
2

Bachelor’s Thesis

Mapping Co-Occurrence Vectors Built upon
Large Text Corpora to a Human-Interpretable

Space Using Explainable Decision Trees

Sebastian Schmidt
March 2021

Supervisors:
Prof. Dr. Katharina Morik
Lukas Pfahler (M.Sc.)

Technische Universität Dortmund
Fakultät für Informatik
Lehrstuhl für Künstliche Intelligenz (LS8)
https://www-ai.cs.tu-dortmund.de/index.html



Contents

1 Introduction 1

1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Definitions & Basics 5

2.1 The Distributional Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Co-Occurrence Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Pointwise Mutual Information . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 word2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Explainability, Interpretability and Transparency . . . . . . . . . . . . . . . 9
2.4 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Advantages and Risks . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Target Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Trees, Targets, Transformation 17

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Com2Sem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 COM and PMI Construction . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Com2Sem Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Trees and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.6 Embedding Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.7 Explainability of Com2Sem . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Designing Target Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Semantic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Topic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

i



ii CONTENTS

4 Implementation 31

4.1 Target Space Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Defining Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Training Data Creator . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Com2Sem API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Com2Sem Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Integrating Knowledge Bases . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.1 Potential Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Evaluation 39

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.1 Semantic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 Topic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Comparison and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4.1 Comparison with Popular Embedding Methods . . . . . . . . . . . . 55
5.4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Conclusion 59

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A Appendix 63

A.1 Addition to the Semantic Space: Complete Structure . . . . . . . . . . . . . 63
A.2 Addition to COM Construction: Example . . . . . . . . . . . . . . . . . . . 73
A.3 Addition to Concept Categorization . . . . . . . . . . . . . . . . . . . . . . 73
A.4 Addition to Topic Space Evaluation . . . . . . . . . . . . . . . . . . . . . . 75

List of Figures 79

List of Algorithms 81

Bibliography 83

Erklärung 87



Chapter 1

Introduction

1.1 Motivation and Background

One permanently growing field in modern AI research is Natural Language Processing
(NLP). It aims for models which contain some kind of knowledge about processing texts
written in plain natural language, rather than a formalized representation; these include
spam filters, semantic based search engines, speech recognition and sentiment analysis,
among others. For some of those applications, so-called word embeddings – of which
word2vec [20] is one of the most popular – have been developed: These introduce methods
to embed words in a vector space where the distance and direction of word vectors to each
other should encode parts of their meaning.

The whole idea grounds on the distributional hypothesis of Harris [12], stating that mean-
ing and grammatical function of words can be described by observing the words they
usually appear with. In the case of grammar, that may be articles, rendering following
words as nouns, or “to” which in specific frequencies leads us to suspect the following
word to be an infinitive and as such a verb. In the case of semantics, “Paris” and “Berlin”
would surely appear more often close to “capital” than most words.

This kind of relation is usually represented in a co-occurrence matrix, where every row
and column represents a specific word of the observed corpus and every cell the evidence
that each two words share a strong relation, i.e. commonly appear in the same context.
The cell may just contain an absolute number of counts, which, however, would not take
into account the generally lower number of rare words. Instead, usually a metric like the
pointwise mutual information (PMI) is used.

There are some problems with these co-occurrence matrices, nonetheless: they are not in
any form expressive and require a lot of memory for large text corpora. As a consequence,
they are not particularly helpful in most real-world uses. With word embeddings calculated
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2 CHAPTER 1. INTRODUCTION

via neural networks, the last and partly the first point are confronted: in principle the
method can be described by a matrix factorization on a shifted co-occurrence matrix
[17] which reduces the overall dimension whilst preserving the most important inherent
properties. However, the algorithm avoids collecting the complete co-occurrence matrix
by training a neural network on doing a similar job: mapping a word to its context or vice
versa predicting the context from a word. The corresponding network’s weights are then
used as a word vector.

Another approach determines the factors of a linear mapping to construct vectors accord-
ing to a few examples [8].

However, both of these methods lack explainability [7, § A]: The mappings themselves are
complex and hard to understand for humans, i.e. why exactly two words achieve a high
similarity or are recognized as a specific category. Additionally, typical neural-network-
based word embeddings do not grant a human observer any obvious information and some
work is needed to find suitable subspaces for given semantic properties.

It is stated in [4], that this might be quite problematic depending on its field of use:

“There have been hundreds or thousands of papers written about word embed-
dings and their applications, from Web search to parsing Curriculum Vitae.
However, none of these papers have recognized how blatantly sexist the em-
beddings are and hence risk introducing biases of various types into real-world
systems.” [4]

Since word embeddings are usually trained unsupervised and need very large chunks of
text to be most accurate, so large that no developer can read through them beforehand
to cut out potentially problematic content, they are at risk to inadvertently learn nega-
tive or stereotypical associations being wide-spread throughout the corpus. The opaque
vector construction as well as its unknown vector space structure make it very di�cult to
recognize these problems, especially if not manually searching for them, and even harder
to avoid them.

This paper explores a novel approach which also seeks to construct a reduced vector space
based on single words, only that this vector space is manually designed so that each
component describes the membership to a specific human-understandable category. The
idea itself is not new, it has already been proposed in [14] and [8] several years ago.

However, the transformation evaluated in the following grounds on decision trees and
follows an implementation such that for every sample a justification for its categorization
can be given. It should also be possible to notice problems simply by taking a look at
the tree structure: if the word “man” is used as a positively discriminating feature for
professions, action should be taken to avoid this consequence.
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1.2 Structure of the Thesis

Before the actual work of this thesis will be explored, some basic knowledge and definitions
are to be provided. This includes the necessary explanations to the distributional hypothe-
sis and co-occurence matrices, the pointwise mutual information metric, word embeddings
as well as decision trees. That is the role dedicated to Chapter 2.

In Chapter 3, the idea behind this thesis is elaborated in more detail and two manually
designed target spaces used for testing are presented.

Chapter 4 o�ers a short introduction into the Python implementation of the presented
approach which relies on the Scikit-learn python package [25] for the most part.

Chapter 5 is then dedicated to the evaluation, and also lists some problems one may
confront in the process of implementation and testing.

Finally, in Chapter 6, the evaluation results are summarized in a short conclusion which
decides whether the proposed approach is actually applicable in practice, or where it could
be applicable.
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Chapter 2

Definitions & Basics

2.1 The Distributional Hypothesis

The distributional hypothesis came up in the mid-20th century, with [12] being one of the
first papers covering this topic. The main assumption of this hypothesis is that expressions
in natural languages are mainly used in specific contexts – expressions could therefore be
described by the set of all contexts they appear in. To clarify the idea, a few examples:

• Words appearing very often on the left side of the word “eat”, i.e. as the subject,
can be presumed as describing living beings. On the other hand, terms representing
abstract objects almost never occur in this position.

• From a grammatical point of view, the German verb form “hast” (second person
singular of “haben”, to have) will most of the time occur in a sentence with “du”
(Germ., you), as well will other verbs conjugated accordingly.

• Regarding topics, for a word occurring frequently in paragraphs which contain the
term “hard drive” and seldom in general language, one may have a good guess at
claiming it to be associated with computers.

It is di�cult, however, to make absolute assumptions about the correlation of meaning or
syntax with morpheme distributions – not only do natural languages o�er possibilities to
almost arbitrarily recombine morphemes and expressions, but there is additionally a great
diversity of di�erent languages. On top of that, we tend to use homonyms, synonyms and
also metaphors – whether deliberately or as common idioms.

As such, for an appropriate distributional representation of words, one has to look at
great corpora of text so that the influence of exceptional contexts ultimately fades out.
Note that the observation of single words is in fact only a simplification, since the border
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6 CHAPTER 2. DEFINITIONS & BASICS

between morphemes and combinations of them is very hard to draw [12, § 2.2, page 152];
so words are usually only an approximation.

A more formalized view on the distributional hypothesis can be found in the following
subsection.

2.1.1 Co-Occurrence Matrices

This section provides a formal definition and some practical considerations for co-occurrence
matrices, which are a way to utilize the distributional hypothesis in practice.

2.1.1 Definition. Given:

• a discrete vocabulary V = {v1, . . . , v|V |}

• a corpus C with ordered elements ci œ V, i œ {1, . . . , |C|}

• a mapping w : {1, . . . , |C|} ‘æ P {1, . . . , |C|} that for an element ci defines its window
for co-occurrence detection; usually, this is modeled by a window with fixed size slid-
ing over the corpus, e.g. so that w(i) =

Ó
max{i ≠ L, 0}, . . . , î, . . . , min{i + L, |C|}

Ô

with L œ N being the selected window radius, i œ {1, . . . , |C|}
1

• the indicator function 1 where for sets with cardinality 1 we also write 1(a = b) :=
1{a}(b)

We then define the co-occurrence matrix COM(C) œ R|V |2 as follows:

COM(C)a,b =
|C|ÿ

i=1

Q

a1(va = ci) ·

|C|ÿ

e=1
1(vb = ce) · 1w(i)(e)

R

b (2.1)

In a more probabilistic manner, this equation could also be understood as:

COMp(C)a,b = P (a, b | C) =
|C|ÿ

w=1
Pw(a, b | C) · P (w | C) (2.2)

with Pw denoting the probability that words va and vb appear in the same window w

(0 if va is not the center word) based on the evidence in the corpus and P (w | C) the
probability for any sample in the corpus to be contained in this specific window.

The usual definition for the window mapping w, for example also used for neural-network-
based word embeddings [20], is quite intuitive: with a context radius L defined, the
elements ci≠L, ci≠L+1, . . . , ci≠1, ci+1, . . . , ci+L are taken into account for the window i [17].

1The broader definition of windows here does also allow sentence- or paragraph-based co-occurrence
construction, by varying the window size per word.



2.1. THE DISTRIBUTIONAL HYPOTHESIS 7

We now covered the structure and construction of co-occurrence matrices, but it is yet to
be specified what they are used for. As presented in equation (2.2), each cell of the co-
occurrence matrix can be interpreted as a measure of probability for two words occurring
in the same contexts based on an analysis of the corpus. The goal is that all high-valued
entries of the matrix indicate a strong relation between the corresponding two words:
intuitively, “high” and “mountain” should have a high co-occurrence rate, “whale” and
“mountain” rather not.

For that objective, the co-occurrence matrix defined above is not yet a solution, though.
While it would be, assuming that all words of the vocabulary appear with similar fre-
quencies in the text corpus, this assumption is generally unrealistic: common verbs like
“to be” or prepositions can be found in practically any text, while certain technical terms
are rare in comparison. For the co-occurrence matrix, that would lead to rare words only
occurring together having a lesser value than not particularly correlated but very frequent
words due to their small overall counts, i.e. probabilities.

The next subsection introduces a metric which should solve that exact problem.

2.1.2 Pointwise Mutual Information

2.1.2 Definition. Let the PMI matrix PMI(C) œ (R fi {≠Œ})|V |2 be defined as

PMI(C)a,b = log P (a, b | C)
P (a | C) · P (b | C) (2.3)

The positive pointwise mutual information metric o�ers the advantage of being sparse, by
cutting o� negative values:

PPMI(C)a,b = max{PMI(C)a,b, 0} (2.4)

The PMI metric thus observes the frequency of two words appearing in one context as well
as their frequency independently of each other and calculates the ratio. Accordingly, if two
words are completely independently distributed, i.e. P (a, b | C) = P (a | C) · P (b | C), the
corresponding entry of the PMI matrix will be 0; if correlated strongly it will be greater
than 0, and if they never appear in the same context, the matrix contains ≠Œ.

Since the overall frequency is set in relation to the distribution of each word alone, we
also avoid the problem of COM mentioned in Section 2.1.1, that it is impossible for rare
words to achieve high values: if they are su�ciently strongly correlated, their PMI value
will be positive nonetheless.

For a more detailed explanation of PMI, refer to [17, § 3.3] which also explores a few
further optimized metrics like SPPMI.
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2.2 Word Embeddings

When speaking of word embeddings, today it is often associated with neural-network-
based embeddings such as word2vec[20]. The actual principle, however, only defines the
embedding’s goal: to map words to a (often continuous) vector space which o�ers possi-
bilities of comparing or analyzing those automatically, e.g. similarity or relations between
words.

An additional objective is to reduce the vector space’s dimensions as much as possible,
since it should also be viable to build and save embeddings upon corpora with billions
of words; these will usually not consist of billions of di�erent words, but uncompressed
quadratic co-occurrence matrices may, depending on the number format used, quickly end
up using some gigabytes alone. Assuming 4 bytes memory demand per matrix cell, e.g.
as an integer, and a vocabulary of 50,000 words one would already reach a total memory
of 10GB.

One possibility to reduce dimensionality for a set of datapoints is Principal Component
Analysis (PCA) [24][10], or Latent Semantic Analysis (LSA) [27] specifically in the context
of Natural Language Processing, both transforming the co-occurrence space by determin-
ing new dimensions best explaining variation in the data.

2.2.1 word2vec

In 2013, Tomas Mikolov et al. [20] introduced an e�cient way to calculate word embed-
dings by novel neural network architectures which gained much popularity not only for
their architecture, but also for the whole area of research.

For word2vec, neural networks are used to predict either the current window’s center word
(continuous bag-of-words model, CBOW) or the current center word’s context (continuous
skip-gram model). The training is based on the whole corpus to optimize the prediction
accuracy, the network weights are eventually used as the resulting embedded vector. [20]

It showed that the vectors were not only applicable to standard similarity tasks, but also
contained relational information; to repeat an example from the original paper, after train-
ing the model with a high number of dimensions on a large text corpus, when subtracting
the vector of “Paris” from “France” and adding “Berlin” instead, the closest calculated
vector turned out to belong to “Germany”.

Accordingly, word2vec is quite powerful and, due to its high e�ciency, has since its de-
velopment been used for a diversity of applications, e.g. document ranking for search
engines [23]. However, by relying on neural networks in an unsupervised manner, it is also
susceptible to some risks, such as biases implicitly contained in the text corpus which can
be very di�cult to find and eliminate [4].
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2.3 Explainability, Interpretability and Transparency

There is no fixed notion of what explainability and interpretability actually mean, so this
thesis will base its definition on [7], where an overview about the most frequently used
terms and their common ground or di�erences has already been elaborated.

While explainability and interpretability are sometimes used as synonyms, they will here be
defined as two di�erent concepts: interpretability is the possibility to completely map the
respective model to a representation intuitively understandable to humans (e.g. graphs,
diagrams or decision tables), whereas explainability describes the ability to present justi-
fication for any (but each by itself) specific decision of the model which has to be compre-
hensible to humans as well. [7, § II]

Additionally, we use the following notion of transparency:

“Transparency is used as a synonym for model interpretability, that is some
sense of understanding the working logic of the model.” [7, § II]

2.4 Decision Trees

Since decision trees are a crucial part of the presented embedding approach, this section
will present a short introduction on what they aim for, how they work and what risks they
bear. Since the implementation created as a proof-of-concept for this thesis makes use
of the Scikit-learn python package [25], the definitions and explanations in the following
build upon the Scikit-learn documentation [1]; which in turn is based on the CART model
[5].

2.4.1 Definitions (after [1])

2.4.1 Definition. Let X ™ Rn be the origin space where the training and test data come
from and Y ™ Rl the label space, which the input data should be mapped to. For the
scope of this thesis, l is set to 1 and for classification Y is usually defined as {≠1, 1}, i.e.
part of the respective class or “no evidence”; ≠1 instead of 0 mainly to be consistent with
regression.

A decision tree e�ectively partitions the origin space until every terminal partition is
maximally pure, i.e. there is no further partition allowed by the tree’s parameters that
could separate training data mapped to di�erent labels any better.

The partitioning is repeated recursively, hence the name: starting from the root node
subordinate nodes are added, each being assigned a part of the parent’s classification
space which again is separated for new child nodes. In the case of CART trees, the tree is
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binary – every node chooses a feature and a corresponding threshold, which partitions its
training samples as best as possible, so that each partition mostly contains samples with
the same label.

