp

(
−x

2

2

)

= φ (x) , (4.2)

which results in relative smooth estimates. However, the unbounded support makes it an
expensive choice when estimating the density of large data sets. The Epanechnikov kernel

KEpanechnikov(x) =





3
4

(
1− x2

)
if − 1 ≤ x ≤ 1

0 else
(4.3)

places a similar bell curve on each observation but has finite support. This can be utilized
to efficiently compute the target density at queried locations by partitioning the data
beforehand.

The bandwidth parameter h is required for the calculation of (4.1). Similar to the bin
widths of histograms, this controls the smoothness of the estimator and thus the trade-off
between bias and variance. In the following chapter we discuss a number of options for
selecting a suitable bandwidth. Most options refer to the optimal bandwidth.

4.2.1 Optimal Bandwidth

The choice of bandwidth is of crucial importance when estimating a density and should
always depend on the application. If the density estimation is only intended for visual-
ization purposes, a manual adjustment of the bandwidth may be sufficient until a desired
result is achieved. However, this is not possible for all applications, including the iterative
deconvolution. First of all, a density is estimated in each iteration and should not neces-
sarily always use the same bandwidth. Second, deconvolution should work independently
of the training data for new observations, so manually setting a bandwidth is problematic.
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Figure 4.2: Visualization of the kernel density bias effect with a true density
(solid line) and the expectation of a Gaussian kernel density estimation (dashed
line). This explains why the estimation tends to overestimate local minima and
underestimate local maxima. The model has a tendency (as almost any other
model) to oversmooth sharp peaks in the data [14].

A solution is provided by methods that automatically calculate a suitable bandwidth. To
derive the optimal bandwidth, we take a look at the bias and variance at each location x:

Bias
(
f̂(x)

)
=
h2

2
µ2(K)f ′′(x) + o

(
h2
)
.

µ2(K) denotes the second moment of the kernel. The bias is proportional to h2. Choosing a
small bandwidth reduces the bias. It also depends on the curvature of the density function
at x. As a result, the bias is positive at local minima and negative at local maxima. This
effect is displayed in figure 4.2. For the variance holds:

Var
(
f̂(x)

)
=

1

nh
f(x) ‖K‖2 + o

(
1

nh

)
.

The variance is proportional to f and ‖K‖2 =
∫∞
−∞K(x)2 dx and decreases as nh increases.

Thus, bias and variance vary with the choice of h in opposite directions. This illustrates
the bias-variance dilemma. If one chooses a small bandwidth, the variance becomes large,
if one chooses a large bandwidth, the bias becomes large.

The Mean Squared Error (MSE) combines both properties in one term. Minimizing
the MSE will result in a reasonable trade-off between bias and variance:

MSE
(
f̂(x)

)
= Var

(
f̂(x)

)
+ Bias

(
f̂(x)

)2
.

The term still depends on the location x. The Mean Integrated Squared Error (MISE) [33]
is a global measure by integrating the MSE:

MISE
(
f̂
)

=

∫ ∞

−∞
MSE (f̂(x)) dx

→ 1

nh
‖K‖2 +

h4

4
µ2(K)2

∥∥f ′′
∥∥2 . (4.4)
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The complete proof of convergence can be found in appendix A. Incidentally, minimizing
expression (4.4) for all non-negative kernels yields the Epanechnikov kernel which means
it is asymptotically MISE optimal [15]. As a compromise of bias and variance, we choose
h so that the asymptotic MISE (AMISE) is minimal:

∂AMISE
(
f̂
)

∂h
= − 1

nh2
‖K‖2 + h3µ2(K)2

∥∥f ′′
∥∥2 !

= 0 (4.5)

⇒ hopt =

(
‖K‖2

nµ2(K)2 ‖f ′′‖2

) 1
5

. (4.6)

Inserting this bandwidth into the AMISE yields n−
4
5 as convergence order for kernel den-

sities. A convergence order of n−
2
3 is obtained for histograms by a similar procedure. This

is another reason to prefer kernel densities over histograms.
The optimal bandwidth hopt decreases with an increasing sample size n. Furthermore

the unknown ‖f ′′‖2 is a prerequisite for the calculation. Therefore, the optimal h can
only be determined by assuming the distribution of the model. ‖f ′′‖2 indicates the non-
smoothness of f , so smaller bandwidths are optimal for strongly fluctuating densities. For
many distributions ‖f ′′‖2 can be calculated, such as for N

(
µ, σ2

)
:

∥∥f ′′
∥∥2 =

∫ ∞

−∞
f ′′(x)2 dx

o.B.d.A. µ=0
=

∫ ∞

−∞

((
x2

σ4
− 1

σ2

)
1√

2πσ2
exp

(
− x2

2σ2

))2

dx

u= x
σ=

∫ ∞

−∞

((
u2 − 1

σ2

)
1√

2πσ2
exp

(
−u

2

2

))2

σ du

= σ−5
∫ ∞

−∞

((
u2 − 1

)
φ(u)

)2
du

= σ−5
∥∥φ′′

∥∥2

= σ−5
3

8
√
π
.

The constants µ2(φ)2, ‖φ‖2, ‖φ′′‖2 are tabulated for the standard normal distribution [14].
Together with the Gaussian kernel (4.2) this leads to Silverman’s rule-of-thumb [40]:

hrot =

(
‖φ‖2

nµ2(φ)2 ‖f ′′‖2

) 1
5

=

( 1
2
√
π

n · 1 · σ−5 3
8
√
π

) 1
5

≈ 1.06 · σ̂n− 1
5 .

The standard deviation is estimated as usual:

σ̂ =

√
1

n− 1

∑

i

(xi − µ̂)2.
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In practice, hrot provides an appropriate bandwidth if the distribution does not deviate too
much from the normal distribution. This is true for unimodal, approximately symmetrical
distributions. If this assumption is inappropriate, the following robust estimator [40] can
be used instead. This is known as the better rule-of-thumb:

hbrot = 1.06 ·min

{
σ̂,

IQR

2Φ−1(34)

}
· n− 1

5

= 1.06 ·min

{
σ̂,

IQR

1.34

}
· n− 1

5 .

The interquartile range (IQR) is used to bound the estimation of the standard deviation.
Using this bandwidth reduces the risk of over-smoothing if the target density is not uni-
modal. Still, the bandwidth is a good deal wider than the optimum for other distributions
than the normal distribution. Silverman suggests to reduce the bandwidth even further to
find a good estimate for a broader range of distributions. He chooses a reduced value for
the factor 1.06 that loses no more than 10% efficiency on IMSE:

h′brot = 0.9 ·min

{
σ̂,

IQR

1.34

}
· n− 1

5 .

If relying on a parametric form is not acceptable, k-fold cross-validation provides a
non-parametric option for bandwidth selection [13]. The bandwidth with the best aver-
age performance on the evaluation sets is selected from a number of multiple candidates
h1, . . . , hm. This method is more expensive by a factor in O (k ·m). Another approach is
the plug-in method [39]. Instead of using ||f ′′|| from a known distribution, it is estimated
from the data to calculate the MISE-optimal bandwidth. The plug-in approach was proven
to be computationally similarly complex as cross-validation [24]. Therefore, both methods
are not practical for our application. Also, the estimated density of the particle energy
in the IACT domain is expected to be unimodal, so the rule-of-thumb should work well
enough.