2.4.2 Definition. Let Dt = {xi œ X|i = 1, . . . , It} be the set of training data and
Lt = {yi œ Y |i = 1, . . . , It} the corresponding labels. The set of indices to samples
contained in the classification space of node m is denoted as It(m).

Then we call ◊ = (j, t), 1 Æ j Æ n, t œ R a split which separates It(m) into

I left
t (m, ◊) = {i œ It(m) | (xi)j Æ t}

and
Iright

t (m, ◊) = It(m)\I left
t (m, ◊)

The objective for every node of the tree is to find the split adding the most information,
that is, partitioning the observed training data in a way that the current node’s left and
right branches are as pure as possible. There are several criteria which can be used to
evaluate a candidate split’s quality, two of which are being defined in the following. Note
that the given criteria are limited to classification trees which are most important to
understand for this thesis. Common loss functions for regression trees, predicting not a
discrete class but a continuous target variable, can be found in [1].

2.4.3 Definition. When observing our two labels {≠1, 1}, the proportion of observations
for each label c in node m is defined as

pc(I) = 1
|I|

·

ÿ

iœI

1{c}(yi)

where 1 denotes the indicator function.

We furthermore refer to

HG(I) =
ÿ

cœ{≠1,1}
pc(I) · (1 ≠ pc(I))

as the Gini impurity and

HE(I) = ≠

ÿ

cœ{≠1,1}
pc(I) log (pc(I))

as the entropy or information gain metric.

For the selected measure H, a split’s quality is then assessed by the impurity metric G

with

G(m, ◊) = |I left
t (m, ◊)|
|It(m)| H

1
I left

t (m, ◊)
2

+ |Iright
t (m, ◊)|
|It(m)| H

1
Iright

t (m, ◊)
2

which is to be minimized.
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After all these definitions, a quick sketch of the construction algorithm:

1 def bui ld_tree ( nodes , m , min_leaf ) :
2 ◊ú = arg min◊ G(m, ◊)
3 Ileft = I left

t (m, ◊ú)
4 Iright = Iright

t (m, ◊ú)
5 i f min{|Ileft|, |Iright|} < min_leaf :
6 return

7 nodes [ m ] = ◊ú

8 ml = add_node ( nodes , m , Ileft )
9 mr = add_node ( nodes , m , Iright )

10 bu i ld_tree ( nodes , ml , min_leaf )
11 bu i ld_tree ( nodes , mr , min_leaf )

Algorithm 2.1: Top-down construction of a decision tree

2.4.2 Advantages and Risks

The main idea behind this thesis, choosing decision trees for learning word classes, is their
generally high transparency, explainability and interpretability: the principles of decision
tree construction are relatively intuitive, their prediction results simple to retrace and it is
possible to draw or export graphs showing the tree structure in a comprehensible manner.
In contrast to classical embeddings, one could see exactly which context words the decision
tree takes as indicative for a specific class. For neural based approaches, this would be
possible at maximum via expensive analyses – compare to [4] for an example to find and
eliminate biases for only the gender subspace.

However, this does not come without drawbacks. For being able to retain the interpretabil-
ity, a tree must not be too large, since otherwise it is hard to read and understand as well.
Due to the model’s simplicity, this is a quite drastic requirement which might not suit
every dataset and objective.

This very problem is reinforced by the fact, that in practice usually heuristic algorithms
are applied for decision tree construction. To cite the Scikit-learn documentation of the
DecisionTreeClassifier’s 2 random_state parameter:

“The features are always randomly permuted at each split, even if splitter
is set to "best". When max_features < n_features, the algorithm will
select max_features at random at each split before finding the best split

2https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.
html#sklearn.tree.DecisionTreeClassifier

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
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among them. But the best found split may vary across di�erent runs, even if
max_features=n_features. That is the case if the improvement of the crite-
rion is identical for several splits and one split has to be selected at random.”
[2]

Another problem is the overfitting tendency of decision trees – on especially large feature
sets versus a small number of training samples, which we deal with here, the tree might end
up classifying single examples by their unique feature combinations which are not at all
generalizable. Therefore, we have another reason to keep the tree’s depth low and choose
rather high numbers for its min_leaf_size parameter. The CART model furthermore
includes a pruning step which deletes nodes or entire parts of the tree after construction
if they seem too specific.

Despite all of these countermeasures, overfitting as well as underfitting remain a huge
problem and how successfully the Com2Sem approach deals with it will be reflected in
Chapter 5.

2.5 Target Spaces

In this thesis, the term “target space” generally refers to a specific kind of embedding space
(i.e., the vector space that co-occurrence vectors are mapped to) used for the proposed
technique.

Developing an appropriate target space is even a crucial part of the approach, since mainly
its structure is responsible for how suitable the respective Com2Sem model can be to a
specific problem. Hereby, the target space does not only establish the number and meaning
of features for resulting embeddings, but also a hierarchy in which they are included. The
basic idea is to not grow a single multi-label classifier tree, but use a hierarchy of dual-
class, low-depth decision trees instead. For instance, the feature Geographical Entity
could possess several subordinate features such as City or Landmark which are only
tested if their parent feature is already selected.

Also, rather than taking just the most probable result, the model may trace and output
di�erent routes in the hierarchy providing enough evidence (i.e. a prediction probability
higher than a specified threshold). For example, observe the word “bat”: it may appear
with the words “live” or “species”, given those are indicators of the Animal decision tree,
but also “baseball” or “hit” which could be indicators e.g. for a Sports-Related and
Weapon feature, respectively. Instead of selecting the route with maximum probability,
one could return the resulting vectors of all three paths. Therefore, one has a way of
handling homonymy which is also di�cult in the context of classical embeddings.
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2.5.1 Definition. A target space T is described by a tuple (V, S) with a vector space
V µ RNf , Nf œ N being the number of features, and the target space structure S which
defines the hierarchy and meaning of features.

Hereby, let S = (p, s, d), where p : {1, . . . , Nf } ‘æ {0, . . . , Nf } maps each feature to its
parent feature with 0 denoting no parent, s is a bijection standing rather symbolically
for the intended meaning attached to each feature (that is hardly possible to formulate
mathematically and di�cult even in natural language, so the semantics will be given via
a descriptive name in future) and d : {1, . . . , Nf } ‘æ {{≠1, 1}, {≠1} fi [0, 1]} declares
the domain for every feature. With Db = {i œ {1, . . . , Nf } | d(i) = {≠1, 1}} we refer to
the set of all binary/classifier features, and with Dc = {1, . . . , Nf }\Db the set of all
continuous/regression features.

Additionally, for every parent feature i, i œ Db must hold (since it is a yes or no classifi-
cation).

2.5.2 Definition. An embedding in a target space T is a vector e œ V satisfying fol-
lowing conditions ’i = 1, . . . , Nf :

1. ei œ d(i)

2. (p(i) ”= 0 · ei ”= ≠1) ∆ ep(i) ”= ≠1, i.e. a feature may only be selected if its parent
feature is as well (as long as it has a parent)

3. ÷j œ Db(p(i) = p(j) · i œ Db · ej ”= ≠1) ∆ ei = ≠1 3, i.e. it is not allowed for
two sibling features to both be selected

If a target space is defined accordingly, it can also allow for vector operations to solve
certain word relation tasks. As a trivial example, given we have a very small target space
with two features Instrument (1) and Size (2), a regression feature with 1 indicating
“large”, 0 “very small”. Having defined the embeddings ≠≠≠≠≠æmedium = (≠1, 0.5), ≠≠≠ælarge =
(≠1, 1) and ≠≠≠æorgan = (1, 1), one could calculate ≠≠≠æorgan ≠

≠≠≠ælarge + ≠≠≠≠≠æmedium = (1, 0.5) which
would certainly be the vector that “piano” is mapped to. Still, this would probably also
hold for a “drum kit” much less related to “organ” – to solve arbitrary word relation tasks,
it would therefore be necessary to also add arbitrarily many specialized features.

2.5.3 Definition. To measure the similarity of two di�erent embeddings without losing
the target space’s structural information, we want to define a new score expressing the
relatedness of two embeddings.

3This is no general requirement, but postulated for reasons of simplicity since every vector does then
possess at most one deep-most concept. As long as there are no conflicts between regression features, which
would not be possible for a decision tree to predict from the same co-occurrence vector anyway, technically
no separation into di�erent vectors is necessary.
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• Db and Dc are defined as in Definition 2.5.1, i.e. the mutually exclusive sets of binary
and continuous features.

• Let C(E) = {i œ Db | ’e œ E : ei = 1} be the set of common binary features of all
embeddings contained in a non-empty, finite set E, where we also write C(e1, e2, . . . )
for short when E = {e1, e2, . . . }. Because of the second and third postulation in
Definition 2.5.2, the features returned in C(E) appear always in a coherent path.

• Analogously for regression features, we define the set of comparable features as
R(E) = {i œ Dc | ’e œ E : ei Ø 0} and apply the same short notation as for C. We
call features comparable if they are non-binary and not ≠1 for any of the given vec-
tors, since ≠1 e�ectively means unknown and we cannot compare with an unknown
value.

• In the following, we denote the cardinality of a finite set with the #· operator.

Then let

dc(e1, e2) :=
q

iœR(e1,e2) |(e1)i ≠ (e2)i|

max{#R(e1, e2), 1}
(2.5)

be the (normalized) similarity score for only continuous features and

nco(e1, e2) := max
; #C (e1, e2) ≠ dc(e1, e2)

max {#C(e1), #C(e2), 1}
, 0

<
(2.6)

the normalized concept overlapping score. In case e1 and e2 share no comparable features,
i.e. #R(e1, e2) = 0, dc(e1, e2)’s nominator is 0 and so is the subtrahend in nco(e1, e2).

After having defined the score function, some intuition for it should be provided. The
initial idea is similar to the Jaccard index: with #C(e1,e2)

max{#C(e1),#C(e2),1} we observe the number
of shared classification features in relation to the maximum information being contained
in any of both embeddings; regression features are not taken into account here, since they
should rather denote additional information and are in general not mutually exclusive. To
prevent the denominator from being 0 if none of the given embeddings have been assigned
a concept, 1 is included in the max expression; #C (e1, e2) is then zero anyway.

Regression features should also contribute to the final result, but to a much lesser extent
than binary key features; in particular, the more specific the individual vectors are, the
more important we view the overall shared concept. Because of that, the division by
max {#C(e1), #C(e2), 1} is applied to the subtrahend as well. Additionally, we divide
by the number of comparable features to have more control over the term’s contribution;
regression features should only pose as a negative modifier, so they are normalized to a
value between 0 and 1, including both end points. Again, we take the maximum with 1
in the denominator to prevent division by zero.
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The original contribution of the regression features is determined by looking at the sum
of di�erences in every comparable feature, i.e.

q
iœR(e1,e2) |(e1)i ≠ (e2)i|.

2.5.4 Proposition. Let e1, e2 be embeddings in T . Then:

1. nco(e1, e2) œ [0, 1]

2. nco(e1, e2) = nco(e2, e1), i.e. normalized concept overlapping is symmetric

3. assuming e1 and e2 define at least one binary feature each,

nco(e1, e2) = 1 ∆ ’i œ {1, . . . , Nf } : (e1)i = (e2)i ‚ i œ Dc\R(e1, e2)

i.e. two embeddings score maximum similarity only if they di�er at maximum in
incomparable regression features and both possess at least one concept. Since vectors
without any concepts do not contain useful information to base similarity upon, they
score 0 similarity in any combination.

Proof. Let e1, e2 be embeddings in T .

(1) nco(e1, e2) œ [0, 1]

C(e1) fl C(e2) = {i œ Db| (e1)i = 1} fl {i œ Db | (e2)i = 1}

= {i œ Db | (e1)i = (e2)i = 1}

= {i œ Db | ’e œ {e1, e2} : ei = 1} = C(e1, e2)

(2.7)

Thus, since C(e1)flC(e2) is a subset of each C(e1) and C(e2) and accordingly #C(e1, e2) Æ

max {#C(e1), #C(e2)}:

0 Æ
#C(e1, e2)

max {#C(e1), #C(e2), 1}
Æ 1

The subtrahend is always positive because the absolute values are used, so nco(e1, e2) Æ 1.

The lower bound is trivially given by the outer maximum function.

(2) nco(e1, e2) = nco(e2, e1)

Considering C and R, e1 and e2 appear only in sets, just as C(e1) and C(e2) in the inner
max expression, so the only di�erence could be caused by the nominator in dc. However,
since the absolute value distance is symmetric, |(e1)i ≠ (e2)i| = |(e2)i ≠ (e1)i|. Therefore,
normalized concept overlapping is symmetric as well.

(3) Given e1 and e2 define at least one binary feature each,

nco(e1, e2) = 1 ∆ ’i œ {1, . . . , Nf } : (e1)i = (e2)i ‚ i œ Dc\R(e1, e2)

Let min{#C(e1), #C(e2)} > 0 and nco(e1, e2) = 1, then obviously dc(e1, e2) = 0 ∆
q

iœR(e1,e2) |(e1)i ≠ (e2)i| = 0, because it serves only as a negative modifier and the first
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term cannot exceed the value 1 as shown above. That is: ’i œ R(e1, e2) : (e1)i = (e2)i

with R being the set of comparable features just as stated.

Because the subtrahend is 0, #C(e1, e2) = max{#C(e1), #C(e2)} is required, which is
the case only if C(e1, e2) = C(e1) = C(e2), as C(e1, e2) is a subset of each C(e1) and
C(e2). Accordingly, following the definition of C and condition (2) in Definition 2.5.2,
’i œ Db : (e1)i = (e2)i. Therefore, the stated implication holds.

If one of the word embeddings does not define any concept, #C(e1, e2) = 0 and thus also
nco(e1, e2). ⇤



Chapter 3

Trees, Targets, Transformation

3.1 Related Work

The idea of mapping semantic spaces to each other is not new; two approaches closely
related to the one described here would be [8] and [14] which will be summarized shortly
in the following. They in turn are related to [21] where a linear mapping is trained to
map between distributional spaces of di�erent languages, however, that fits the Com2Sem
approach neither methodically nor with regard to the objective.

Both first mentioned papers perform a transformation of the distributional space into a
well-defined target space; in [8], the space is a span of a set of feature-norms and therefore
closest to the Com2Sem approach, while [14] maps distributional vectors to a model-
theoretic space that should also be able to learn and define quantifiers. The target space
in [8] is in general closest to the definitions in this paper, yet there are some important
di�erences:

• The evaluation feature space is constructed upon the MacRae feature norms [19]
and therefore high-dimensional, since this dataset includes a huge variety of fea-
tures (as specific as a_chicken or has_2_wheels and as generic as like_a_book or
found_on_shelves).

• The feature space is flat, i.e. defines no hierarchical structure. Every feature is
predicted for itself.

• The distributional space is transformed linearly, with the coe�cients learned using
a training data set (again the McRae concepts, specifically).

Relying on the McRae norms led to some problems as stated in the aforementioned works:

“However, overall the mapping looks too coarse. One reason could be the
fact that the feature-based space is relatively sparse (the maximum number

17
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of features for a concept is 26, whereas there are over 2500 dimensions in the
space). [...] It is important to note that a production frequency of zero for a
concept-feature pair in the McRae dataset does not necessarily mean that the
feature is not a plausible property of the concept, but only that it is not one
of the most salient features, since it was not produced by any of the human
participants (e.g.the feature has_teeth has not been listed as a property of
Cat in the McRae dataset, but it is clearly a plausible property of the Cat
concept). [...] This is yet another indication that the concept-feature pairs
listed in the McRae dataset are not complete, meaning that there are salient
features that apply to some concepts which have not been spelled out by the
participants.” [8]

These are some serious disadvantages, especially when training decision trees: following
the Cat example, when the tree could notice that “teeth” does occur regularly with species
possessing teeth, but also with Cat not specifying the respective feature, it could possibly
lead to a disqualification of “teeth” as a discriminator and reinforce overfitting instead.

Therefore, other datasets will be used for the predefined target spaces; the Semantic Space
(Section 3.3.2) training data was specifically designed for this purpose, while the SEMCAT
dataset [28] is used for the automated tests based on the Topic Space (Section 3.3.3).