4.2.2 Variable Bandwidth

It is possible to assign an individual bandwidth to each observation [44]. This can be
used in cases where the location of some observations is more certain than that of others.
The most popular use of variable bandwidth is to make the bandwidth dependent on the
density at the location of training samples. Data points in regions where data is sparse
will have flatter kernels. KDE with constant bandwidth results in random noise in regions
of low density. According to the curse of dimensionality regions of low density are almost
everywhere in high-dimensional space. This makes an approach with varying bandwidth
particularly useful for estimation of high-dimensional densities. Using a flatter kernel
results in a lower variance of the estimation in these regions.
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A key property of DSEA is the aggregation of uncertainties, so the continuous density
estimator should do this as well. KDE can easily be extended to take the uncertainties σu
from the regression into account. The uncertainties are used to compute the bandwidths
of the kernels at the corresponding positions. This results in higher peaks (lower bias),
when uncertainty is low and less overfitting (lower variance), when uncertainty is high. We
suggest an additive and a multiplicative approach to calculate the bandwidth:

hu-add(xi) = ρ · hbrot + λσ̇u(xi) (4.7)

hu-mul(xi) = ρ · hbrot · (1 + λ · σu(xi)) . (4.8)

These should have a different impact on the estimation, but both approaches reduce to
the rule-of-thumb when uncertainties are zero (if ρ = 1). The parameters ρ and λ can
be used for fine-tuning the optimal bandwidth. Alternatively, one can use the range of
the prediction interval of choice to replace the uncertainty of a prediction for further fine-
tuning.

4.2.3 Weighted Estimation

Weighted Kernel Density Estimation incorporated weighted data to estimate the target
density. This is another way to vary the influence of different observations on the result.
To estimate a weighted kernel density, each kernel is multiplied with the weight wi of the
corresponding observation:

f̂(x) =
∑

i

wiKh (x− xi)
∑

wi = 1.

The weights must sum up to 1 to ensure that the estimation is a probability density
function. Note that using constant weights wi = 1

n is equivalent to the standard unweighted
kernel density estimation (4.1).

To embed the uncertainties of the regression methods we choose a weight inversely
proportional to the uncertainty σi of an observation:

wi =

∑
j exp (−σj)
exp (−σi)

. (4.9)

The normalization ensures that the weights sum up to 1. The exponential function helps
making the weights more robust when dealing with a high range of uncertainties. Omitting
the exponential function in (4.9) could lead to a very high weight that exceeds the sum of
all other weights.

The altering of the influence of each observation is similar to variable bandwidth KDE.
To see their difference, consider the case where an uncertainty is near zero. Choosing
wi = 0 in a weighted KDE is the same as removing the observation from the sample.
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Figure 4.3: Comparison of kernel density estimation with different bandwidth
strategies and weighted kernel density estimation. The task is to estimate a density
from predictions (denoted by black crosses). All methods estimate similar densities
when the uncertainty is low. After zooming to the interval x ∈ [31, 37] where
the uncertainty is high, the subtle differences between the strategies are evident.
The better rule-of-thumb disregards the uncertainties and overfits to the stochastic
predictions. The uncertainty bandwidths smooth out the area, while weighted KDE
assigns this area a lower weight. The latter might not be desirable in the pursuit
of a representative density. Also note that the histogram does not represent the
predictions very well because it does not distinguish between the modes x = 4.4

and x = 5.7 despite choosing a large number of bins. For long tailed distributions,
equidistant binning tends to lose information about values near zero.

Choosing hi near infinity in a variable bandwidth KDE pushes the estimation towards the
uniform distribution.

Figure 4.3 compares the different bandwidth strategies, namely the better rule-of-
thumb, additive uncertainty and multiplicative uncertainty, where the latter two incor-
porate the uncertainties of the prediction. Also compared is the weighted KDE, where the
weights are chosen inversely proportional to the uncertainties. It can be concluded that
taking into account the uncertainties can improve the estimation of the target density. It
can even be reasonable to use them both simultaneously.



Chapter 5

Continuous Spectrum Estimation
Algorithm

The Continuous Spectrum Estimation Algorithm (CSEA) extends DSEA by the possibility
of a continuous deconvolution. To achieve this, the classifier employed in DSEA is replaced
by a regression method. This leads to the prediction of a real-valued target variable. To
allow for iterative improvements of the estimation the regression method needs to support
weighted training and the output of uncertainties of the predictions. In chapter 3 we found
suitable regression methods, that satisfy these conditions.

To assemble a continuous density from the predictions CSEA also replaces the his-
togram used in DSEA by a continuous density estimator. Widespread adoption and theo-
retical superiority of kernel density estimation (see section 4.2) makes it the best candidate
for the task. An important characteristic of DSEA is the aggregation of all conditional
probabilities estimated by the classifier. To apply this idea in CSEA we explored ways to
vary the contributions of each prediction in a kernel density estimation. We suggested to
vary them depending on the uncertainty of the respective prediction.

In every iteration of CSEA the regression model is trained and the density estimator is
used to estimate a continuous target density by aggregation of the regression output. As
in DSEA, the updated estimation is then used to re-weight the training data for the next
iteration. The modifications that have been made to optimally support the combination
of regression and continuous density estimation are discussed in the following.

5.1 Re-weighting the Training Data

The training data is re-weighted in every iteration, so that its distribution matches the
current estimate. This reduces the influence of the distribution of the training data which
does not necessarily represent the distribution of the observation. To compute the new
weight for each observation (xi, yi), DSEA+ divides the estimated probability of yi by the

39
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Figure 5.1: Re-weighting the training data in CSEA. In every iteration the train-
ing data is re-weighted so that its distribution matches the current estimation. This
is achieved by dividing the estimate of the target density by the density estimation
of the unweighted training data. After re-weighting, the weighted histogram of the
training data matches the current estimation.

number of observations in the same bin. Afterwards, the total area of the bin represents
the probability.

Specifying the number of elements in the same bin to be 1 in the continuous case would
result in the same divergence problem as in the original DSEA formulation. To apply the
idea above for the continuous estimate we need to make sure to divide by the weighted sum
of elements at the location of yi. This is exactly what kernel density estimators compute
by weighting the samples depending on the distance to yi using a kernel function. We
simply employ a second instance of the density estimator to estimate the density of the
(unweighted) training set. This is only done once at the beginning of the algorithm since
the training set does not change.

To update the weights, the estimated probability for each sample, which itself is esti-
mated using the density estimator on the predictions, is divided by the probability of the
training data at the sample’s location:

w(k) ← f̂ (k−1)(y)

f̂Dens-train(y)
.

This way, the distribution of the weighted training data matches the current estimate (see
figure 5.1).
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5.2 Adaptive Step Size

DSEA+ adopts the adaptive step size from the RUN algorithm for DSEA. This step re-
quires a discretization of the input space to compute the optimal step size via likelihood
maximization. CSEA uses the same decision tree clustering as DSEA+ to obtain the dis-
cretized training samples into J bins. In contrast to DSEA, CSEA needs to discretize the
estimate in each iteration to pass it to the optimizer.

In each iteration the current estimate is discretized by querying the density estimator
trained on the predictions at the locations of the bin centers. This and the previous discrete
estimation are passed to the optimizer to compute the optimal step size:

α
(k)
RUN = arg min

α≥0
`r

(
ĝ(k−1) + α ·

(
f̂
(k)
Dens-obs(bins)− ĝ(k−1)

))
.

The discretized and the continuous estimations are both updated using α(k)
RUN:

ĝ(k) = ĝ(k−1) + α
(k)
RUN ·

(
f̂
(k)
Dens-obs(bins)− ĝ(k−1)

)

f̂ (k) = f̂ (k−1) + α
(k)
RUN ·

(
f̂
(k)
Dens-obs − f̂ (k−1)

)
.

Figure 5.2 visualized the update on both the discrete and the continuous estimates.
Because the step size was computed maximizing the discretized density, applying it to

the continuous density can lead to negative probabilities, when the optimal step size is
greater than 1. This can be avoided by bounding the search space to an interval of allowed
step sizes for both density updates.
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Figure 5.2: The adaptive step size in CSEA. The regularized likelihood is max-
imized on the discretized estimations. The optimal step size was computed as
α
(k)
RUN = 0.91 and is used to update both the discrete and the continuous estimates.
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5.3 Stopping Criterion

DSEA uses the probabilistic symmetric χ2-distance to quantify the progress in each itera-
tion. When two consecutive solution do not differ enough, i.e. the distance does not exceed
a predetermined ε, the algorithm is stopped. The χ2-distance is derived from the Pearson’s
χ2-test [31] that compares the distribution of two samples for equality. The distance is
computed as the squared difference of the frequencies weighted by the reciprocal of their
sum:

χ2(x,y) =
∑

i

(xi − yi)2
xi + yi

.

Summands in the χ2-distance are usually defined zero, when the denominator is zero. Since
DSEA uses histograms to represent the estimation, the χ2 is an adequate measure to use in
the stopping criterion. We explain in the following why it can still be used as a meaningful
measure in CSEA despite dealing with continuous densities.

Let ĝ and v be the discrete estimation and the weights of the training set estimated
by DSEA. The χ2-distance in iteration k is

χ2
Sym

(
ĝ(k), ĝ(k−1)

)
=
∑

i

(
ĝ
(k)
i − ĝ

(k−1)
i

)2

ĝ
(k)
i + ĝ

(k−1)
i

=
∑

i

(∑
j∈n(i)

(
v
(k+1)
j − v(k)j

))2

∑
j∈n(i)

(
v
(k+1)
j − v(k)j

)

=
∑

i

(
gti

(
v
(k+1)
n(i)1

− v(k)n(i)1

))2

gti

(
v
(k+1)
n(i)1

+ v
(k)
n(i)1

) ,

where gt is the distribution of the unweighted training set and n(i) yields the samples in
bin i. The weights of these are all identical, i.e. wn(i)i = wn(i)1∀i and defined zero, when
the bin is empty. Note, that this is consistent with the weight update in DSEA+ (2.3).
The χ2-distance between consecutive iterations is therefore a weighted sum of the change
in training weights v between the two iterations. This makes sense since the estimation
does not update when the weights do not change (neglecting the randomness of the learned
model). When the difference in weights is infinitesimally small, there is no need for more
iterations.

Now we apply the above equation to the continuous estimation f̂ and the weights w
as estimated by CSEA. An example in bin i is simply the example xi itself. Remember
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that in CSEA the weights are computed as f̂ (k−1)(y)

f̂Dens-train(y)
where f̂Dens-train, as estimated by

the density estimator, is queried at the target values from the training set. This results in:

∑

i

(
f̂Dens-train(yi)

(
w

(k+1)
i − w(k)

i

))2

f̂Dens-train(yi)
(
w

(k+1)
i + w

(k)
i

)

=
∑

i

(
f̂
(k)
i − f̂ (k−1)i

)2

f̂
(k)
i + f̂

(k−1)
i

=χ2
Sym

(
f̂ (k)(y), f̂ (k−1)(y)

)
.

It implies that we get an analogue stopping criterion when computing the distance between
consecutive estimations evaluated at the training set’s target values y.

5.4 Distribution Calibration

Unfortunately, some regression methods underestimate the target value’s range. This is
because regression methods tend to avoid predicting extreme values. It is particularly
visible in ensembles. When the prediction is the average of multiple outputs some outputs
will pull the output towards the mean of the value range. Another factor is the missing
extrapolation of some models. Most tree-based models return the mean of training targets
associated with the predicted leaf. This will not allow for any predictions outside the range
of the training data. The minimum and maximum values are only predicted when the
relevant leaf contains only these values, otherwise the averaging will prevent the prediction
of extreme values.

Since they provide a robust performance, random forests are heavily used in Cherenkov
astronomy [43]. When used in regression analysis the averaging over multiple trees and
the averaging in the leaves can both contribute to the problem of reducing the range of the
estimation. The effect can amplify by repeating the estimation based on the previous iter-
ation. Depending on the configuration a calibration of the estimate may be indispensable
in order not to diverge from a good solution.

The problem of distribution calibration is well-known in classification, where the out-
puts of a classifier does not always give appropriate posterior probability estimations.
There exist several correction techniques such as isotonic regression [48] and beta calibra-
tion [21]. In regression analysis, however, the problem is far less researched, since the focus
is usually on the expectation of the predicted conditional distribution. Traditionally this
problem has been covered by quantile regression, e.g. gradient boosting (see section 3.7).
Recently there have been advances in calibrating the conditional distribution by applying
beta calibration maps to its cumulative distribution function similar to beta calibration
for classifiers. The existing techniques concentrate on the calibration of each prediction’s
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distribution where we are content with a calibration of the aggregated predictions, i.e. the
distribution of predictions.

We suggest two methods for distribution calibration. The first is based on learning the
moments, the second is more flexible by learning the quantiles.

5.4.1 Moment Calibration

The calibration based on moments is a very simple technique intended to provide a baseline.
The model is trained and the predictions are accumulated. We use a 3-fold cross-validation
on the data available for training. From the distribution of predictions, the moments
are estimated. We use the first (the mean) and the centralized second (the variance).
An optimal model should have a prediction distribution similar to the distribution of
the training set. When it differs and the deviation has a pattern, it might be sufficient
to transform the output distribution to bring its moments into line with the training
distribution’s moments. Let µtrain, σ2train and µpredict, σ2predict be the sample mean and the
sample variance of the distribution of the training set and the predictions respectively and
¯̂y the sample mean of the predictions. Then the predictions can be calibrated as follows:

ŷcalibrated = ¯̂y +
(
ŷ − ¯̂y

)
·
√

σ2train
σ2predict︸ ︷︷ ︸
scale

+µtrain − µpredict

︸ ︷︷ ︸
shift

.

On average the distribution of the calibrated predictions will share the mean and the
variance with the training set (if the samples originate from the same population). Once
shift and scale are learned, the technique can also be applied to calibrate the predictions
on data of unknown distributions, assuming that the model distorts the moments similarly.