3.2 Com2Sem

3.2.1 Introduction

Inspired by the popular word2vec algorithm, the approach presented in this paper is named
Com2Sem, co-occurrence matrices to semantics, since e�ectively a co-occurrence vector is
mapped to a space directly encoding human understanding of semantics.

The goal is to develop a powerful yet transparent model for word embedding, providing
complete insight in both construction and decision making; possibly even the search for
contexts which contribute to the decision. Because of that explainability restriction, there
are, however, some obstacles to overcome. Co-occurrence matrices grow quadratically with
respect to vocabulary size, so that one may already reach memory limits based on a text
corpus barely problematic for neural embeddings. There, one mainly needs to save the
weight matrix of |V | · d where V is the vocabulary and d is the target dimension, usually
several hundreds but still d π |V | [20, § 4.3]. One common solution for this problem is to
reduce the dimensionality, e.g. by feature selection or principle component analysis (PCA)
[24][10]. To follow the explainability principle, however, the approach cannot actually rely
on PCA which would make it more di�cult to analyze the influence of specific context
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words. Feature selection could be viable, but needs an automated or manual analysis
beforehand, which context words can be ignored safely without a�ecting the training.

For that reason, an alternative method is used by constructing not one large co-occurrence
matrix, but rather several small ones for separate parts of the corpus. In Section 3.2.2 the
approach and its consequences are explained in detail.

As a transparent embedding method, the thesis relies on decision trees – which is partly
problematic, since it grounds on the assumption that a relatively small set of single words
in specific combinations is already enough to predict word classes. One part of the the-
sis is therefore to analyze and evaluate this exact hypothesis. The objective poses other
problems for trees as well, e.g. the enormous amount of features (which could be relaxed
by the fact that PPMI matrices tend to be relatively sparse [17, § 3.3]). For being able
to keep the decision trees’ depth low and accordingly their readability high while allowing
for as many discriminating word contexts as possible (to partly neutralize the aforemen-
tioned drawback), the approach furthermore not only uses one, but several decision trees
embedded in another tree-like structure: in fact, again some kind of decision tree in which
nodes use the trained decision trees as a condition.

This section will cover the general process of how to apply the Com2Sem approach; from
building the co-occurrence matrix and designing a target space to training and executing
the model itself.

3.2.2 COM and PMI Construction

While the construction of a co-occurrence matrix might seem uncomplicated – just increas-
ing a counter whenever two words appear in the same context – some important decisions
have to be made beforehand.

Tokenizing

To begin with, we have to define what a word actually is. If we want to count every word
form separately (e.g. “be”, “is”, “are”, “been”) that may lead to a very large vocabulary
which in turn would increase memory usage drastically, especially in languages like Ger-
man, Polish or Russian defining a variety of verb and noun forms. Additionally, we could
miss information in cases where the form itself is not important at all – this point should
vanish, however, when supplying enough training data for every variation.

Apart from that, observe the word “christmas tree”. It clearly poses as one grammatical
and semantical entity (if leaving out one of the words, the described concept would not be
recognizable anymore), but according to the common notion of words as tokens separated
by spaces or punctuation, it would be observed separately. On top of that, the notion of
words can di�er between languages: in the heavily context based Chinese languages they
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could be very di�cult to define or recognize, but the same applies to particle verbs as in
German or Swedish, e.g. “angreifen” (German, “to attack”), which often appears in two
parts in a sentence (“er greift an” ≥= “he attacks”).

For simplicity, composed words are ignored in this thesis. Another possibility, at least
in languages related to English, would be to include a manually built or automatically
obtained list of frequent composed words and bind them together – which is still no trivial
solution. For example, one would also have to di�erentiate between “the book I took o�
the table” and “I just took o� with the plane”.

Furthermore, one could use lemmatizers such as the WordNetLemmatizer (downloadable
for the NLTK python package [18]) to unify di�erent word forms for memory and perfor-
mance purposes.

After having defined the kind of tokens contained in the vocabulary, the question arises,
how a context should be defined. Usually, this is a fixed window (e.g. the four words
before and after the current), but one could also use the whole sentence instead to allow
for more topic-related than syntax-related entries. For the results showcased in Chapter
5, however, the sliding-window approach was used.

It is important to note, that all these decisions are no requirements for the Com2Sem
model; this paragraph should rather inform about the choices that need to be considered.
Com2Sem could in principle be used for any co-occurrence matrix.

Avoiding Large Co-Occurrence Matrices

As already noted in Section 3.2.1, the space complexity of conventionally built co-occurrence
matrices lies in O(|V |

2), V being the observed vocabulary. This could be reduced by ap-
plying feature selection or dimensionality reduction (e.g. via a principle component anal-
ysis), however, that possibly also leads to the disregard of important features or missing
explainability.

As an alternative, several small co-occurrence matrices for subsets of the corpus can be
built containing less vocabulary. Accordingly, the space complexity does not grow quadrat-
ically anymore but linearly, since the e�ective size is the sum of each matrix size. It also
o�ers the advantage that single matrices can be written to disk temporarily and do not
have to remain in memory altogether. While speeding up the matrix computation and
allowing more words to be observed for the same space limitations, the approach leads to
higher computational costs when building the actual vectors.

But when (e.g. for local testing) it is more important to be able to build accurate vectors
on a large corpus, that would exceed the RAM limits using a conventional COM, the latter
is probably preferable.
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It is also advisable to use some kind of matrix representation that does not require zero
cells to take up space, since co-occurrence matrices are usually sparse, especially for rather
small corpora (there are many words and tokens never occurring with each other). One
very e�cient solution for medium sized corpora based on the NLTK python package [18],
which can also handle the calculation of PMI values as described in the next section, is
presented in Appendix A.2.

Transforming Co-Occurrence Matrices

Using a plain co-occurrence matrix usually does not achieve the bests results since it allows
fair comparisons only for center and context words which appear globally with roughly
the same frequency.

Instead, transforming the matrix into a more meaningful format is advisable. A prominent
choice is the PMI metric or its successors like PPMI or SPPMI; refer to Section 2.1.2
for more detailed information. It measures the number of center and context word co-
occurrence in relation to their independent frequencies. An empirical approximation of
the metric, as shown in [17], would be the following (COM as defined in Definition 2.1.1,
NC =

q|V |
u=1

q|V |
v=1 COM(C)u,v the number of all observed co-occurrences):

PMIest(C)u,v = log COM(C)u,v · NC
q|V |

vÕ=1 COM(C)u,vÕ ·
q|V |

uÕ=1 COM(C)uÕ,v

If several COMs have been built, the calculation di�ers only slightly (for simplicity assum-
ing that the vocabulary used for each co-occurrence matrix, determining its dimension, is
the union of all individual vocabularies):

PMIest

A
K€

k=1
Ck

B

u,v

= log
qK

k=1 COM(Ck)u,v ·
qK

k=1 NCk
qK

k=1
q|V |

vÕ=1 COM(Ck)u,vÕ ·
qK

k=1
q|V |

uÕ=1 COM(Ck)uÕ,v

(3.1)

To regain a sparse matrix, one could then apply the PPMI (positive PMI) format by
cutting o� all matrix entries lower than 0.

Note that the above formulas are based on the assumption that co-occurrence vectors
should be constructed for every word in the vocabulary. Often, one may only be interested
in e.g. nouns – in this case, co-occurrence and PMI matrices do not need to be quadratic.

3.2.3 Com2Sem Structure

The model’s structure, i.e. the number and structural arrangement of its decision trees,
depends directly on the defined target space (refer to Definition 2.4.1). For every feature
(corresponding to a dimension) of the space there exists one decision tree determining
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whether the respective feature applies to the given co-occurrence vector in the case of
classifier trees, or a regression tree calculating the estimated value.

The selection of a classifier or regression tree is based on the given feature’s domain d(i).

3.2.4 Trees and Semantics

This section o�ers motivation for the approach and clarification on how exactly decision
trees are supposed to recognize human perception of meaning.

In principle, the underlying hypothesis is a further restriction of the distributional hypoth-
esis: we assume that not only a word’s meaning is defined by all its contexts, but that some
parts of its meaning could already be described by a rather small set of co-occurrences.
Even more specific: this set of contexts holds not only for few words with the respective
meaning but for most of them.

In other words: we want to find context words which, in specific frequencies of co-
occurrence, determine a selected meaning. Some examples: words followed by “who”
are mostly persons, after “a(n)” and “the” they are nouns or adjectives, appearing with
adjectives such as “high”, “thick” or “wide” indicates some physical shape.

A decision tree classifier now tries to find exactly those combinations of features which
separate two classes in the data as best as possible (in our case: words with the supposed
meaning and all others), hence it theoretically appears to be a good choice for our purpose.
As presented in Section 2.4.2, there are however some di�culties with applying decision
trees in this context; so by using a hierarchical model the overall accuracy should be
improved.

3.2.5 Training

Training Algorithm

Training the hierarchical Com2Sem model works similarly to training a decision tree out-
lined in Section 2.4.1, particularly, it is applied recursively. As an overview:

1 def train_model (S = (p, s, d) , s œ {1, . . . , Nf } , Dt , Lt , It , t r e e s ) :
2 i f not ÷i œ {1, . . . , Nf } : p(i) = s :
3 return

4 for a l l i = 1 . . . Nf : p(i) = s :
5 t r e e s [ i ] . t r a i n ({(xj , (yj)i) œ Dt ◊ d(s) | j œ It})
6 train_model (S , i , Dt , Lt , {j œ It | (yj)i ”= ≠1} , t r e e s )

Algorithm 3.1: Construction of a Com2Sem model
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Thus, the training data is split in every parent node of the model structure, so that children
of a feature only have to train on data where the label embeddings contain every parent
feature. This is helpful for keeping the tree depths low since the specialized trees in deeper
levels do not need to repeat all the conditions of their parents: for example, if we had a
feature Vehicle and a sub-ordinate feature Is Naval in our structure, “water” or “ocean”
could be a good discriminator for the latter without need to construct other conditions to
exclude water animals, assuming those are correctly rejected by the Vehicle tree.

A step not shown in Algorithm 3.1, since it is rather advisable than necessary, is to add
a few purely zero samples labeled as ≠1 whenever training a classifier tree. That should
prevent the tree from mainly applying negative conditions instead of positive ones which
can particularly happen when the training data is not su�ciently balanced, i.e. far less
negative than positive examples are given. By adding some artificial data that has to
“flow” down the decision tree until the leftmost leaf, the probability of this event can be
decreased a little. It does not prevent it completely, however, since the tree may select
a split that allows nearly every word and then repeat the same thing with only the zero
vectors filtered out beforehand.

If something like this happens, one should try adding more training data to other categories
on the same level – if that still does not solve the problem, the chosen category might not
be suitable, i.e. there are no appropriate positive discriminators the tree could choose
from. Therefore, the target space would have to be redesigned.

Designing Training Data

Because decision trees are a supervised learning method and we want words to be classified
as certain semantic categories, training data is necessary for a Com2Sem model. When
designing the training data, one should keep in mind a number of things:

• Every feature should have a number of positive and negative samples. The number
should at minimum be as high as the tree’s min_leaf_size parameter, so that it is
not forced to use impure nodes.

• Balanced training data is advisable to prevent heavy-sided growth of the respective
decision tree, i.e. when instead of picking splits positively discriminating target class
1 it would sequentially sort out negative examples. The goal should be that a sample
is selected as ≠1 (unknown) rather than incorrectly predicted as the given class.

• When speaking of the stereotypes contained in word embeddings, usually referring to
neural word embeddings, it is important to note that these stereotypes are brought
into the corpus by humans themselves. It is therefore fundamental to keep target
space and training data clean from biases as much as possible.
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• In principle, one and the same word could be used as a sample for more than one
embedding. However, in the contradicting trees one would then obtain at least one
impure leaf that possibly leads to overfitting (since the min_leaf_size requirement
is met more easily) or even always rejecting the respective word by sorting it into a
leaf with mostly negative samples. Accordingly, the approach should be avoided if
possible.

• It would be advisable to only use frequent words in the training data, since their
co-occurrence vectors are probably most “complete”, statistically speaking, and as
such contribute the most information.

When encountering wrong or questionable splits of a decision tree in the process of testing,
the training data is the first place for counter-measures: by adding examples incorrectly
(not) selected in the split, the decision tree can be forced to look for alternatives.

3.2.6 Embedding Prediction

For a prediction, the Com2Sem model’s structure is traversed top-down and the traversal
stops at every tree that does not classify the input as 1 with su�cient certainty. Regression
trees are always applied to their parent’s output vector; however, in the implementation
their features can be overridden statically in lower depths for better accuracy (e.g. when
selecting the feature Is Fish, the Lives in Water feature in their common parent Is
Animal may always be set to 1).

Every maximal path (that is, every path that stops at a level where no classifier tree applies
anymore, or a leaf) is then returned as an embedding. By being able to return multiple
embeddings, homonyms can be modeled as well – which is also the reason why positive
discriminators are desirable for all trees. While positively discriminating splits evaluate
only the features assumed as representative for a class and as such do not lead to rejection
of vectors appearing in additionally a whole other context, negatively discriminating paths
could play o� di�erent aspects of meaning against each other.

As an example, we assume the vector for “bank” contains some high values for context
words related to money and some for context words related to sitting, parks and nature
(possibly also churches etc.). When the Economical Institution feature uses “money”
to find candidates and the Garden Furniture feature uses “garden” and “sit”, both
trees do not interfere with each other and can be selected independently, hence capturing
both meanings of “bank” correctly. If, on the other hand, Economical Institution uses
the fact that these do not usually occur with nature-related words as opposed to scientific
or environmental institutions, it might reject “bank” for its not related meaning aspect.
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1 def p r e d i c t (S = (p, s, d) , s œ {0, . . . , Nf } , x , t r e e s , e , r e s u l t s ) :
2 for a l l i œ {1, . . . , Nf } : p(i) = s · d(i) ”= {≠1, 1} :
3 ei = t r e e s [ i ] . p r e d i c t (x)
4 is_maximal = True
5 for a l l i = 1 . . . Nf : p(i) = s · d(i) = {≠1, 1} :
6 enew = copy (e)
7 enew

i = t r e e s [ i ] . p r e d i c t (x)
8 i f enew

i = 1 :
9 p r e d i c t (S , i , x , t r e e s , enew , r e s u l t s )

10 is_maximal = False
11 i f is_maximal :
12 add e to r e s u l t s

Algorithm 3.2: Predicting on a Com2Sem model. Important: this sketch does only show the
basic principles and does not implement all features of the actual algorithm.

3.2.7 Explainability of Com2Sem

Explainability is the approach’s main objective – the model’s function should be trans-
parent and understandable, its results interpretable (and thus verifiable) by humans, and
it should o�er justification for any calculated embedding. In this section it is discussed
whether and how these goals are implemented.

Transparency and Interpretability

In this thesis, transparency means the avoidance of black-box models, i.e. the idea of how
the model works can be comprehensible to humans. According to [7, Figure 1], this can
generally be assumed for decision trees, which recursively apply conditions to filter out
inappropriate classes.

Additionally, by using the actual context words as features rather than vectors with re-
duced dimensions, we ensure interpretability – when encountering “state” Æ 3.5 as a split
condition inside the Constitution topic tree, one may deem it as suitable, while words
not related to it at all can be viewed as inappropriate.

Justifications

However, sometimes the model’s decision might not seem very obvious even though they
work well in tests. Figure 3.1 shows an example that occurred very early in the imple-
mentation and testing phase, the representation of an Is City feature’s tree:
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Figure 3.1: Clever Hans move on the Is City feature on an old version of the Com2Sem approach,
still using PMI instead of PPMI.

We ignore the “stormont” split, since it is the result of overfitting (capturing only one
positive sample whilst accidentally also recognizing a negative sample). Then, the main
condition is that the word “thomas” occurs sometimes in the same context; note that even
though with PMI a negative number denotes a negative correlation, i.e. they occur less
frequently than they would if statistically independent, it is likely that for “Thomas” this
holds in most cases.