The method was evaluated on a skewed data set using a Gaussian process. Although
Gaussian processes do not share the problems of a reduced range mentioned above it still
falls back to the prior mean when queried at sparse locations, like many other regression
techniques. The quantiles of the predictions before and after calibration are compared
with the quantiles of the true target values y in a Q-Q plot (figure 5.3). The distribu-
tion of predictions before and after calibration are compared with the true distribution in
figure 5.4. It shows that calibration can be valuable when the prediction distribution is
supposed to represent the distribution of the observed data, as in CSEA.

The proposed method provides an adequate calibration for many configurations. But it
did not find a good calibration of the skewed distribution’s left tail, because only the first
two moments were considered here. The technique can be extended by learning higher
moments to allow for a more delicate calibration of skewed distributions. Instead, we
explore a more flexible approach, that remaps the quantiles.
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Figure 5.3: Q-Q plot of the predictions before and after moment calibration (left).
The moment calibration transforms the predictions by learning the intrinsic moment
distortion of a model. This linear transformation moves the quantiles towards the
diagonal by multiplying each prediction’s distance to the mean with scale = 1.6 and
adding shift = 0.03. In the right panel the cumulative distribution function (CDF)
of the moment calibrated predictions matches the empirical CDF of the training
set much better.
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Figure 5.4: Histograms showing the effect of moment calibration. The histogram
on the left shows the distribution of predictions before calibration. They clearly
differ because the regression method employed has an intrinsic bias towards the
center of the distribution. The histogram on the right shows the distribution after
calibration. While the technique improves the estimation, the calibration does not
differ between the tails of skewed distributions.
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5.4.2 Quantile Calibration

The quantile calibration is very similar to [41], but instead of calibrating the conditional
distributions the focus is on the calibration of the prediction distribution. First, we compare
the CDFs of the training set and the predictions in a P-P plot (figure 5.5). By having a
closed form of this map, the predictions can be calibrated by remapping its quantiles. To
get such a map, fitting the CDF of the beta distribution is a popular choice, since both
are confined to the interval [0, 1] on each axis with fixed points (0, 0) and (1, 1). The beta
distribution was not flexible enough for our use case, especially in the tails, so we suggest
to fit a Gaussian process instead.

The Gaussian process can now transform any quantile to the corresponding quantile
of the training set if it were distributed according to the prediction distribution. This
is important for predicting distributions that differ from the training distribution. If the
Gaussian process was instead fitted to the Q-Q plot, it would map to absolute values. We
apply the quantile calibration to the same setup as in the experiment above (figure 5.6).
Note, that the quantile calibration cannot calibrate the range of the prediction distribu-
tion since the Gaussian process maps only to existing quantiles in the predictions. A
combination of both the moment and the quantile calibration may be beneficial in some
cases.

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5.5: P-P plot of the prediction probabilities against the training set prob-
abilities. A Gaussian process is fit to the curve and provides a better estimate than
the beta distribution. A varying noise level, modeled with the PDF of a Beta(2, 2)

distribution, was used in the fitting of the Gaussian process to favor a good fit in
the tails, since the tails of the distribution are the main reason the calibration is
necessary. The right panel shows that the CDFs align very well.
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Figure 5.6: Histograms showing the effect of quantile calibration. The histogram
on the left shows the distribution of predictions before calibration. The histogram
on the right shows that the distribution after calibration matches the true distri-
bution very well.

5.5 The Algorithm

Putting everything together, CSEA (algorithm 2) is obtained: an algorithm for continuous
deconvolution of probability density functions. The implementation is publicly available
as a Python package1. The algorithm is described briefly.

First, the density f̂Dens-train of the training data is estimated using a density estimator
of choice. The prior distribution f̂ (0), which defaults to the continuous uniform distribu-
tion, is discretized by querying it at the bin centers to get the initial ĝ(0). Then, in every
iteration k the weights w(k) are updated such that the weighted training data resembles
the current estimation. The regression model of choice is trained on the training data
and predicts target values ŷ(k) and associated uncertainties σ̂(k) for all samples in the ob-
served data. These predictions are calibrated as needed. The density estimator aggregated
the predictions and uncertainties to provide an estimation for the unfolded distribution
f̂
(k)
Dens-obs. It is discretized again by querying it at the bin centers. This and the previ-
ous discretization are passed to the optimizer to compute the optimal step size α(k)

RUN by
minimizing the regularized likelihood. The discretized and the continuous estimations are
updated in search direction by the optimal step size. This procedure is repeated until the
χ2-distance between two consecutive estimations falls below the predefined ε. The last
estimation is returned.

1https://bitbucket.org/maik-schmidt/csea

https://bitbucket.org/maik-schmidt/csea
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Algorithm 2 CSEA: Continuous Spectrum Estimation Algorithm
Input:
Observed data set Dobs = {xn ∈ X | 1 ≤ n ≤ N}
Training data set Dtrain = {(xn, yn) ∈ X × R | 1 ≤ n ≤ N ′}
Discretization bins (b1, . . . , bJ)T ∈ RJ

Minimal χ2 distance ε > 0 between iterations (default: 10−6)
Prior density f̂ (0) : X → R (default: f̂ (0)(yi) = 1

maxi yi−mini yi
∀1 ≤ i ≤ N)

Output:
Estimated target density f̂ : X → R

1: f̂Dens-train ← DensityEstimator(Dtrain)

2: ĝ(0) ← f̂ (0)(bins)
3: k ← 0

4: repeat
5: k ← k + 1

6: w(k) ← f̂ (k−1)(y)

f̂Dens-train(y)

7: InferM from Dtrain weighted by w(k)

8: ŷ(k), σ̂(k) ← predictM(Dobs)

9: Calibrate ŷ(k) (optional)
10: f̂

(k)
Dens-obs ← DensityEstimator(ŷ(k), σ̂(k))

11: α
(k)
RUN ← arg minα≥0 `r

(
ĝ(k−1) + α ·

(
f̂
(k)
Dens-obs(bins)− ĝ(k−1)

))

12: ĝ(k) ← ĝ(k−1) + α
(k)
RUN ·

(
f̂
(k)
Dens-obs(bins)− ĝ(k−1)

)

13: f̂ (k) ← f̂ (k−1) + α
(k)
RUN ·

(
f̂
(k)
Dens-obs − f̂ (k−1)

)

14: until χ2
Sym

(
f̂ (k)(y), f̂ (k−1)(y)

)
≤ ε

15: return f̂ ← f̂ (k)



Chapter 6

Evaluation

In addition to the parameters inherited from DSEA, such as step size and number of bins,
additional parameters emerge for CSEA, such as the bandwidth for the kernel density
estimator and the selection of a regression method and its parameters. Since the old pa-
rameters have already been studied in detail in [7], the evaluation in this work concentrates
on the new parameters. The results of the numerous configurations are publicly available in
a separate repository1 for the experiments. All experiments can be conveniently navigated
via a graphical user interface. The repository can also be used to evaluate user-defined
configurations.

The experiments are rerun 20 times to get rough estimations of the lower and upper
5%-percentiles. Ordinary 20-fold cross-validation would partition the data into 20 sets
and then use 19 sets for training and evaluate on only one set at a time. This severely
lowers the size of Dobs. Instead, we use a repeated 3-fold cross-validation that shuffles the
data after each repetition. The preliminary experiments to optimize the hyperparameters
are only repeated three times resulting in rough estimates for the quartiles. The train-
ing and observed data are sampled randomly as state-of-the-art performance when using
inappropriately distributed training data was already shown for DSEA in [7].