Also, as is visible in the graph, 8 in 9 positive examples are correctly classified by the
condition – further tests showed that it even correctly classified a high number of cities
not specified in the training data. Since “Thomas” is not usually a name specifically
connected with cities, some more research was necessary to explore why exactly the word
is such a good discriminator.

As it seems, there are quite a lot of churches, hospitals and colleges named “St. Thomas”,
which on Wikipedia1, the corpus on which the co-occurrence matrices were built, are
usually listed right beneath their respective city.

While this is a valid discriminator, it does not suit the idea of a semantically motivated
space – therefore it is recommended to use the PPMI metric which forces the tree to only
look at positively correlated context words.

Two further points can be seen in this example:

• Due to the many aspects of meaning and context in every natural language, the tree
structure and how it works may not always be clear to humans.

1https://en.wikipedia.org/

https://en.wikipedia.org/
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• However, since we know the target word, the context in question and also the un-
derlying corpus, it is always possible to automatically search for shared contexts and
show them to the user as a justification.

3.3 Designing Target Spaces

3.3.1 Applications

When talking about target space design, it is important to determine the area of applica-
tion beforehand. Whereas the original co-occurrence vectors contain all the information
we gained from the corpus and neural word embeddings at least many of them, just in
a hard to analyze manner, the number and meaning of dimensions in the target space is
completely user-defined in Com2Sem. Therefore, it is necessary to plan in advance the
properties that word embeddings should possess and the way they are to be compared.

A few points to be considered:

• Since for a target space the information encoded is directly correlated with the
number of dimensions and its structure, the more information the user needs to
incorporate, the more complex the target space will grow. That in turn increases
the e�ort needed to build a corpus of appropriate training data.

• It is only advisable to use the hierarchical structure, if it is su�ciently clear that
there are indeed contexts discriminating all of the child features alike. If such prop-
erties can be assumed for the English language at all, is examined in this thesis by
evaluating the highly structured Semantic Space presented in Section 3.3.2.

• It is not necessary to rely on only the Com2Sem embeddings – one possibility would
be to use them combined with conventional word embeddings or co-occurrence vec-
tors: instead of searching the whole vector space for similar vectors, the search could
be limited to vectors contained in the same most specific category.

In each of the following two subsections, a target space is presented being designed for
testing a specific field of applications.

3.3.2 Semantic Space

Application

The Semantic Space has been created mostly as a proof of concept; it should model
concrete and abstract objects described by natural languages by selecting increasingly
narrow categories. The idea is to examine, how well these theoretic concepts apply to
actual natural language and can be reconstructed on basis of the distributional hypothesis.
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Structure

The space’s structure is based on [13, ch. 17.1], where language semantics are modeled
as graphs, and concepts were assigned a so-called sort, arranged in a tree structure and
defining “features” (not to be confused with the feature term of this thesis) – for example,
the concept “rabbit” would be of sort “d” for “discrete” and possess the features Animal+,
Human– and Movable+ [13, fig. 17.2].

This thesis’ adaptation combines both sorts and their features in the same hierarchy, sorts
always as binary concepts and features as classifier or regression concepts depending on
their meaning, and generally extends it afterwards to end up with more specific categories.

The training data was hand-designed for the Semantic Space, because of no known existing
knowledge base that suited the space structure or could have been converted easily, and
includes 395 entries at the time of writing. Note that not all of the features have been
supplied training data if they were in general irrelevant for the evaluation performed in
this thesis.

The lack of suitable existing datasets also complicates automatic testing of the model –
benchmark approaches as proposed for the SEMCAT dataset [29] usually operate on a
definition of similarity based on topics or word families, which partly overlaps with the
Semantic Space (“bomb” and “mine” would in both views certainly belong to the same
category), but not in all cases (“soldier” is also military-related in SEMCAT, while the
Com2Sem model would ideally mark it as human profession and thus renders potag,
potential agent, the closest common feature).

Nevertheless, three established intrinsic evaluators are applied to models learned on this
space in Chapter 5 for being able to compare the results with those of common embedding
approaches.

The full structure can be seen in Appendix A.1, here just two small excerpts:

• Object: æ Figure A.2
• Situation: æ Figure A.13
• Situational Descriptor: æ Figure A.14
• Quality: æ Figure A.15
• Quantity: æ Figure A.16
• Graduator: æ Figure A.1

Figure 3.2: Top-level structure of the Semantic Space (only classifier features)
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Potag: potential agent of an action
• Animate

– Microscopic (bacterium, virus, ...)
– Animal

ú Mammal (dog, fox, whale, ...)
ú Reptile (snake, lizard, ...)
ú Bird (eagle, parrot, ...)
ú Fish (salmon, shark, ...)
ú Amphibia (frog, salamander, ...)
ú Insect (ant, bee, beetle, ...)
ú Arachnid (spider, scorpion, ...)

– plant
ú Fruit (apple, pear, ...)
ú Tree (oak, willow, ...)
ú Flower (tulip, rose, ...)
ú Shrub (bush, ivy, ...)
ú Weed (grass, moss, ...)
ú Mushroom (fungus, toadstool, ...)

– Human
ú Profession (baker, priest, ...)
ú Title (king, lady, sir, ...)
ú State (sleepwalker, child, adult, ...)
ú Group (crowd, people, ...)

• Inanimate
– Transport (bus, ship, car)
– Calculation (computer, calculator)
– Industry (robot, machine)
– Home (mixer, dishwasher)
– Military (rocket, missile, drone)

Figure 3.3: Potag subtree of the Semantic Space (only classifier features)

3.3.3 Topic Space

Application

The Topic Space was created for testing purposes on basis of the SEMCAT dataset2 [29].
Rather than a precise representation of semantic concepts, it models only topical relations
as described by the defined categories.

2https://github.com/avaapm/SEMCATdataset2018

https://github.com/avaapm/SEMCATdataset2018


30 CHAPTER 3. TREES, TARGETS, TRANSFORMATION

In e�ect, a huge dataset can be used for evaluation on how well each tree recognizes new
words for specific topics.

Structure

In SEMCAT, several thousand words are mapped to 110 di�erent categories. The cate-
gories are rather broad, for example while the animal category contains mostly animal
names, which by itself would be appropriate also for the Semantic Space, “nest” is con-
tained there as well. Categories like birthday are not strictly defined either (containing
rather weakly related words like “age”, “balloon”, “born” and “day”).

Every category, i.e. topic, is assigned one dimension containing exactly those words defined
by SEMCAT. There is no hierarchy at all, neither regression features.

For the testing data then can be evaluated in how many of their correct (according to
the dataset) categories they appear and how many false positives happen, allowing for an
easily-interpretable measure of the model’s prediction accuracy.



Chapter 4

Implementation

This chapter will on the one hand provide a short walk-through of the Com2Sem API,
on the other hand in Section 4.4 it is discussed, how the model could be extended or its
accuracy enhanced by integrating existing knowledge bases.

4.1 Target Space Definition

The target space must be defined using a YAML1 file. The hierarchy can hereby be
expressed by nested dictionaries, where the top-most components are those without par-
ents. The _uses keyword is special, since it can be used to provide the regression features
available for a specific parent feature as a list. As a very basic example:

1 _uses :
2 ≠ movable

3 animal :
4 _uses :
5 ≠ l i v i n g on land

6 mammal: "≠"
7 bird : "≠"
8 f i s h : "≠"
9 p l a n t :

10 _uses :
11 ≠ movable = 0
12 t r e e : "≠"

Figure 4.1: Com2Sem config example

1https://yaml.org/
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Hereby, the "–" just shows that no sub-features are available (in fact, every value not being
a dictionary could be used here). The assignment in line 11 denotes that any embedding
classified as plant will be marked as non-movable, overriding the output of movable’s
regression tree.

Additionally, not showing any e�ect in training or prediction, the “=≥” operator can be
used instead of “=” to set a default value in the Training Data Creator (Section 4.2.2).

4.2 Defining Training Data

4.2.1 Format

The format for providing training data is a plain Csv file (comma-separated values),
containing a column for the token and all feature columns; hereby, the feature columns
are sorted alphabetically. The structure is thus contained only in the Yaml file described
in Section 4.1.

Rows starting with a “#” sign are ignored, as well as an optional header which for all but
the first column must contain the respective feature names.

word abstract object abstr. temporal action always amphibian animal . . .

fox -1 -1 -1 -1 -1 1 . . .

car -1 -1 -1 -1 -1 -1 . . .

table -1 -1 -1 -1 -1 -1 . . .

height 1 -1 -1 -1 -1 -1 . . .

Figure 4.2: Example training data for the Semantic Space

4.2.2 Training Data Creator

Writing down the training data manually as a Csv takes quite some e�ort and is prone
to errors for at least large target spaces.

To counter this problem, a simple graphical user interface relying on Tkinter2 has been
added for the purpose of creating and editing training data – the Training Data Creator.

2https://docs.python.org/3/library/tkinter.html

https://docs.python.org/3/library/tkinter.html
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Figure 4.3: Screenshots of the Training Data Creator GUI

In Figure 4.3 some example screenshots of the tool are displayed: in the above frame one
can see the list of word entries along with some of their defined properties, on the left the
Com2Sem classifier structure is presented and on the right everything necessary to add a
new or modify an existing entry.

The selected feature in the structure tree is used to set the classifier features, while on the
right hand-side applicable regression features are shown and editable – the list of these
is automatically updated when changing the selected classifier feature. Disabled entries
denote that the respective feature is already explicitly set by the selected structure path;
by default, every entry contains ≠1. In the structure’s definition file, the =≥ operator can
be used to set another default without disabling the respective field.

Before using the Training Data Creator, a structure definition file must be selected; also,
via the File menu or Control-s and Control-o training datasets can be saved or loaded.

4.3 Com2Sem API

4.3.1 Dependencies

The implementation is based on Python 3 3 and additionally relies on some Python pack-
ages to implement its functionalities. These are most importantly NumPy [11] and Scikit-

3https://www.python.org/

https://www.python.org/


34 CHAPTER 4. IMPLEMENTATION

learn [25], the latter of which provides the decision tree implementations of the model, as
well as the PyYAML package4 for parsing the structure configurations.

Furthermore, the NLTK package [18] and its provided wordnet corpus [22] are used for
the co-occurrence matrix construction. That is, however, not an inherent dependency of
the Com2Sem approach itself.

4.3.2 Com2Sem Class

All the main functionality is provided by one class, namely the Com2Sem class. For in-
stancing, all feature names (i.e. words) of the original co-occurrence matrix and a path to
the target space configuration file are required.

A model can then be trained using the train(training_file, co_occurrence_lookup,
co_occurrence_matrix) method where training_file is the path to the training dataset
(cmp. Section 4.2.1) as a string and co_occurrence_matrix is an arbitrary object (e.g.
a numpy.array) which can be searched for words in the training data via the provided
function co_occurrence_lookup.

Note that it is also possible to use an approach with multiple co-occurrence matrices here,
as long as the lookup function is able to rebuild a single vector from it. The given mapping
must furthermore return False if the word is not found in the matrix corpus, because the
respective piece of training data is to be ignored in this case. The co_occurrence_lookup
function should expect two parameters: at first the word to look up, then secondly the
co_occurrence_matrix is just passed on.

For prediction, predict(vector, threshold_function, regressor_wrapper, **kws)
is used which returns a list of di�erent probable embeddings (by default using 0.5 as a
threshold to select trees). If a customized threshold/decision function should be used, it
can be given via the threshold_function parameter and expect a tree’s probability as
well as the tested feature’s name. Additionally, all further keyword arguments are passed
on to it. The optional regressor_wrapper may be given a function or lambda expression
expecting the same arguments as a custom threshold function, just that instead of the
tree’s probability its predicted value is supplied. The function should return another
numerical value replacing the one originally predicted.

By making use of the sklearn.tree.plot_tree function, a plot of any trained decision
tree can be shown via the show_tree(feature) method. Furthermore, justify can be
applied to a text corpus, a feature and a co-occurrence vector to retrieve a list of sentences
which contribute to the classification result for the given feature.

4https://pypi.org/project/PyYAML/

https://pypi.org/project/PyYAML/
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4.4 Integrating Knowledge Bases

4.4.1 Potential Applications

Before discussing integrations and metrics, we have to recapitulate the actual applications,
such as:

• similarity: do two words have a similar meaning?

• relational properties: given the relation between words A and B, which partner
concept would model this relation most accurately for word C? Commonly, the word
analogy relation is observed.

• automatic construction of interpretable word concepts: which properties would apply
to a word’s concept according to humans?

Similarity

Similarity tasks are one common application for word embeddings, where some metric is
applied to the vectors and should optimally be a measure for how similar the respective
words are – cosine similarity or simply the euclidean distance could be used here, for
instance. The idea is directly implied by the distributional hypothesis, assuming that
words appearing in similar contexts (i.e. possessing similar co-occurrence vectors) must
be semantically related.

On the one hand, the Com2Sem approach allows for easier comparison of two vectors for
humans and some kind of categorization, depending on the selected target space. On the
other hand: unless using a large amount of dimensions and a very sophisticated structure,
one will never reach the level of detail contained in conventional embeddings.

There are several possibilities of handling this disadvantage: One could use a hybrid
similarity score function, combining both target and co-occurrence space information.
Another way would be to filter words by target space categories and then order results by
co-occurrence vector distances.

When relying on co-occurrence vectors once again, we however face the same problems as
for classical Word Embeddings, such as biases and stereotypes; furthermore, we always
have to store another (even though possibly reduced) vector representation for each word.

As an alternative, existing knowledge bases, e.g. WordNet [22], could be used instead of
co-occurrence vectors to estimate the similarity of words in more detail. WordNet, for
instance, contains semantical relations in a network, which can be used to evaluate the
relatedness.
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Relations

In word similarity tasks, a distance metric is applied that describes the relation of two
words as a scalar.

For word relations, we want to have a vector as opposed to a scalar – a common example
would just be the connection vector. Ideally, when two pairs of words each have a similar
relation vector, they also share a semantical connection from a human point of view.

Once again, we di�erentiate between two levels of details for the Com2Sem approach. In
principle, a model can o�er possibilities of providing such relation measures – if its target
space is designed accordingly. An example for that was given in Section 2.4. Nevertheless,
just as with similarities, we lose many hidden dimensions by using a mostly discrete target
space.

We must therefore use either co-occurrence vectors, possibly containing biases we do not
know of, or suitable knowledge from other sources.

Concepts

Concepts are the actual strength, or rather purpose, of the model proposed in this thesis.
The categories of concepts are defined in the target space and directly predicted by the
model itself without need of further calculation or knowledge base consultation.

Nonetheless, to enhance the accuracy or sort out wrong classifications, it is possible to
integrate other predictors or knowledge bases.

4.4.2 Integration

There are generally three places where the integration of external knowledge is sensible:

• the target space similarity score

• the decision mechanism for every node, i.e. feature selection on not only the decision
tree probability but also external information

• filters to sort out inappropriate predicted vectors

The target space similarity score can be defined by the user directly, for example by
combining the normalized concept overlapping (refer to Definition 2.5.3) with similarity
estimations from WordNet. To accomplish the second point, the predict method o�ers an
additional argument threshold_function allowing to use a custom selection mechanism:
the given lambda expression or function should accept the probability for a positive match
of the respective tree as well as the tree’s feature name as parameters. Via the **kwargs
further fixed arguments, such as the predicted word as string, can be passed onto the
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measure. The return value must be True or False, determining whether the given concept
is selected or not. Similarly, the regressor_wrapper parameter allows to override or
sanitize the values predicted by regression trees.

The last method is a matter of post-processing and as such not integrated into the model
directly, but trivial for the user to implement.
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Chapter 5

Evaluation

5.1 Introduction

After having presented this thesis’ approach, it is crucial to get a grasp on how it actually
performs in practice; a goal, which this chapter is dedicated to.

However, before testing is possible, objectives are needed on which the model can be eval-
uated: those observed in the thesis are therefore described in Section 5.2. The paragraph
does also list a number of obstacles which have to be dealt with when using Com2Sem.

Section 5.3 contains the results of the actual evaluation based on the two target spaces
defined in Section 3.3: the Semantic and the Topic Space.

Finally, the observed results are set into relation with other Word Embedding methods
such as word2vec to determine how well the Com2Sem approach is applicable to common
NLP tasks.

5.2 Problems

5.2.1 Objectives

For evaluation to be possible, it is first necessary to decide on what to evaluate. In [32],
where the performance of some popular word embedding models is reported for a set of
di�erent tasks, word similarity, word analogy, concept categorization and outlier detection
beneath others were observed. Word analogy tasks cannot be adapted trivially to the
observed target spaces, as mentioned in Section 4.4.1, so they are left out of scope for the
evaluation.

For being able to compare the results of Com2Sem on the Semantic Space with those of
[32], we choose to execute the evaluation analogously where possible, using for example

39
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the same datasets. For the Topic Space based on the SEMCAT dataset, we apply Concept
Categorization as well to also measure the amount of false-positives.

Word Similarity

For word similarity tasks one calculates a similarity score between two words’ vector
representations; which in turn can be compared to human-made scores [32, IV.A]. A
common measure in conventional embeddings is the cosine similarity

cos(v1, v2) = v1 · v2
||v1|| · ||v2||

but that is not well-suited to a mostly discrete target space defined in this thesis, since it
does not make use of its hierarchical nature. Instead, a similarity score is proposed, the
normalized concept overlapping, observing the deep-most common category whilst taking
ranged values into account by using their di�erences as a negative modifier. The full
definition and a more detailed explanation can be found in Definition 2.5.3.

For words that are predicted several embeddings, we observe the combination scoring best.

Word Analogy

This overview is given rather for the sake of completeness and not examined practically
for reasons stated below.

The objective of word analogy tasks is, given two related words w1 and w2 as well as a
new word wÕ

1, to find a word wÕ
2 related to wÕ

1 the same way w1 and w2 are related [32,
IV.B]. As an example:

Paris : France :: Berlin : Germany 1 (5.1)

Hereby, the first three words would be given and the underlined word is the one that
should be found.

However, this task is rather problematic for the Com2Sem model. To enable such a specific
answer, every word would have to possess a unique vector which would render the target
space hardly readable. Otherwise, several words would be mapped to the same or a similar
concept (possibly di�ering in regressed values), so we would always retain a set of possible
answers which may be not of much help.

Instead, one could possibly use the original co-occurrence vectors (or another type of
embedding) while applying the concept constraints as a filter on the search space. In

1Phrased as “Paris is to France, what Berlin is to Germany”.
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the above example (5.1) we would thus assume that wÕ
2 must be a similar concept as w2

(“France”), e.g. define the country concept, and then a classical word analogy algorithm
is applied to the configuration where only those wÕ

2 are taken into account which are
mapped to the country concept.

Since Com2Sem would hereby pose as nothing more than an auxiliary tool, such an ap-
proach has not been implemented and evaluated for this paper.

Concept Categorization

Within a Concept Categorization task, word vectors should be separated according to
their semantic categories into di�erent groups [32, IV.C]. While those experiments usually
require a clustering performed on a set of vectors, this is not necessary for Com2Sem
vectors since they already clearly define the concepts they are contained in.

Nonetheless, concept categorization poses some challenges even without the necessity to
perform clustering. For one, words can usually be clustered with respect to more than one
property as stated in [32, IV.C]. While Com2Sem is able to find more than one meaning,
so it would su�ce to take the best fit, if a model finds too many vectors per word, that
could distort the evaluation results.

Ideally, we would automatically test the whole defined target space; that, however, is
generally impractical and not conducted for the Semantic Space in this thesis. It would
be necessary to build a complete list of human-made word-to-concept mappings for this
reason – which is especially di�cult since humans are often not aware of all the di�erent
meanings a word could have. When being asked to assert the word “tiger” its meanings,
one would also have to think of the military ships and helicopters named “Tiger”, bands,
albums, songs, places, products, organizations, persons etc. for a complete overview. The
Com2Sem model did indeed spot some of them and classified “tiger” not only as “animal”
but also as a “military inanimate potential agent” which would apply e.g. to ships, tanks
and helicopters, beneath some other less obvious concepts which, however, mainly made
sense when looking at the justifications.

In contrast, we try to apply the above approach for the Topic Space by using the SEMCAT
[29] categories as supposedly complete word-to-concept mapping; however, this results in
a more topic and less semantic related target space, so it is no ideal solution either.

Outlier Detection

For outlier detection, a number of words is given that all but one match a specific pattern
(e.g. in “banana”, “cucumber”, “potato”, “apple” and “oak”, the last one is probably the
outlier). It should then be viable to find the outlier by looking at the embedding vectors,
using a compactness score [32, IV.D]:
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“Intuitively, the compactness score of a word is the average of all pairwise
semantic similarities of the words in cluster W .” [32, IV.D]

The compactness score c(w) for word w is now adapted from [32, (12)] as following,
W = w1, w2, . . . , wn+1 being the observed word cluster with one outlier and e(w) mapping
a word to its embedding vector:

c(w) = 1
n(n ≠ 1)

ÿ

wiœW \{w}

ÿ

wjœW \{w,wi}
nco (e(wi), e(wj)) (5.2)

The word achieving the maximum compactness score is the outlier2.

5.2.2 Questions

This section should grant an overview about the main questions that should be answered
by evaluating the model performance.

First of all, for the model to be sensible, we state the hypothesis that a rather small
number of word contexts is enough to recognize a specific human-understandable concept.
In extreme cases that could mean that a high co-occurrence score with only one word is
already enough to recognize a word’s meaning. The hypothesis is quite relevant since we
restrict the number of observable contexts by the maximum tree depth, which in turn is
necessary to keep the decision trees readable and the training dataset’s size low.

Secondly, we want to know whether the Semantic Space’s structure is an appropriate ap-
proximation for natural language semantics. If one of the low-level concepts (i.e. those
near the root categories) is not recognizable from word contexts, many words are either
falsely rejected or wrongly assigned the respective concept, leading to a poor overall per-
formance. If such a problem arises and one uses enough training data, it should already
be visible in the decision trees by causing many impure leaves.

Thirdly, we want to examine whether the Com2Sem approach shows any advantage or at
least similar results in standard tasks when compared to common word embeddings.

2Note that in [32] erroneously the opposite is stated. However, the score as averaged similarity over all
but the current word should be maximal if it is calculated over the actual cluster alone; that is the case if
the outlier is the current word.
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5.3 Evaluation

5.3.1 Semantic Space

For all experiments, the co-occurrence matrix was built on only a part of the corpus used in
[32], due to memory and performance limits in the local testing environment; specifically,
1 GB of the wiki2010 corpus3, for window size 4 just 500 MB. 4

Word Similarity

The Word Similarity task was evaluated on WS-353-SIM [3] being based on the WS-353
dataset [9]. The tests were run several times, varying the window size taken into account
for each co-occurrence matrix as well as min_leaf_size (minimum number of training
samples each node must contain), max_depth (maximum depth of both tree types) and
criterion (the measure used to evaluate a candidate split’s quality in classifier trees,
refer to Definition 2.4.3). As a criterion for regression trees, the default of Scikit-learn
("mse") has been used.

As a measure of performance, Spearman’s rank correlation coe�cient, calculated using
the function scipy.stats.spearmanr5 included in the SciPy Python library [30], has
been employed; additionally, the maximum and average number of meanings the model
predicted for each word are shown in the figures.

Now to the evaluation: Most tests share at least a weak correlation with the human
annotated similarities, even though far lower than the state-of-the-art results (Section
5.4). It must be stated, however, that in this evaluation one does not only deal with
a new model architecture, but two di�erent conceptions of similarity: while “train” and
“car” should be mapped to the same concept Transport and thus achieve maximum
similarity, they are given a similarity of only 63.1% in [9]. That is even more apparent
with “monk” and “slave” – both having at least near maximum similarity according to
normalized concept overlapping, since they should possess Human as common category,
while being listed with a similarity of 9.2%. There are several of these discrepancies
between dataset and Semantic Space structure, so the maximally possible correlation is
already considerably limited.

For being able to train a model achieving very high correlation with humans, another
target space would have to be created – whether one suiting the objective actually exists,
cannot yet be answered.

3http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
4On a side note, all datasets used for the Semantic Space evaluation had already been collected in a

Github repository at https://github.com/vecto-ai/word-benchmarks.
5https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html

http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
https://github.com/vecto-ai/word-benchmarks
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
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Window min_leaf_size max_depth criterion Max./Avg. Meanings Result

3 2 / 1 2 entropy 8 / 4.62 8.18
3 2 / 2 5 entropy 7 / 2.28 23.24
3 2 / 2 5 gini 6 / 2.19 16.78
3 2 / 2 10 entropy 8 / 2.25 22.52
3 2 / 2 10 gini 6 / 2.06 26.09
3 2 / 2 15 entropy 8 / 2.27 22.15
3 2 / 2 15 gini 7 / 2.15 25.13

5 2 / 2 2 entropy 10 / 4.44 24.31
5 2 / 2 2 gini 13 / 4.04 26.69
5 2 / 2 5 entropy 10 / 2.44 14.15
5 2 / 2 5 gini 9 / 2.64 21.68
5 2 / 2 10 entropy 9 / 2.29 20.89
5 2 / 2 10 gini 10 / 2.49 19.78
5 2 / 2 15 entropy 8 / 2.22 7.68
5 2 / 2 15 gini 10 / 2.65 15.69

Figure 5.1: Evaluation of Com2Sem on Word Similarity tasks; note that for this experiment, the
window is aligned to the center, so that both preceding and following words are taken into account.
The min_samples_leaf parameter is defined separately for (a) binary and (b) regression trees.
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Window min_leaf_size max_depth criterion Max./Avg. Meanings Result

2 2 / 1 2 entropy 8 / 4.10 5.79
2 2 / 1 5 entropy 6 / 1.98 33.25
2 2 / 2 5 entropy 6 / 1.98 33.17
2 2 / 2 5 gini 6 / 1.98 22.64
2 2 / 2 10 entropy 6 / 2.11 24.71
2 2 / 2 10 gini 8 / 2.15 25.35
2 2 / 2 15 entropy 6 / 2.10 26.36
2 2 / 2 15 gini 6 / 2.17 30.41
2 2 / 2 20 entropy 6 / 2.10 27.15
2 2 / 2 20 gini 6 / 2.17 31.68
2 2 / 2 30 entropy 6 / 2.10 26.95
2 2 / 2 30 gini 6 / 2.17 31.77

3 2 / 2 2 entropy 6 / 2.66 22.44
3 2 / 2 5 entropy 5 / 2.12 19.62
3 2 / 2 5 gini 7 / 1.90 29.32
3 2 / 2 10 entropy 6 / 1.94 19.59
3 2 / 2 10 gini 6 / 1.75 17.94
3 2 / 2 15 entropy 6 / 1.99 16.41
3 2 / 2 15 gini 6 / 1.75 18.01

4* 2 / 2 2 entropy 14 / 3.77 16.17
4* 2 / 2 5 entropy 7 / 2.24 6.55
4* 2 / 2 5 gini 24 / 2.34 7.72
4* 2 / 2 10 entropy 7 / 2.34 -3.26
4* 2 / 2 10 gini 21 / 2.38 4.03

Figure 5.2: Evaluation of Com2Sem on Word Similarity tasks; note that for this experi-
ment, the window is left-aligned, so that only following words were taken into account. The
min_samples_leaf parameter is defined separately for (a) binary and (b) regression trees.
(*) The embeddings were built on a 1 GB corpus taken from Wikipedia for window sizes 2 and 3;
however, due to memory and performance limitations in the testing environment, the co-occurrence
matrix for window size 4 has only been collected over 500 MB of the corpus.
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While the first entries in Figure 5.1 and Figure 5.2 show that a tree depth of 2 is not
enough to capture any similarity information, it appears that with a depth of 5 one
already achieves quite good results; specifically, the correlation even decreases for depths
between 5 and 15. Also notably, the split criterion’s choice seems to a�ect the outcome
remarkably – which is interesting, since as stated in [16]:

“We found that they [Gini and Information Gain criterium] disagree only in
2% of all cases, which explains why most previously published empirical results
concluded that it is not possible to decide which one of the two tests performs
better.” [16]

It might be that the large impact of a single di�erent decision in classifier trees near the
root on the overall similarity leads to this phenomenon; however, that seems unlikely as
the observations in Figure 5.3 show similar behavior for co-occurrence vectors reduced to
only those features selected in a specific Com2Sem model. Still, this question shall remain
out of the scope for this thesis.

While the correlation results for low depths are comparatively high, looking at the common
concepts they yield reveals that the concept mapping itself is not quite as accurate (e.g.
“tiger” being classified as Substance among others 6). One possible explanation for this
could be that the conditions found are not complex enough to capture the actual strict
categories, instead the trees itself would classify only loosely related word classes, which
are more suitable to the test datasets’ notion of similarity. When the trees grow more
complicated using higher depths, this property would probably diminish, which could
explain the drop in correlation between 5 and 15, until the model starts to become better
in performing its actual objective.

We also observe that a larger window size seems to influence the performance negatively:
in both Figure 5.1 and Figure 5.2 the overall correlation decreases with increasing window
size (especially related to high maximum depths), while we receive relatively good results
with a maximum depth of 2 already. On the other hand, the model shows better results
for concept categorization when trained on larger windows (refer to the next section and
Section 5.3.2). Looking at the tables Appendix A.3 and Appendix A.4 suggests that the
problem could be the space structure: with higher window sizes the trees tend less to
underfitting, so that more words are rejected than accepted, and due to the low accuracy
this also includes correct words. If more words are rejected in low levels of the target
space, they include less similarity information, and as such correlate badly with the human
annotations.

6While there exists “tiger balm” which could theoretically justify the result, this expression only oc-
curred once in the observed corpus and is as such unlikely to change the prediction outcome that strong.
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Method Window min_leaf_size max_depth criterion Spearman Pearson

cos* 2 – – – 46.46 45.05

cos 2 2 / 2 2 entropy 34.47 36.20
nco 2 2 / 2 2 entropy 5.68 5.77
cos 2 2 / 2 2 gini 33.03 34.27
nco 2 2 / 2 2 gini 10.68 10.90

cos 2 2 / 2 5 entropy 41.47 42.20
nco 2 2 / 2 5 entropy 33.74 36.27
cos 2 2 / 2 5 gini 38.73 39.39
nco 2 2 / 2 5 gini 23.06 23.44

cos 2 2 / 2 10 entropy 38.48 39.08
nco 2 2 / 2 10 entropy 26.54 27.20
cos 2 2 / 2 10 gini 36.82 37.72
nco 2 2 / 2 10 gini 25.52 27.29

cos 2 2 / 2 15 entropy 38.67 40.00
nco 2 2 / 2 15 entropy 28.73 29.83
cos 2 2 / 2 15 gini 36.84 38.10
nco 2 2 / 2 15 gini 33.17 33.98

Figure 5.3: Evaluation of Com2Sem on Word Similarity tasks; note that for this experi-
ment, the window is left-aligned, so that only following words were taken into account. The
min_samples_leaf parameter is defined separately for (a) binary and (b) regression trees. In this
experiment, not only the normalized concept overlapping has been calculated but also the cosine
similarity on the respective co-occurrence vectors, ignoring all features not being used in any split
of the Com2Sem model.
(*) Correlation using the complete co-occurrence vectors.
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For the sake of comparison, another experiment has been conducted, the results of which
are displayed in Figure 5.3: instead of using the normalized concept overlapping, we apply
cosine similarity to the co-occurrence vectors directly to measure their correlation with the
annotations, however, observing only those features which occur at least in one split of the
Com2Sem model. In the first row, we can see the correlation on the original co-occurrence
vectors.

As it appears, the model results for reduced co-occurrence vectors as well as target space
embeddings turn out better when observing the Pearson correlation coe�cient7 instead
of the Spearman correlation coe�cient: the best configuration scores 36.27% in this case,
and is thus about 9 percentage points lower than the original co-occurrence vectors’ result.
Considering the di�erent perceptions of similarity and that we transformed vectors with
more than 1.5 million features into a mostly dual-valued form with only about 170 features,
that is remarkable, though. Still, the results are not satisfactory for practical purposes.