All diagrams use a linear probability scale due to the low probabilities at the ends of
most continuous densities. This also makes the comparison between the distributions more
intuitive. First, we discuss the data sets and distance measurements used to evaluate the
deconvolution result of each configuration.

6.1 Data Sets

For the evaluation three different data sets are used. The first is synthetic and the other
two are IACT data sets associated with the FACT and the MAGIC telescope systems.

1https://bitbucket.org/maik-schmidt/csea-exp
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These are the same data sets that are used in [7] which will make a comparison to already
existing results easier.

The toy data set consists of ten input variables that correlate with the target variable
which was generated from a mixture of the two equally weighted Gaussians N (15, 3) and
N (30, 4). Synthetic data has the advantage that the true distribution is known, which is
useful for the evaluation.

The IACT data sets contain simulated data for the telescope systems. MAGIC consists
of two telescopes yielding a much higher surface than the relatively small FACT telescope.
This translates to a much wider range of measured γ particle energy. Extracting the Hillas
parameters [19] of the observations is often used in Cherenkov astronomy. These describe
characteristics such as the orientation and size of a shower and form the input variables
from which the particle energy is predicted. The energy ranges over several orders of
magnitude and is log10 transformed to make its highly skewed distribution less skewed.
The small energy range of the FACT telescope still results in a distribution with a very
high slope on the lower side of the spectrum. This makes the estimation of the distribution
especially difficult.

6.2 Distance Measures

To evaluate the methods, the distance of the deconvolution results to the true distributions
is measured. We avoid binning the distribution for comparison as this would lose informa-
tion. Because the PDFs of the true distributions are unavailable (except for the toy data
set), the empirical CDFs of the observed data and the estimation are used. This limits the
choice of a distance measure to measures that operate on CDFs.

A popular dissimilarity measure on distributions is the Kolmogorov Smirnov (KS) [25]
distance. It is easily computed as the maximum vertical distance between two CDFs:

D(F1, F2) = sup
x
|F1(x)− F2(x)|.

The KS distance only takes into account the maximal deviation. One advantage of the
KS distance is that it is always bounded by 1, regardless of the value range. We will use
the KS distance to compare DSEA and CSEA as the computation is the same for discrete
and continuous densities. This helps DSEA as the KS distance is only affected by the
discretization error of a single bin instead of summing the discretization errors of all bins.

If we consider two distributions as piles of earth, then the Earth Mover’s Distance
(EMD) [34] computes the minimum total distance the earth must be moves to transform
one distribution into the other. Given two continuous probability distributions, the EMD is
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most easily understood as the total area between their CDFs F1 and F2. This is equivalent
to the Wasserstein metric [12]

W (X,Y ) = inf E (|X − Y |)

=

∫ ∞

−∞
|F1(x)− F2(x)|dx,

which is more commonly referred to when X and Y are continuous random variables.
Numerically it can be computed by evaluating the quantile functions [18]:

EMD(F1, F2) =

∫ 1

0
|F−11 (x)− F−12 (x)|dx.

While more expensive to compute, the EMD catches even small changes in the distribu-
tions. For all cases where different CSEA results are compared to each other, the EMD is
used. But keep in mind that it will be naturally higher on the toy data set because the
range of values is at least ten times higher.

6.3 Baseline Model

For the experiments a baseline model is deployed that provides acceptable estimations on
the different data sets without tuning any parameters. Its configuration is specified in the
following:

• Regression model: A Mondrian forest assembled from 30 Mondrian trees. This
model was chosen due to its similarity to random forests, which are heavily used in
Cherenkov astronomy, but it also provides uncertainties about the predictions. In
addition, tree-based models scale well with large amounts of data.

• Density estimator: A kernel density estimator with Epanechnikov kernel and band-
width calculated using the better rule-of-thumb.

• Step size: The adaptive step size. A discretized representation of the estimation is
maintained to minimize the regularized likelihood from the RUN algorithm.

• Calibration: None. The baseline model uses no calibration as it is only needed in
some configurations.

• K: 5. The maximum number of iterations.

• ε: 0. The convergence criterion is disabled for the experiments to analyze the be-
havior of CSEA when the criterion is not chosen adequately.

• Number of bins: 20. The number of bins is used in the discretization of the input
space, the histogram estimator and for the comparison with DSEA.
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• Maximum data set size: 105. This limitation is solely for allowing multiple runs
of different configurations in a reasonable time.

Unless otherwise stated, the values of the base model are used. For comparison, DSEA
is called with the same parameters except a random forest instead of the Mondrian forest
and histogram estimation instead of KDE. The improved version of DSEA, DSEA+ (see
chapter 2.3.2), is used in all experiments.

6.4 Evaluation of Density Estimators

6.4.1 Histogram

A histogram estimator is employed to compare the deconvolution results of CSEA with
those of DSEA. As shown in figures 6.1 and 5.4 the solutions found by DSEA fit much
better to the observed data. Nevertheless, these results were sort of expected since DSEA is
optimized for the estimation of histograms. Still, this shows that the classifier embedded in
DSEA cannot simply replaced by a regression method without degrading the deconvolution
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Figure 6.1: Histogram estimation on FACT (left) and MAGIC (right) data sets.
The predictions by the regression method employed in CSEA are denoted by black
crosses. It is evident that DSEA finds a much better solution on both data sets
when using a histogram estimator. Also note that the solutions found by DSEA
are significantly more consistent by hardly deviating from each other. CSEA with
a histogram estimator is not able to produce acceptable fits. It turns out that
embedding a regression method alone is not sufficient to achieve results on a par
with DSEA.
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Figure 6.2: Unweighted (left) and weighted (right) histogram estimation on the
toy data set. The weighting of the predictions leads to a lower probability estimation
in sparse regions. This, in turn, lets the estimation overshoot the peaks of the
distribution since the density must sum up to 1. We conclude that weighting the
predictions based on uncertainties does not have the effect we intended.

results. In order to maintain the quality of the estimations, the histogram needs to be
replaced as well.

The estimation of weighted histograms based on the uncertainty of the predictions does
not differ from the unweighted case, except on the toy data set. The weighting based on
uncertainty leads to reduced probability estimation in regions of high uncertainty. Since
uncertainty scales with the data available for training, sparse regions have naturally higher
uncertainty than dense regions. This of course means that the weights in dense regions
increase. The weighed density estimation therefore overshoots the peaks of the distribution.
This is evident in figure 6.2. As already presumed for the weighted kernel density estimation
that this behavior might not be desirable in the pursuit of a representative density (see
section 4.2.3), we conclude that weighted density estimation is not the right approach for
our scenario. The Kolmogorov distances to the empirical CDFs of the observed data are
presented in table 6.1.

It was shown that CSEA does not match the results of DSEA when employing a his-
togram estimator. As a result, the kernel density estimator is used. Since KDE has a
highly influential parameter in the kernel bandwidth, we evaluate a number of configura-
tions first. At the end of the chapter the best performing configuration is compared to
DSEA again.
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Algorithm Toy data FACT MAGIC

DSEA 0.051 0.086 0.055
CSEA (unweighted) 0.067 0.249 0.099
CSEA (weighted) 0.114 - -

Table 6.1: Kolmogorov distances to the true CDFs for DSEA and CSEA with a
histogram estimator. DSEA performs much better on the IACT data sets. Also
shown is that estimating a weighted histogram leads to considerably worse decon-
volution results.