The reduced co-occurrence vectors in contrast perform quite well: the best correlation
(achieved by the model that also scores best using normalized concept overlapping) is
almost as high as the original correlation while only about 450 features are contained.
This introduces a new application to the Com2Sem approach: a transparent way to reduce
the dimensionality of a distributional space. It could be subject to further research how
the performance changes when varying the defined target space.

Concept Categorization

For evaluation purposes we use the large BM dataset [31], containing 5,231 words each
mapped to one of 56 semantic categories. Ignoring words that could not be found in
the corpus with su�cient frequency or were already contained in the training data, 3,452
words remain.

While performance in this task is usually measured by a cluster purity metric, we observe
accuracy instead as clustering is not necessary in our case. Each one of the 56 categories
is mapped to a corresponding feature of the Semantic Space; the mapping is not bijective
because the Semantic Space features are rather general, so “girls first name” and “males
first name” are both mapped to Human. The complete mapping can be found in Appendix
A.3.

In addition to the overall accuracy, we measure the maximum and average number of
meanings predicted for a word, as the ability to capture more than one meaning could
distort the results. In an extreme case, if the model predicted all concepts to every word,
the accuracy would be 100% even though one gains no information at all.

7https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html
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Window min_leaf_size max_depth criterion Max./Avg. Meanings Accur.

2 2 / 2 1 entropy 13 / 2.90 14.87
2 2 / 2 1 gini 11 / 2.16 10.40
2 2 / 2 5 entropy 9 / 1.31 4.57
2 2 / 2 5 gini 11 / 1.24 8.47
2 2 / 2 15 entropy 9 / 1.35 8.81
2 2 / 2 15 gini 9 / 1.26 8.47

3 2 / 2 1 entropy 8 / 2.31 20.90
3 2 / 2 1 gini 9 / 1.90 15.69
3 2 / 2 5 entropy 9 / 1.35 11.48
3 2 / 2 5 gini 8 / 1.40 13.48
3 2 / 2 15 entropy 8 / 1.36 12.56
3 2 / 2 15 gini 8 / 1.35 13.25

Figure 5.4: Evaluation of Com2Sem on Concept Categorization tasks; note that for this ex-
periment, the window is left-aligned, so that only following words were taken into account. The
min_samples_leaf parameter is defined separately for (a) binary and (b) regression trees.

As clearly visible in Figure 5.4, the overall performance is not particularly high; anyhow,
it is more sensible to observe the accuracy per cluster directly which is therefore displayed
in Appendix A.3. That is because in contrast to the clustering approach, we do not try
to separate the given words into 56 di�erent categories, but they are mapped to the 172
target space features where usually only the most specific ones are chosen as valid (e.g.
“tomato” is only recognized correctly if it is contained in the Fruit class, the Plant
feature does not su�ce) 8.

Another problem lies within the choice of training data – for some categories of the dataset
no or only few training data has been supplied originally. However, when looking at
Appendix A.3, where the number of concordant training samples per category is shown
as well, there are both categories with no training data supplied achieving high accuracy
and categories with many training samples scoring rather low. Therefore, it appears as if
the diversity of training samples for each feature is more important than many examples
for a specific category.

8The Instrument feature is one of the exceptions here, which has been selected since the dataset some-
times contains examples from di�erent categories, for example “table” (Furniture) as well as “sponge”
(Device) in the “kitchen utensil” cluster.
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Outlier Detection

In Figure 5.6, some results for di�erent model configurations and window sizes are listed,
showing the maximum number of detected meanings (i.e. vectors per word), the detection’s
accuracy and the Outlier Position Percentage (OPP) [26, eq. (5)]. The last one denotes the
average normalized position over all outliers when cluster and outlier are sorted according
to their achieved compactness score.

As a dataset for testing, WikiSem-500 [26] and 8-8-8 [6] should have been used, but there
turned out to be some problems:

• Both datasets contain a large number of composed words, such as population_density
or Baden_Airparks, not being collected for the model.

• Quite a number of words is not contained in the observed corpus (at least with
su�cient frequency) and as such these do not allow for fair comparison.

• Just as with word similarity, the space structure is partly not sophisticated enough
to correspond with the datasets; for example, in 8-8-8 one finds the “Information
Technology companies” cluster with outliers such as “Boeing”. The Semantic Space,
however, does not di�erentiate between di�erent kinds of companies. Even if they
were predicted correctly, these companies should be contained in the Economical
Institution concept and define no clear outlier.

To confront the first two points, the respective words are simply ignored and so are clusters
not containing at least two elements afterwards. While this allows for a better model-
specific evaluation, it makes it di�cult to compare with the results in [32]. In e�ect, we
retain 66 lines (with mostly reduced outlier and/or word sets) of WikiSem-500 for models
based on a window-size-2 co-occurrence matrix and 78 lines for window size 4.

The rather small 8-8-8 dataset is excluded completely from the evaluation.

Unexpectedly, the best results of all performed tests occur with a co-occurrence matrix
taking only one context word into account, whilst allowing only one single split, as is
visible in Figure 5.6.

Since we conduct the experiment on only about 10% of the original dataset with a reduced
outlier or word list for most clusters, the accuracies we achieve are notably higher than in
[32, Table V]. In contrast, the Outlier Position Percentage is far lower – which might seem
counter-intuitive, however, if many clusters include not more than four words instead of
the original five to seven, even one position o� would already result in an OPP of 50 to
75 percent. Accordingly, comparing the results of this paper and [32] is not reasonable,
but we do have weak evidence that the model is applicable to the Outlier Detection task
– even with minimal complexity of the tree configuration.
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Window min_leaf_size max_depth criterion Max. Meanings Acc. OPP

2 2 / 2 1 entropy 8 35.77 63.90
2 2 / 2 1 gini 8 35.77 63.90
2 2 / 2 2 entropy 10 35.04 58.37
2 2 / 2 2 gini 10 34.31 59.54
2 2 / 2 3 entropy 5 29.20 59.93
2 2 / 2 3 gini 7 29.93 59.47
2 2 / 2 5 entropy 5 29.20 59.93
2 2 / 2 5 gini 7 21.90 51.76
2 2 / 2 10 entropy 5 22.63 52.79
2 2 / 2 15 entropy 6 21.90 53.96
2 2 / 2 15 gini 7 29.20 59.89
2 2 / 2 30 entropy 5 21.90 54.11
2 2 / 2 30 gini 7 29.20 59.89

3 2 / 2 1 entropy 13 28.49 54.43
3 2 / 2 1 gini 14 20.93 52.36
3 2 / 2 2 entropy 10 18.60 54.32
3 2 / 2 2 gini 8 18.60 53.36
3 2 / 2 3 entropy 8 25.00 56.21
3 2 / 2 3 gini 9 24.42 57.93
3 2 / 2 5 entropy 7 19.19 52.19
3 2 / 2 5 gini 7 17.44 47.83
3 2 / 2 10 entropy 7 27.91 59.18
3 2 / 2 15 entropy 7 27.91 58.76
3 2 / 2 15 gini 7 20.35 51.92
3 2 / 2 30 entropy 7 27.91 58.76
3 2 / 2 30 gini 7 18.60 51.24

Figure 5.6: Evaluation of Com2Sem on Outlier Detection tasks; note that for this experi-
ment, the window is left-aligned, so that only following words were taken into account. The
min_samples_leaf parameter is defined separately for (a) binary and (b) regression trees.
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5.3.2 Topic Space

For the topic space, we only evaluate concept categorization, because it is not complex
enough for other intrinsic evaluators. There are two main di�erences to the Semantic
Space experiment in Section 5.3.1:

• The target space does not focus on semantic relations but topics.

• As the mapping of SEMCAT categories and Topic Space features is bijective, we can
also determine the number of words erroneously predicted for a given category. This
is based on the assumption that SEMCAT is complete, i.e. each word is specified
for every category it could possibly be contained in.

SEMCAT includes 6,559 di�erent words which all occur in at least one of 110 categories
[29]. For the evaluation, we observe only a part of those, specifically 48 categories still
containing 5,167 words. The first twenty words of each category are selected as training
samples.

The co-occurrence matrices are built on 100 MB of the wiki2010 corpus9; the window
covers – depending on the experiment – 2, 3, 7 or 21 words, including the center word.
For window size 2 the right-hand context word is used, in all other cases the window is
centered. Additionally, for only window size 21 the corpus is cleaned beforehand to reduce
memory usage: stop words10 and punctuation are removed completely, additionally the
nltk.stem.WordNetLemmatizer11 is used to lemmatize all words and therefore reduce the
vocabulary size.

The Com2Sem model’s parameters are fixed to min_samples_leaf=2 and random_state=0
whereas max_depth and criterion remain changeable.

While the first results displayed in Figure 5.7 already seem promising at first glance,
achieving an accuracy of almost 60%, they are an indicator for problems of the tree when
looking at the number of wrong classifications (refer to Appendix A.4). Many of the trees
are too generalized and thus classify more than half of all words incorrectly.

This tendency fades when the tree is allowed to use more than one split, but in trade-
o� with the overall accuracy. Interestingly, the criterion’s choice still makes a di�erence,
where entropy seems preferable for low depths and gini achieves slightly better results for
high depths. We also notice that increasing the window size helps to improve the results
(for max_depth=1 it leads to less general trees).

9http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
10Using nltk.corpus.stopwords for the English language (stopwords.words(’english’)). Refer to

https://www.nltk.org/book/ch02.html for information about NLTK corpora.
11https://www.nltk.org/api/nltk.stem.html#nltk.stem.wordnet.WordNetLemmatizer

http://nlp.stanford.edu/data/WestburyLab.wikicorp.201004.txt.bz2
https://www.nltk.org/book/ch02.html
https://www.nltk.org/api/nltk.stem.html#nltk.stem.wordnet.WordNetLemmatizer
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Window Size max_depth criterion Accuracy

2 1 entropy 57.59
2 1 gini 48.50
2 15 entropy 10.07
2 15 gini 13.23

3 1 entropy 45.35
3 1 gini 42.27
3 15 entropy 11.51
3 15 gini 13.21

7 1 entropy 43.76
7 1 gini 40.75
7 15 entropy 12.67
7 15 gini 13.64

21* 1 entropy 55.69
21* 1 gini 56.06
21* 15 entropy 21.22
21* 15 gini 21.43

Figure 5.7: Evaluation of Com2Sem on topic-related categorization.
(*) In the last run, lemmatization and stop-word removal have been applied to the corpus before
collecting the co-occurrence matrix.
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Observing the accuracies and false-positive counts per category in Appendix A.4 shows
that the prediction performance depends strongly on the respective category: while for the
Pirate concept a high accuracy is only achieved with at least about 400 false-positives, the
Country concept reaches 58.75% accuracy with only 44 false-positives. The Languages
category achieves quite good results as well (for small window sizes using “language” as a
primary indicator word), with a window size of 21 even 91.58% accuracy while selecting a
(comparatively) small amount of 180 words incorrectly.

As Country and Languages are the most consistent SEMCAT categories, i.e. related
semantically rather than topically, it suggests that the Com2Sem features should be chosen
carefully in dependence of the selected context. For topic based categorization, instead of
using words out of a local window, the paragraph- or document-based context might be
more helpful; as visible in Figure 5.7, the best results (i.e. high accuracy, less underfitting)
have been achieved with a window size of 21.

5.4 Comparison and Summary

Eventually, the results of the performed tests are compared to those elaborated of Wang
et al. [32], as well as each other in context of the questions defined in Section 5.2.2.

5.4.1 Comparison with Popular Embedding Methods

Due to di�culties in reproducing the exact testing environment, e.g. not being able to use
the complete text corpus, the results are not always comparable to those in [32]. However,
it is quite safe to say that the Com2Sem model as configured here generally performs
worse.

Whereas most examined embeddings achieved a correlation of between 70 and 80 percent
on the WS-353-SIM dataset, ngram2vec scoring best with 81.5% [32, Table II], the best
tested Com2Sem model reached a correlation of 33.25%. Yet, since the notions of similarity
required of the dataset and the Semantic Space di�er considerably in parts, the results
could also be limited by the categorization itself. Furthermore, it is noteworthy that the
similarity task delivers a clear correlation at all while the categorization is still not optimal.

The performance of all embeddings on the BM dataset is not particularly high, about 45%
[32, Table IV]. As this denotes a cluster purity metric, while in this thesis accuracy of
the prediction task was measured, we cannot compare both results. Still, it is visible in
Figure 5.5 and Appendix A.3 that some categories su�er from underfitting, especially those
containing many training data if a low tree depth is chosen. Accordingly, it is advisable to
only observe the results of models with a maximum tree depth greater than 1: there, we
achieve 13.48% accuracy at maximum. Furthermore, in Appendix A.3 we notice that some
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categories seem far more suitable for the prediction than others: for “country”, accuracies
of about 20% are achieved consistently and for “chemical element” scores over 30%.

The performance in Outlier Detection seems inconsistent compared with [32, Table V]:
there, the GloVe embeddings achieved the best score with 15.09% accuracy and an OPP
of 85.74% on the WikiSem-500 dataset. The best Com2Sem model scored 35.77% accu-
racy and an OPP of 63.90% – however, in this thesis it was not possible to test on the
full dataset, so these results are not comparable either. Observed independently, the per-
formance provides weak evidence that the Com2Sem model is at least capable of outlier
detection.

As a consequence, the question whether Com2Sem shows advantages over popular em-
bedding models on intrinsic NLP tasks, can be answered with “no” in general. Yet, since
the model does achieve positive results, we conclude that there are concepts of human-
perception that can be described by a small amount of context word combinations more
or less reliably. That is also supported by the good results in a similarity task achieved
by reduced co-occurrence vectors displayed in Figure 5.3.

5.4.2 Summary

One problem of the model in all tasks is that it reacts quite drastically to changes: even
re-ordering of the co-occurrence features or small parameter changes (e.g. increasing
or decreasing the maximum depth slightly) can lead to vastly di�erent results, even if
the random seed is fixed. A potential solution could be to not use single decision trees
but random forests [15] – which, however, would complicate following the explainability
principle.

In the Concept Categorization tasks it showed that the choice of features – and related
to that any hierarchical structure – should be considered well: while in Section 5.3.2
countries, languages and, to a restricted degree, some other categories have been separated
relatively accurately for especially large window sizes, it is problematic for loosely related
word classes like “adjectives for people”. It is noteworthy that Country belongs to the
features best predicted in Appendix A.3 as well.

We as such relax the original hypothesis: There are human-understandable concepts for
which a small number of word contexts is su�cient to separate them from other concepts.
It might also be possible to describe some concepts by changing the co-occurrence space,
for example by building a co-occurrence matrix not on the context words themselves but
their category predicted by another model; applied to the “adjectives for people” example:
words that often precede a word classified as Human, but not with the same frequency as
articles, are predicted as “adjectives for people”.
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Comparing the performances in Word Similarity and Concept Categorization, they seem to
behave nearly anti-proportional referring to the window size: as the classification accuracy
generally increases with the window size, the word similarity correlation mostly decreases.
The same phenomenon is visible in Figure 5.6 for outlier detection, the compactness score
of which is again based on similarity of vectors. A hypothesis already mentioned in Section
5.3.1 is that for larger windows the trees gain more information to avoid underfitting and
as such manage to construct conditions better rejecting unsuitable words. Since these
conditions are partly too strict, as shown by the example of low accuracies in Figure 5.4,
more and more words are rejected when advancing in the tree structure. Accordingly, for
applicability in similitary tasks it seems to be more suitable if trees underfit, which is the
opposite to what would be advisable for categorization. Both problems could be solved if
only the trees’ accuracy is enhanced without introducing more false-positives.

Therefore, the Semantic Space seems to not yet have an optimal structure: features near
the top-level are not su�ciently visible in the English language to be figured out by a
decision tree reliably. Accordingly, the high-level features currently contained in Object
should be moved to the top-most level. For example, Potag and Geographical could
both be top-level elements, and concepts like Furniture or Informative are in any case
no plausible sub-concepts of Instrument, from a language-related point of view (both
scoring near-zero accuracy in Appendix A.3). Musical Instrument as opposed to that
does achieve comparatively reasonable results as a sub-concept of Instrument already.
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Chapter 6

Conclusion

6.1 Conclusion

This paper proposed a novel approach to learn word embeddings in a supervised manner,
with both construction and prediction being interpretable, explainable and transparent.
Hereby, decision trees are trained in order to find a number of context words that only
occur regularly with words defining a specific semantic or grammatical property.

To evaluate whether the approach is applicable, the Com2Sem model has been intro-
duced, which predicts embedding vectors in a hierarchical space from co-occurrence vec-
tors. The model is even capable of predicting multiple embeddings per word, thus support-
ing homonymy detection. Two target spaces designed specifically for evaluation purposes
were presented in Section 3.3.

Com2Sem has been implemented in Python, making use of some popular libraries for Data
Science and Natural Language Processing, such as Scikit-learn, SciPy, NLTK and NumPy.
The implementation includes a module for co-occurrence matrix construction as well as
the Training Data Creator, a Tkinter-based GUI to design and export training data for
the Com2Sem model.1

The results achieved in the evaluation of three intrinsic evaluators for word embeddings
provide evidence that the basic approach is functional, even though the results are not
optimal compared with popular word embedding models. We conclude that there are
in fact semantic concepts that can be recognized in natural language by observing only
a small set of context words, on the other hand we also learned that not all semantic
categories can be predicted equally well on pure text corpora.

1The implementation can be found on Github at https://github.com/NeclusMandarius/com2sem.
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However, an experiment conducted for word similarity tasks suggests another application
for the model: context words selected by the decision trees appear to contain enough
information to achieve correlations similar to those of the complete co-occurrence vectors.
Therefore, the approach might o�er a new transparent way of reducing the dimensionality
of distributional spaces without negatively a�ecting the performance in NLP tasks.

Even though the reduced co-occurrence vectors scored better in the evaluation than em-
beddings, the normalized concept overlapping – introduced to measure similarity of em-
beddings as defined in Section 2.5 – shows a positive correlation as well, scoring similarly
high in some cases. Accordingly, we conclude that the score function is generally suitable
for its intended purpose.

Apart from the actual proposal, di�erent techniques of how to collect co-occurrence ma-
trices have been discussed in Section 3.2.2, relating to both technical and conceptional
properties. These choices do not only result in practical limitations such as memory-
demand, but influence the model’s success in NLP tasks as well, as it showed in Chapter
5. While tasks based on similarity perform better on small window sizes which require the
model to generate more general trees, the opposite holds for word categorization.

6.2 Outlook

Since a new approach was introduced and this thesis could not examine all its implications
and properties, there are several open questions which might be interesting for future work.

In the evaluation, it turned out that the Semantic Space is not yet ideally structured, as
its low-level features could not be trained optimally – this suggests that their semantical
concepts are not su�ciently visible in the English language and thus lead to either too
specialized or too generalized trees. Accordingly, the Semantic Space should be redefined
to better represent actual language structures.

Related to this, it could be interesting to analyze whether there are ways to automatically
generate an optimally structured target space for some specific objective. Given a dataset
containing a variety of di�erent meaning aspects for a lot of words, even an evolutionary
approach would be imaginable, by nesting and combining space structures to maximize
accuracy and minimize the false-positive rate. Since the space structure then models real
language properties, information can be gained also from a linguistic point of view.

Creating a suitable target space, whether automatically or by manual design, would also
be essential to test Com2Sem in downstream NLP tasks, which have not been conducted
in this thesis, since intrinsic evaluators are better suited for a general overview. Still,
adapting the approach for real-life applications is an important next step to measure its
practicality.
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On a theoretical note, a relevant subject for research could be how the decision tree based
models are related to popular neural embeddings: if some properties of neural embeddings
could be modeled by Com2Sem, for which it is possible to show justifications and graphical
representations, one could potentially gain more insight into their inner structure.

To suit this purpose, the proposed model itself should also be improved. One promi-
nent problem is that decision trees are highly randomized in practice (as cited in Section
2.4.2) which can lead to notable di�erences in prediction even when changing parameters
or training data only slightly. This has also been observed in the course of evaluation.
A possible solution would be to use random forests instead of decision trees, however,
potentially introducing a trade-o� between accuracy and explainability.

Relating to parameter changes, it turned out that the split criterion’s choice has relevant
and mostly consistent e�ects on the results of concept categorization. While entropy
shows advantages over gini for low tree depths, the opposite holds for high tree depths,
even though less strongly. In [16] it is stated that the gini and the entropy metric agree
in most cases, so it could be a candidate topic for research to analyze why that appears
not to apply to co-occurrence matrices.

As a final note, this thesis bases its evaluation heavily on classifier features. For further
work on the Com2Sem model, a detailed analysis of regression features still needs to be
conducted.
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Appendix A

Appendix

A.1 Addition to the Semantic Space: Complete Structure

The Semantic Space consists of 172 features, i.e. dimensions. The structure presented
here is separated into several figures to provide a better overview. Classifier features are
underlined for clear di�erentiation from regression features.

The features are provided a short explanation of their meaning (if necessary) and some
positive examples in the training data if it is given any exclusively (i.e. samples for child
features are ignored). In the case of regression, one word from each end of the scala is
shown.

The space has been constructed by the example of MultiNet sorts and features [13], pro-
viding a representation of semantics as a graph. The training data does also contain many
example words named in the paper cited above.
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• Positivity: whether a concept has some positive connotation to it in general
0: virus, 1: friend

• Object: æ Figure A.2
• Situation: æ Figure A.13
• Situational Descriptor: æ Figure A.14
• Quality: æ Figure A.15
• Quantity: æ Figure A.16
• Graduator: concepts only defining relativizing context for other concepts

– Qualitative Graduator: the graduator operates on total qualities (very,
especially, ...)

– Quantitative Graduator: the graduator operates on quantities (almost,
approximately, ...)

Figure A.1: Top-level structure of the Semantic Space.

Object: concepts perceived as an entity as opposed to situations or qualities
• Individual: whether a concept describes an individual or a group

0: crowd, 1: author
• Spatial: whether a concept is perceived as being grounded in space

0: birthday, 1: height
• Part Of: whether a concept is usually perceived as a part of some other entity

0: rose, 1: blossom
• Info: whether a concept provides additional information

0: rabbit, 1: book
• Fictional: whether a concept is fictional or grounded in the real-world

0: country, 1: dragon
• Concrete Object: æ Figure A.3
• Abstract Object: æ Figure A.10
• Virtual Object: æ Figure A.12

Figure A.2: Object subtree of the Semantic Space
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Concrete Object: entities representing spatial objects
• Artificial: whether an object developed naturally or is constructed by humans

0: ore, 1: violin
• Axial: whether an object possesses a spatial axis

0: ball, 1: ladder
• Movable: whether an object is movable (by itself or others)

0: mountain, 1: desk
• Instrumental: whether an object is usually perceived as a tool

0: mammal, 1: basket
• Container: whether an object can serve as a container for other objects

0: hammer, 1: cupboard
• Specific: whether a specific entity is pointed out or the concept describes a class

of objects
0: city, 1: Berlin

• Discrete Object: æ Figure A.4
• Substance: æ Figure A.9

Figure A.3: Concrete Object subtree of the Semantic Space.

Discrete Object: countable entities (at least entities used as if countable)
• Clothes: objects used as clothing

– Outdoor: whether the clothing is usually worn outdoors
0: –, 1: jacket

– Underwear: whether the clothing is used as underwear
0: jacket, 0.35: sock

– Always: whether the clothing can be worn in all situations (pant, sock, ...)
– Winter: whether the clothing is worn only if it is cold (coat, glove, ...)
– Summer: whether the clothing is worn only during good weather (blouse,

slipper, ...)
– Rain: whether the clothing is worn only if it is rainy/stormy

• Building (hospital, skyscraper, ...)
• Geographical: æ Figure A.5
• Instrument: æ Figure A.6
• Potag: æ Figure A.7

Figure A.4: Discrete Object subtree of the Semantic Space.
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Geographical: concrete or conceptional entities with a geographic location
• Carries Water: an entity carrying water

0: park, 1: river
• Landscape: concepts describing a wide landscape (field, lake, ...)
• Landscape Feature: concepts describing elements of a landscape viewed as single

entities (canyon, hill, ...)
• Biome: concepts describing a full biome (desert, ocean, ...)
• Constructed: geographical entities introduced or built by humans

– Big: whether the entity is perceived as large or small
0.3: Venezuela, 1: China

– Iconic Building: the entity denotes or is the name of some kind of building
perceivable as landmark (castle, pyramid, ...)

– City: the entity denotes or is the name of a city (Berlin, Paris, ...)
– Country: the entity denotes or is the name of a country or district (country,

England, ...)
Figure A.5: Geographical subtree of the Semantic Space.

Instrument: objects not being potential agents used as tools
• Size: whether the object is large or rather small

0: triangle, 1: container
• musical instrument: tools used as musical instrument (accordion, banjo, ...)
• sport device: objects used in sports (football, basket, ...)
• scientific device: instruments used in science (barometer, telescope, ...)
• device: other devices (hammer, tool, ...)

– Mechanical: whether the device works mechanically
0: thermometer, 1: nail

– Weapon: the object is used as a weapon (gun, missile, ...)
– Medical: the tool is used for medical purposes (needle, thermometer, ...)

• Containing: the entity can act as a container for other objects (bag, box, ...)
• Furniture: objects used as furniture (chair, table, ...)
• Informative: objects containing information (article, book, ...)

Figure A.6: Instrument subtree of the Semantic Space.
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Potag: potential agent of an action
• Animate: the agent is animate

– Microscopic: microscopical beings (bacterium, virus, ...)
– Animal

ú Living on Land: whether the animal usually lives on land
0: fish, 1: sheep

ú Living in Sea: whether the animal usually lives in water
0: rabbit, 1: shark

ú Flies: whether the animal can fly
0: penguin, 1: owl

ú Mammal (fox, dolphin, ...)
ú Reptile (snake, lizard, ...)
ú Bird (eagle, kingfisher, ...)
ú Fish (fish, shark, ...)
ú Amphibian (frog, salamander, ...)
ú Insect (butterfly, hornet, ...)
ú Arachnid (spider, scorpion, ...)

– plant
ú Fruit: fruits and vegetables (apple, tomato, ...)
ú Tree (oak, willow, ...)
ú Flower (tulip, rose, ...)
ú Shrub (bush, ivy, ...)
ú Weed (grass, moss, ...)
ú Mushroom (mushroom, ...)

– Human
ú Family Related: the word is related to family

0: judge, 1: child
ú Profession (farmer, priest, ...)
ú Title (chief, king, ...)
ú State: humans in a specific natural or situational state (child, student,

...)
ú Group (family, people, ...)

• Inanimate: æ Figure A.8
Figure A.7: Potag subtree of the Semantic Space
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Inanimate: the agent is inanimate
• Digital: whether/how much the tool works digitally

0: grill, 1: robot
• Transport (bus, car, ...)
• Calculation: tools for computation (computer, calculator, ...)
• Industry: industrial machines (robot, motor, ...)
• Home: electricity-powered tools of everyday life (microwave, oven, ...)
• Military: machines or weapons with military uses (warship, tank, ...)

Figure A.8: Inanimate subtree of the Semantic Space.

Substance: uncountable concrete objects
• Food: whether the object is usually eaten

0: ethanol, 1: juice
• Transparent: whether the material is transparent

0: iron, 1: water
• Radioactive: whether the substance is radioactive

0: oil, 1: –
• Medicine: whether the substance is used as medicine

0: water, 1: –
• Poisonous: whether the substance is usually poisonous

0: tea, 1: poison
• Fluid: the object’s state of matter is fluid (water, oil, ...)
• Firm: the object’s state of matter is firm (concrete, quartz, ...)

– Metal: the substance is metallic (gold, iron, ...)
– Organic: the substance is organic (wood, soil, ...)

• Gas: the object’s state of matter is gas (air, hydrogen, ...)
Figure A.9: Substance subtree of the Semantic Space.
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Abstract Object:
• Methodical: whether the concept describes a method, technique or algorithm

0: charm, 1: algorithm
• Discipline: the concept is related to some professional or scientific discipline

– Art: the concept is related to art
ú Music: the concept is related to music (jazz, hymn, ...)
ú Painting: the concept is related to visual art (painting, modernism, ...)
ú Creative Writing: the concept is related to writing or literature (sto-

rytelling, plot, ...)
– Science: the concept is related to science (biology, chemistry, ...)
– Sports: the concept is related to sports (rugby, tennis, ...)

• attribute: the word denotes the abstract concept of an attribute that can be
connected with other entities

– Measurable Attribute: the attribute is measurable (height, weight, ...)
– Non-Measurable Attribute: the attribute is absolute (form, charm, ...)

• Language: concepts related to language, including language names (German, In-
donesian, ...)

• Relationship: the concept represents a relation between di�erent entities (causal-
ity, similarity, ...)

• Ideal Object: the concept represents an idealized abstraction of some entity or
situation (religion, justice, ...)

• Abstract Temporal Object: the concept denotes an object corresponding to a
time period or date (Renaissance, birthday, ...)

• Modality: words conditioning or motivating the execution or outcome of a situa-
tion (necessity, intention, ...)

• Situational Object: concept describing a situation as object
– Dynamic Situational Object: object describing a dynamic situation (race,

change, ...)
– Static Situational Object: object describing a state of being (sleep, equi-

librium)
• Institution: æ Figure A.11

Figure A.10: Abstract Object subtree of the Semantic Space.
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Institution: words denoting legal institutions or communities
• Institution Size: on which scale a respective institution usually operates

0: administration, 1: UNO
• Local Institution: institution responsible for a rather small environment (ad-

ministration, board, ...)
• Cultural Institution: institution concerned with cultural activities (club, pub,

...)
• National Institution: institution operating on a national scope (ministry, gov-

ernment, ...)
• Religious Institution: some sort of church or institution concerned with religion

(church, cult, ...)
• Global Institution: institution operating on a global scope (UNO, UNESCO,

...)
• Economical Institution: institution with economical interests (enterprise, com-

pany, ...)
Figure A.11: Institution subtree of the Semantic Space.

Virtual Object: the concept appears in the context of computer science or the virtual
world

• Operating System: the word is the name of or related to operating systems (OS,
Linux, ...)

• Program: the word is the name of or related to computer programs (excel, browser,
...)

• Data: the concept appears as synonym or some kind of data (data, information, ...)
• Data Structure: the concept denotes some structural organization of data (list,

map, ...)
• Data Transmitter: the concept denotes technology, protocols or other techniques

transmitting data (internet, LAN, ...)
• User Interface: the concept relates to digital user interfaces (button, UI, ...)
• External Interface: the concept relates to interfaces for computers

Figure A.12: Virtual Object subtree of the Semantic Space.



A.1. ADDITION TO THE SEMANTIC SPACE: COMPLETE STRUCTURE 71

Situation: concepts perceived as a state, situation or action
• Dynamic Situation: situation with participants changing states

– Action: situation actively carried out by one participant
ú Reflexive Action: action a�ecting the actor

0: write, 1: go
ú Transitive Action: action requiring an object

0: go, 1: write
ú Animate Action: action only or usually performed by animate beings

· Human Action: action only or usually performed by humans (write,
sell, ...)

· Animal Action: action only or usually carried out by animals (bite,
clean, ...)

· Plant Action: action only or usually seen with plants (photosynthe-
sis, root, ...)

ú Inanimate Action: action performed by e.g. machines (rotate, lift, ...)
– Happening: dynamic situation not actively sustained by any participant

ú Natural Happening: situation with natural cause (rain, snow, ...)
ú Supernatural Happening: situation observed as supernatural (miracle,

mystery, ...)
ú Random Happening: situation with no obvious cause (encounter, hap-

pening, ...)
• Static Situation: situation in which participants mostly remain in their initial

state
– Animate Situation: situation only or usually found with animate beings

ú Human Situation: situations only or usually found with humans (stand,
read, ...)