6.4.2 Kernel Density Estimation

In order to maximize the use of the kernel density estimator, an appropriate bandwidth
must be selected. Silverman’s rule-of-thumb aims to solve this problem by automatically
selecting a bandwidth based on the data. It turns out that this is not the universal remedy
we had hoped for. Instead, the quality of the deconvolution results varies greatly not only
between the different data sets, but also between the regression methods used. We opt for
a grid-search over a number of bandwidths and the available regression methods to find
the top performer for each configuration. The candidates for the bandwidth are still based
on the rule-of-thumb due to its theoretical foundation. The preceding factor in Silverman’s
rule-of-thumb has high impact on the deconvolution result and should be chosen carefully.
The optimal factor for normal distributions is 1.06, while Silverman suggests to use 0.9 to
find a good estimate for a broader range of distributions. Some even reduce the factor to
as low as 0.5. These form the candidates for the bandwidth.

We evaluate the baseline model with different regression methods to find the best
factor for each data set and method. The quality of each configuration is assessed via
the Earth Mover’s distance between the estimation in the final iteration and the true
distribution. The results are presented in table 6.2. It is shown that in some configurations
the bandwidth factor has an enormous impact on the estimate, whereas in others it has
almost no impact. We come to the conclusion that the bandwidth should always be chosen
depending on the data set and the regression method used. For the remaining chapter, we
imply that the best bandwidth from table 6.2 is used when referring to a configuration.

Note that a high dependency on a properly selected bandwidth is problematic since the
bandwidth can only be optimized for simulated data in the IACT domain. Unfortunately,
the optimality of a bandwidth is not necessarily transferable to real measurements of the
telescopes.
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Model Factor Toy data FACT MAGIC

Mondrian forest
0.5 0.383 0.019 0.018
0.9 0.367 0.089 0.040
1.06 0.363 0.125 0.058

Random forest
0.5 0.255 0.063 0.038
0.9 0.247 0.0629 0.0378
1.06 0.242 0.0627 0.0376

Kernel ridge
0.5 0.339 0.037 0.014
0.9 0.306 0.166 0.074
1.06 0.289 0.221 0.103

Gaussian process
0.5 0.312 0.208 0.067
0.9 0.321 0.285 0.104
1.06 0.327 0.320 0.126

Table 6.2: EMD after the last iteration using KDE with different bandwidths.
The IACT data sets generally demand a lower bandwidth than the toy data set.
Remember that the EMD is naturally higher on the toy data set because of the
higher range of values.

6.5 Evaluation of Regression Methods

We evaluate the influence of the chosen regression methods on the deconvolution result.
The evaluated methods are Mondrian forests, random forests, kernel ridge regression and
Gaussian processes. Due to the necessary matrix inversion we limit the maximum data set
size to 20000 for kernel ridge and Gaussian process regression.

The efficient implementations of kernel ridge regressions, Gaussian processes and ran-
dom forests are used from scikit-learn, while scikit-garden is used for the implementation
of Mondrian forests. All default parameters are used, with the exception of the following
changes:

• The number of estimators in random forests and Mondrian forests is set to 30.

• The kernel ridge regularization parameter is set to 0.1, the kernel is specified as
Gaussian.

• The Gaussian process normalizes the target values to fall back to the mean instead
of zero in regions where data is sparse.

We use our own implementations of Histograms and KDE that allow for a weighted esti-
mation and a variable bandwidth.
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Figure 6.3: Evaluation of CSEA on the toy data, FACT and MAGIC. The esti-
mations are averaged across all repetitions. The CDFs are shown on the left, while
the EMDs are shown on the right. Error bars are omitted for clarity. Random
forests, Mondrian forests and kernel ridge regression achieve the best results on the
toy data, FACT and MAGIC respectively. The divergence on the toy data set is
addressed in the following section.
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For every regression methods and data set, the CDF of the fit is showcased in figure 6.3.
We use the CDFs for comparison because the true continuous PDFs of the IACT data sets
are unknown, while the CDFs can be easily estimated by the empirical CDFs. On the toy
data neither regression method finds a satisfying estimation. The estimations even degrade
for all methods but the Gaussian process after having found an appropriate solution. This
effect is concerning and will be addressed in the following section. On the IACT data
sets kernel ridge regression and the Mondrian forest deliver appealing solutions. The
Mondrian forest dominates the FACT data set, while the kernel ridge regression marginally
outperforms the Mondrian forest model on the MAGIC data set. The good performance
of the kernel ridge model is surprising since it is only trained on 20% of the data available
for the tree-based models.

6.6 Evaluation of Distribution Calibrations

It has been observed that the estimates can degrade after having found an appropriate
solution. We explaine this with the intrinsic prediction bias of some regression methods.
When uncertainty is high, they favor predictions near the mean. As a consequence, the
prediction distribution has a lower variance than desired. In the experiments above, this
effect was observed on the toy data set on almost all models. This may be explained
by the bimodality of the toy data set. Falling back to the mean of bimodal distributions
imposes a heavier penalty on the quality of the estimations than for unimodal distributions.
The use of a distribution calibration was suggested to restore the undistorted shape of the
distribution. We compare the performance of CSEA when using no calibration, the moment
calibration (see section 5.4.1) and the quantile calibration fitting either a Beta distribution
or a Gaussian process (see section 5.4.2).

The suggested calibration techniques are evaluated on the toy data set for the Gaussian
process as it was already shown that it can benefit from a calibration. The results are
shown in figure 6.4 (a). The quantile calibration that fits a Gaussian process to the
P-P plot obtains the best deconvolution result. The other methods do not improve the
estimation significantly. We evaluate the quantile calibration when using the other models
in figure 6.4 (b). On the toy data set, quantile calibration prevents divergence on all
models. This is despite training the calibrated tree-based models on only 20% of the data
available for the uncalibrated models. This limitation confines the size of the kernel matrix
as the Gaussian process is invoked for every sample in the observed data set. This aspect
could be improved in the future by choosing a more efficient model to compute the quantile
map without sacrificing the expressiveness of a Gaussian process.

Calibration did not reliably improve the deconvolution result of the best configurations
on the IACT data sets as these are already well calibrated. It even impaires the estimates
in some cases. Since the quantile calibration can lead to non-smoothness of the estimation
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Figure 6.4: EMD of uncalibrated and calibrated deconvolutions on the toy data
set. The distribution estimated by a Gaussian process is calibrated using the mo-
ment calibration and each of the quantile calibrations (left). Only the quantile
calibration, that uses itself a Gaussian process to compute the quantile map, is
able to improve the estimate. The quantile calibration is applied to the remain-
ing models and prevents the divergence of all models (right). The EMDs of the
uncalibrated models are illustrated partially transparent.

and involves additional computational cost we discourage its use when a calibration is not
necessary.

6.7 Evaluation of Variable Bandwidths

We evaluate the variable bandwidth KDE by embedding the uncertainties of the predic-
tions. In theory, this should improve the result by flattening the contribution of uncertain
predictions. This assumes that the regression method returns uncertainties that are appro-
priate for the use in the bandwidth. The best models from the previous sections, namely
Mondrian forests and kernel ridge regression, are evaluated using the bandwidths hu-add

and hu-mul as defined in (4.7) with ρ = 0.5 and λ = 1. Remember that the optimal band-
width factor for each model is chosen according to table 6.2. Random forests are omitted
because they do not return uncertainties.

The results for Mondrian forests are shown in figure 6.5. The additive bandwidth
improves the estimation on all data sets. It helps them to surpass the kernel ridge regression
on the MAGIC data set. This makes Mondrian forests with the additive bandwidth the
best model on both IACT data sets. The multiplicative bandwidth does not work well on
the IACT data sets.
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(c) MAGIC

Figure 6.5: EMD of Mondrian forest regression with constant and variable band-
widths over the iterations. The additive bandwidth embedding the uncertainties
slightly improves the deconvolution results on all data sets. This produces the best
results on both IACT data sets so far.

Kernel ridge regression itself uses a density estimator to estimate the uncertainties
(see 3.3.1), though this one is multi-dimensional as it estimates the density of the input
domain. After the curse of dimensionality, the input domain is assigned near zero probabil-
ity almost everywhere. Choosing the Epanechnikov kernel amplifies this problem as it has
finite support. For this reason, we choose the Gaussian kernel for the kernel ridge density
estimator. As bandwidth the multi-dimensional generalization of the rule-of-thumb

hd-rot =
4

2 · d+ 1

1
d+4 ·min

{
σ̂,

IQR

1.34

}
· n− 1

d+4

is employed where d denotes the dimensionality and σ̂ and IQR are averaged over all
dimensions. This density estimator still estimates arbitrary low probabilities which result
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Figure 6.6: EMD of kernel ridge regression with constant and variable band-
widths over the iterations. Neither of the variable bandwidths reliably improves
the deconvolution results. This might be due to the approximate nature of the
uncertainties.
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in uncertainties with a range over several orders of magnitude. To solve this problem, the
uncertainties are transformed as follows:

σ′u(xi) =
log10 (σu(xi) + 1)

1
N

∑
j log10 (σu(xj) + 1)

.

This induces some symmetry and scales the values to have a mean of 1. The transformed
uncertainties are inserted in hu-add and hu-mul as usual. The kernel of the density estimator
on the predictions is still the Epanechnikov kernel as in all other configurations in order to
make fair comparisons. The results of kernel ridge regression with variable bandwidths are
shown in figure 6.6. The variable bandwidths do not reliably improve the estimations. This
might be because they originate from an asymptotic distributional approximation (3.6),
while the uncertainties of the Mondrian forest are based on the sample variances in its
relevant nodes.

6.8 Discussion

A relatively good performance of Mondrian forests was more or less expected. Since they
scale well with large data sets, they were trained on five times more data than the Gaussian
process and the kernel ridge model. In most of the experiments they also outperform
random forests and their results have even been improved by their output of uncertainties.
Using the additive approach to a variable bandwidth by incorporating the uncertainties
lead to improvements on all data sets.

Surprisingly well were the estimations by the kernel ridge model. When uncertain-
ties are disregarded, it performed best on the MAGIC data set. The estimation could
not be improved reliably by the use of a variable bandwidth. This may be because the
uncertainties are provided by an asymptotic distributional approximation.

While all models find adequate fits to the toy data set, the divergence of all models,
with the exception of Gaussian processes, is worrying. The divergence was addressed by
the distribution calibration. The quantile calibration fitting a Gaussian process showed
the most promising results. It succeeded in preventing the divergence of all models.

The best estimations on the FACT and the MAGIC data set delivers the Mondrian
forest with the additive uncertainty bandwidth hu-add. The estimated probability density
functions with CSEA and DSEA are shown in figure 6.7. The Kolmogorov distances of the
deconvolution results to the empirical target CDFs are compared in table 6.3. We come to
the conclusion that CSEA can outperform DSEA in quality of the estimations according
to the KS distance when choosing adequate parameters.

Nonetheless, the dependence on a well-chosen KDE bandwidth of the algorithm is
concerning. Even when using the rule-of-thumb, one still has to optimize the preceding
factor. In addition, the factor is strongly dependent on the data set and the regression
model used. This is especially problematic when one wants to estimate densities on data



6.8. DISCUSSION 61

2.5 3.0 3.5 4.0 4.5

y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P(
y

)
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Figure 6.7: The best deconvolution results on the FACT and the MAGIC data
set respectively. For both a Mondrian forest with bandwidth hu-add was used. The
estimation of the FACT distribution still looks like CSEA underestimations the
slope, while the estimation of the MAGIC distribution appears to be well fitted.
The larger error bars of CSEA compared to DSEA are not concerning as this
is a direct consequence of the real-valued predictions. Note that the histogram
representation of the true target values introduces discretization errors and was
conducted for visual comparison only. The estimations from CSEA are likely closer
to the true density than the shown yobserved.

where the target variable is unknown. It is therefore not possible to assess the quality of
the models. This is an advantage of the discrete algorithms that give reliable estimations
without parameter optimizations. The Mondrian forest using hu-add performed well on
both data sets with the same parametrization. Further research is needed on whether this
makes them a candidate for a robust deconvolution on various IACT data sets.

Algorithm MAGIC FACT

DSEA 0.086 0.054
CSEA 0.041 0.012

Table 6.3: Kolmogorov distances for DSEA and CSEA using a Mondrian forest
with bandwidth hu-add.
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Chapter 7

Conclusion

The main contribution of this work was the development of CSEA: an algorithm for con-
tinuous deconvolution of probability density functions. CSEA extends DSEA by allowing
the use of regression methods and a kernel density estimator.

To find suitable candidates, various regression methods were studied with an empha-
sis on their output of uncertainties. Among Gaussian processes we found candidates in
kernel ridge regression and Mondrian forests by specifying proper prediction intervals. In
the process the equivalence of weighted Gaussian processes and variable noise Gaussian
processes was proven. Furthermore, we developed a composite model that allows arbitrary
regression methods to output uncertainties.

For the estimation of a continuous density, kernel density estimation was surveyed.
We explored options to incorporate the uncertainties from the regression methods. This
resulted in an additive and a multiplicative bandwidth based on Silverman’s rule-of-thumb.
The advantage of a variable bandwidth over weighted kernel density estimation has been
addressed when choosing them based on uncertainties.

Last but not least we developed two techniques for distribution calibration. These are
necessary when using a regression method that has an intrinsic bias towards the mean of
the predictions as this leads to an estimated density with a lower variance than desired.
This is a problem when the prediction distribution is supposed to represent the distribution
of the observed data, as in CSEA. The moment calibration scales the predictions to restore
the desired moments, while the quantile calibration maps all quantiles to the corresponding
quantiles of the training data if it were distributed according to the predictions.

Finally, we evaluated all developed methods on three data sets: A synthetic Gaussian
mixture and two simulated data sets for the telescope systems FACT and MAGIC. It was
shown that CSEA outperforms DSEA on the IACT data sets according to the Kolmogorov
Smirnov distance when an adequate parametrization is chosen. The best performing model
for both data sets was a Mondrian forest using the additive bandwidth approach that
embeds the uncertainties of the predictions.

63
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7.1 Outlook

7.1.1 Distribution Calibration

While the calibration techniques developed have already provided better estimates for the
synthetic data set, there is still room for improvement. The moment calibration does not
particularly accommodate skewed distributions and transforms the predictions at both
tails using the same formula. This was attempted to solve with the quantile calibration.
Unfortunately, the quantile calibration is computationally more expensive. Embedding
a Gaussian process for computing the quantile map results in CSEA losing its ability
to process large amounts of data regardless of the regression method chosen. Further
research could lead to the replacement of the Gaussian process by a simpler model that
retains its expressiveness. Although the quantile calibration is more versatile than the
moment calibration, it is incapable to extend the range of predictions. A combination
of both approaches could lead to a technique that can transform predictions beyond the
extrema, while at the same time tailoring well to skewed distributions.

7.1.2 Detecting Concept Drifts

An advantage of DSEA and CSEA over other deconvolution methods is that they return
the contribution of every sample to the resulting density. It was already suggested to
take advantage of this for time series analyses [7]. Instead of reconstructing the density of
the entire observed data, only the contributions of a subset are aggregated. This makes
deconvolution in a sliding window over a time frame possible for analyzing time-dependent
data sets (see figure 7.1)

One use case of a time-dependent deconvolution in Cherenkov astronomy is the detec-
tion of flares. These are events in which the energy distribution changes severely by an
increased frequency of high-energy particles. Flares are of particular interest and lead to
different theories. The detection of concept drifts in the unfolded distributions may lead
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5.2.1 Additional Approaches and Re-combinations

The present thesis presented Ibu and Run as two popular representatives of classical
deconvolution. However, more classical approaches to deconvolution exist, some of which
have already been mentioned here. Investigating these approaches in more detail can single
out additional building blocks of deconvolution methods. Particularly, the approach based
on neural networks should be studied in the unified view developed here. Neural nets
gained a lot of attention in the past years, due to their performance in image classification
and other modeling tasks. The rapid developments in this area are promising directions
for future work on deconvolution.

Having identified the essential building blocks of the existing deconvolution methods,
researchers are able to recombine these blocks in new algorithms. One example of such
recombination was already given here with the objective function of Run being employed
for the adaptive step size in Dsea+. The possibilities of other re-combinations are nu-
merous. One particular task of future work is to identify which building blocks work for
which kind of input data.

5.2.2 DSEA for Time Series Analyses

Some γ ray sources studied in Cherenkov astronomy change their emission over time.
Consequently, these sources are only modeled accurately with a deconvolution that takes
their time dependency into account. Indeed, the FACT telescope is specifically targeted at
measuring changes in the energy emission, thus rendering time-dependent deconvolution
indispensable.

Dsea/Dsea+ reconstructs the target density from the confidence values predicted
for individual observations. Instead of reconstructing the density of the entire data set,

. . .

contributions of individual observations, as returned by Dsea+

sliding window

estimated
density in
the window

Figure 5.1: Time-dependent deconvolution is performed in a sliding window, which aggregates
the contributions of individual observations. This window moves over the contributions, which
are ordered by the time of their observation. Each position of the window yields one estimated
density for this position. The individual contributions are not obtained with classical deconvolution
methods – only Dsea/Dsea+ provides this feature.

Figure 7.1: Deconvolution in a sliding window over a time frame. Instead of
reconstructing the density of the entire observed data, only the contributions of a
subset are aggregated [7].
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to an indication of these events. Since the shape of the particle distribution during flares
is more precisely specified in a continuous form, CSEA may have an advantage over DSEA
for the detection. Furthermore, the increased granularity of its estimate makes it more
sensitive to changes in the target distribution.
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Appendix A

Proof of the Asymptotic Mean
Integrated Squared Error

We prove that the Mean Integrated Squared Error has the following property:

MISE
(
f̂(x)

)
→ 1

nh
‖K‖2 +

h4

4
µ2(K)2

∥∥f ′′
∥∥2 .

This property is used in chapter 4.2 to derive the optimal bandwidth in a kernel density
estimation. We assume that the kernel K has the following properties:

K(x) ≥ 0 (Positivity)
∫ ∞

−∞
K(x) dx = 1 (Unit measure)

K(x) = K(−x) (Symmetry).

The MISE uses both bias und variance to measure the quality of fit. We first derive them
for arbitrary x:

Bias
(
f̂(x)

)
= E

(
f̂(x)− f(x)

)

=
1

n

∑

i

E(K(x−Xi))− f(x)

= E(Kh(x−X1))− f(x)

=

∫ ∞

−∞
K (x− u) f(u) du− f(x)

=

∫ ∞

−∞

1

h
K
(
x− u
h

)
f(u) du− f(x)

t=x−u
h=

∫ ∞

−∞
K (t) f(x− ht) dt− f(x)

∫
K=1
=

∫ ∞

−∞
K(t) (f(x− ht)− f(x)) dt.
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Using the Taylor expansion at x− ht

f(x− ht) = f(x)− htf ′(x) +
1

2
h2t2f ′′(x) + . . . (A.1)

the bias can be approximated as follows:

Bias
(
f̂(x)

)
≈ hf ′(x)

∫ ∞

−∞
tK(t) dt

︸ ︷︷ ︸
=E(K)=0

+
1

2
h2f ′′(x)

∫ ∞

−∞
t2K(t) dt+ o

(
h2
)

=
h2

2
µ2(K)f ′′(x) + o

(
h2
)
.

The variance is approximated taking the same approach:

Var
(
f̂(x)

)
= Var

(
1

n

∑

i

Kh(x−Xi)

)

=
1

n
Var (Kh(x−X1))

=
1

n

(
E
(
Kh
(

(x−X1)
2
))
− E (Kh(x−X1))

2
)

=
1

n

∫ ∞

−∞
K (x− u)2 f(u) du− 1

n
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−∞
K (x− u) f(u) du

)2

=
1

n
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−∞
K (x− u)2 f(u) du− 1
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(
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(
f̂(x)
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+ f(x)

)2

≈ 1

n
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(
1
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)

t=x−u
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1

nh
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K (t)2 f(x− ht) dt+ o

(
1

n

)

A.1≈ 1

nh
f(x)

∫ ∞

−∞
K (t)2 dt− 1

n
f ′(x)
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tK (t)2 dt+ o

(
1

nh

)

K(t)=K(−t)
=

1

nh
f(x) ‖K‖2 + o

(
1

nh

)
.

We integrate the Mean Squared Error (MSE) to get the Mean Integrated Squared Error
(MISE) as a global measure:

MISE
(
f̂
)

=
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MSE (f̂(x)) dx
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Var
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1
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2
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(
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dx

=
1
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‖K‖2
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−∞
f(x) dx
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h4

2
µ2(K)2
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(
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(
1
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(
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+ o

(
1

nh

)
.
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Assuming n→∞, h→ 0 and 1
nh → 0 this leads to the asymptotic MISE (AMISE):

AMISE
(
f̂
)

=
1

nh
‖K‖2 +

h4

4
µ2(K)2

∥∥f ′′
∥∥2 .
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