ú Animal Situation: situations semantically mainly connected to animals
(hibernation, mating, ...)

ú Plant Situation: situations connected to plants
– Inanimate Situation: situations in which inanimate objects can be found

(running, o�, ...)
Figure A.13: Situation subtree of the Semantic Space.
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Situational Descriptor: concepts granting additional information like time or modal-
ity with respect to a situation

• Time: concept specifying a time-related information
– Time Relation: concept specifying a relation in time (past, future, ...)
– Duration (duration, minute, ...)
– Point in Time (yesterday, Monday, ...)

• Modal Situational Descriptor: concept describing a situation on a level of
conditionality or motivation

Figure A.14: Situational Descriptor subtree of the Semantic Space.

Quality: concepts defining qualities of an entity, e.g. colors
• Property: describes a direct property of an entity

– Total Quality: qualities that either apply or do not apply (empty, silent,
...)

– Gradable Quality: qualities that may be applicable partly or in di�erent
degrees

ú Measurable Quality: the property can be measured by some means
(green, small, ...)

ú Non-Measurable Quality: the property is not measurable (friendly,
heroic, ...)

• Relational Quality: the quality is described by means of a relation between
entities (equivalent, similar, ...)

• Functional Quality: the quality describes an entity’s contextual relation
– Operational Quality: describes an entity in some relational context

(fourth, last, ...)
– Associative Quality: describes an entity by contextual associations (physi-

cal, philosophical, ...)
Figure A.15: Quality subtree of the Semantic Space.

Quantity: numbers or units of measurement
• Quantificator: denotes some concept that can be used to count, measure or

estimate
– Numerical Quantificator: words expressing numbers or specific values

(one, 2, ...)
– Non-Numerical Quantificator: quantifiers not denoting specific values

(all, several, ...)
• Unit of Measurement (kg, meter, ...)
• Measurement: quantifiers along with a unit of measurement

Figure A.16: Quantity subtree of the Semantic Space.
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A.2 Addition to COM Construction: Example

The NLTK Python package can be used to quickly build a co-occurrence matrix and
calculating PMI values of it:

1 from n l tk import c o l l o c a t i o n s
2 from n l tk . t oken i z e import word_tokenize
3
4 win_size = 2
5
6 with open( " our≠corpus . txt " , encoding=" utf ≠8" ) as f i l e :
7 corpus = word_tokenize ( f i l e . read ( ) )
8 # s t i l l i n c l u d e s punctuat ion , s topwords e t c .
9

10 # Construct the BigramCol locat ionFinder ,
11 # the a c t u a l co≠occurrence " matrix "
12 bc f = c o l l o c a t i o n s . BigramCol locat ionFinder . from_words ( corpus , win_size )
13 # Using the s t a t i c from_words method , the window i s
14 # l e f t ≠a l i g n e d : f o r win_size = 2 , i f on ly "X Y Z" i s conta ined in
15 # the corpus , ( "X" , "Y" , 1) and ( "Y" , "Z" , 1) are conta ined in bcf ,
16 # but NOT ("Y" , "X" , 1) or ( "Z" , "Y" , 1 ) .
17
18 bam = c o l l o c a t i o n s . BigramAssocMeasures ( )
19
20 # Apply PPMI as a f i l t e r ( reduces memory usage )
21 bc f . apply_ngram_fi lter (
22 lambda w1 , w2 : ( bc f . score_ngram (bam. pmi , w1 , w2) or 0) <= 0
23 )
24
25 # Note : b c f . score_ngram ( _metric_ , w1 , w2) re turns None i f
26 # the word combination i s not conta ined .

Along with the Com2Sem model implementation, a wrapper class for this use of the
nltk.collocations.BigramCollocationFinder has been created which o�ers some ad-
ditional functionality.

A.3 Addition to Concept Categorization

The following table displays the mapping of BM concepts to Semantic Space features, along
with the number of samples occurring in both cluster and training data (3rd column) and
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the cluster-specific accuracies of four experiments. In the header of the last four, the
first number determines the window size and the second the maximum tree depth. The
accuracy is specified in percent.

Note that high accuracies especially for models with depth 1 are less reliable, since they
could be produced by unbalanced trees predicting the specific category by default.

BM concept Semantic Space feature # 2 (1) 2 (15) 3 (1) 3 (15)

precious stone firm 3 0.00 3.70 0.00 7.41
unit of time unit of measurement 0 2.94 2.94 2.94 2.94

relative family related 2 2.56 2.56 7.69 5.13
unit of distance unit of measurement 3 6.67 6.67 30.00 6.67

metal metal 3 0.00 0.00 22.73 22.73
type of reading material informative 4 0.00 1.28 2.56 0.00

military title title 0 23.08 19.23 26.92 11.54
four-footed animal mammal 5 8.97 7.69 8.97 6.41

kind of cloth organic 0 0.00 2.74 9.59 16.44
color quality 1 23.91 10.87 73.91 10.87

kitchen utensil instrument 1 75.81 12.90 40.32 12.90
bldg for religious service building 1 36.36 12.12 12.12 0.00

part of speech discipline 0 1.47 10.29 11.76 5.88
article of furniture furniture 3 3.51 0.00 3.51 0.00

part of the human body animate 0 66.3 13.04 44.57 31.52
fruit fruit 1 5.88 0.00 2.94 5.88

weapon weapon 3 1.18 0.00 15.29 3.53
elective o�ce human 4 40.54 43.24 37.84 24.32

type of human dwelling building 2 18.64 8.47 5.08 1.69
alcoholic beverage fluid 1 0.00 0.00 2.63 5.26

country country 6 20.69 19.54 16.09 17.24
crime human action 0 2.74 2.74 0.00 2.74

carpenters tool instrument 3 75.00 10.00 33.33 15.00
member of the clergy profession 1 26.32 10.53 18.42 7.89

substance to flavor food substance 0 11.69 6.49 11.69 18.18
type of fuel substance 3 29.41 17.65 31.37 31.37

occupation or profession profession 6 25.17 14.97 8.84 14.97
natural earth formation landscape feature 3 11.11 12.22 7.78 8.89

sport sports 2 3.85 7.69 1.92 0.00
weather phenomenon natural happening 3 4.92 1.64 0.00 4.92

article of clothing clothes 9 28.57 17.46 26.98 23.81
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part of a building building 1 13.33 3.33 2.50 0.00
chemical element substance 4 57.75 33.8 53.52 47.89

musical instrument musical instrument 8 42.5 25.00 37.5 20.00
kind of money unit of measurement 0 0.00 0.00 12.70 3.17
type of music music 3 0.00 0.00 1.90 0.00

bird bird 5 2.74 5.48 2.74 10.96
nonalcoholic beverage fluid 4 5.88 0.00 5.88 11.76

type of vehicle transport 3 5.97 4.48 10.45 4.48
science science 2 2.27 2.27 20.45 9.09

toy instrument 2 71.76 12.94 56.47 11.76
type of dance discipline 0 0.00 3.17 1.59 1.59

vegetable fruit 2 0.00 0.00 5.26 2.63
type of footgear clothes 2 13.33 6.67 11.11 17.78

insect insect 3 5.56 8.33 0.00 2.78
girls first name human 0 1.47 6.99 51.84 19.49

males first name human 0 10.29 16.87 67.49 27.98
flower flower 2 1.89 1.89 1.89 0.00
disease science 0 0.00 0.00 0.00 0.00

tree tree 2 14.08 12.68 2.82 4.23
type of ship transport 2 1.33 2.67 8.00 4.00

fish fish 1 11.11 9.88 4.94 2.47
snake reptile 3 4.88 0.00 2.44 2.44
city city 4 10.42 8.33 25.69 14.58
state country 2 23.68 39.47 5.26 31.58

college or university constructed 0 2.3 3.45 20.69 40.23

A.4 Addition to Topic Space Evaluation

The following tables display the category-specific accuracies of eight of the experiments
presented in Figure 5.6, those using the "entropy" criterion. In the header of the last
four columns, the first number determines the window size and the second the maximum
tree depth. The cells contain entries of the format “X / Y” that must be read “accuracy
of X percent with Y false-positives”. The test data consists of 4,467 samples in total.

Category 2 (1) 2 (15) 3 (1) 3 (15)

adjectives for people 91.02 / 2,819 13.67 / 152 23.83 / 663 5.86 / 68
animal 68.02 / 2,090 15.38 / 112 12.15 / 28 12.55 / 143
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art 83.65 / 3,353 3.85 / 78 17.31 / 263 2.88 / 129
astronomy 8.43 / 180 4.82 / 92 83.13 / 3,136 6.02 / 192

beach 1.69 / 64 6.78 / 165 20.34 / 782 3.39 / 132
birds 62.00 / 2,383 2.00 / 139 88.00 / 3,431 42.00 / 908
boat 91.15 / 3,704 5.31 / 131 86.73 / 3,290 3.54 / 214
body 14.74 / 18 9.47 / 97 86.32 / 3,058 9.47 / 127

buildings 94.78 / 3,104 11.30 / 227 66.96 / 2,447 9.57 / 118
carparts 82.46 / 3,543 12.28 / 386 22.81 / 192 15.79 / 166
castle 64.15 / 2,222 5.66 / 311 75.47 / 3,508 9.43 / 245

christmas 81.90 / 3,643 3.81 / 220 82.86 / 3,618 0.95 / 193
clothes 79.81 / 3,250 18.27 / 600 86.54 / 3,063 25.00 / 711
colors 43.48 / 1,714 7.25 / 146 8.70 / 71 10.14 / 182

computer 64.10 / 3,108 5.13 / 118 5.13 / 24 14.10 / 93
constitution 23.38 / 138 9.09 / 61 44.16 / 289 15.58 / 180

container 9.09 / 259 9.09 / 107 5.45 / 43 7.27 / 173
cooking 11.46 / 178 9.38 / 190 16.67 / 578 6.25 / 244
country 46.25 / 727 33.75 / 42 97.50 / 1,122 58.75 / 44
dentist 76.83 / 3,072 3.66 / 178 68.29 / 3,436 2.44 / 170
doctor 78.23 / 3,568 3.40 / 77 76.87 / 3,277 10.88 / 196
driving 7.29 / 28 6.25 / 97 10.42 / 41 6.25 / 150

emotions 88.79 / 3,141 12.07 / 91 43.97 / 1,359 4.31 / 67
energy 25.33 / 202 8.00 / 168 68.00 / 3,133 16.00 / 193
family 12.75 / 223 3.92 / 101 21.57 / 288 13.73 / 126
farm 12.62 / 633 4.85 / 185 33.98 / 1,674 12.62 / 139
food 83.98 / 3,191 10.55 / 186 76.17 / 2,559 14.45 / 166
house 81.00 / 3,540 7.00 / 246 69.00 / 2,941 10.00 / 220
jobs 55.03 / 359 16.78 / 87 34.90 / 143 14.09 / 111

land forms 73.44 / 3,189 8.59 / 127 70.31 / 2,397 7.03 / 102
languages 52.63 / 42 57.89 / 83 52.63 / 54 49.47 / 117

leaders 45.79 / 403 8.41 / 89 27.10 / 62 24.30 / 122
legal 72.73 / 3,012 6.61 / 156 32.23 / 723 7.44 / 98
math 81.25 / 2,564 10.00 / 151 36.25 / 635 7.50 / 168

military 15.70 / 298 3.49 / 120 34.88 / 395 6.98 / 101
money 20.45 / 296 11.36 / 171 29.55 / 906 3.41 / 168

negative words 93.63 / 3,079 7.64 / 148 27.39 / 315 14.65 / 135
o�ce 2.70 / 20 5.41 / 119 25.23 / 568 3.15 / 95

people 55.24 / 428 11.43 / 153 73.33 / 3,228 8.57 / 120
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pirate 82.07 /3,505 4.83 / 137 82.07 / 3,451 9.66 / 241
plants 84.09 / 3,721 3.41 / 114 89.77 / 3,594 9.09 / 199

positive words 88.11 / 2,852 10.13 / 154 25.99 / 597 2.20 / 67
restaurant 84.62 / 3,768 8.79 / 177 84.62 / 3,524 9.89 / 292

sports 6.93 / 13 15.35 / 266 8.91 / 23 7.43 / 106
transportation 63.44 / 1,811 4.59 / 136 75.27 / 2,887 15.05 / 141

vacation 7.34 / 58 4.59 / 136 8.26 / 85 6.42 / 174
virtues 82.56 / 2,339 13.95 / 155 86.05 / 2,103 25.58 / 176
weather 88.03 / 3,408 15.38 / 233 7.69 / 67 10.26 / 176

Category 7 (1) 7 (15) 21 (1) 21 (15)

adjectives for people 14.84 / 398 4.69 / 66 75.39 / 2,952 5.47 / 169
animal 25.10 / 73 14.57 / 132 63.16 / 272 26.72 / 122

art 21.15 / 157 16.35 / 93 46.15 / 165 25.00 / 269
astronomy 49.40 / 334 9.64 / 65 78.31 / 272 42.17 / 83

beach 15.25 / 157 6.78 / 220 37.29 / 405 28.81 / 373
birds 59.00 / 1586 3.00 / 175 69.00 / 154 48.00 / 141
boat 27.43 / 142 24.78 / 136 64.60 / 233 23.89 / 84
body 17.89 / 82 13.68 / 85 64.21 / 302 32.63 / 302

buildings 33.04 / 137 10.43 / 113 31.30 / 94 18.26 / 302
carparts 47.37 / 1,781 12.28 / 109 54.39 / 474 21.05 / 379
castle 52.83 / 2,258 7.55 / 198 58.49 / 480 26.42 / 157

christmas 74.29 / 3,054 3.81 / 181 40.00 / 532 26.67 / 310
clothes 76.92 / 3,042 9.62 / 152 73.08 / 2,437 33.65 / 257
colors 39.13 / 232 26.09 / 178 69.57 / 424 24.64 / 114

computer 44.23 / 305 10.26 / 68 72.44 / 311 36.54 / 61
constitution 59.74 / 367 18.18 / 112 84.42 / 517 25.97 / 64

container 9.09 / 150 7.27 / 180 29.09 / 236 9.09 / 90
cooking 78.13 / 3,332 0.00 / 108 75.00 /3,083 4.17 / 131
country 57.50 / 144 52.50 / 31 62.50 / 108 32.5 / 18
dentist 71.95 / 3,317 4.88 / 394 46.34 / 216 9.76 / 275
doctor 16.33 / 40 15.65 / 68 55.10 / 190 25.85 / 318
driving 29.17 / 177 7.29 / 138 60.42 / 610 16.67 / 353

emotions 68.97 / 2,240 14.66 / 180 16.38 / 194 12.93 / 131
energy 72.00 / 2,754 26.67 / 182 53.33 / 122 38.67 / 82
family 63.73 / 1,506 12.75 / 149 52.94 / 410 23.53 / 345
farm 23.30 / 95 10.68 / 85 41.75 / 497 28.16 / 349
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food 40.23 / 582 12.50 / 152 57.81 / 295 30.86 / 282
house 4.00 / 139 3.00 / 145 27.00 / 180 21.00 / 307
jobs 54.36 / 1,327 10.74 / 111 32.21 / 756 6.71 / 108

land forms 62.50 / 2,337 7.03 / 91 79.69 / 1,645 14.84 / 119
languages 66.32 / 88 61.05 / 49 91.58 / 180 57.89 / 87

leaders 42.06 / 85 14.95 / 73 59.81 / 324 22.43 / 79
legal 39.67 / 175 5.79 / 157 67.77 / 285 24.79 / 74
math 40.00 / 443 13.75 / 114 71.25 / 509 17.50 / 320

military 49.42 / 513 15.12 / 179 41.86 / 268 20.93 / 319
money 63.64 / 346 23.86 / 116 59.09 / 578 23.86 / 334

negative words 81.53 / 2,945 7.64 / 145 64.33 / 2,194 13.38 / 189
o�ce 31.98 / 517 9.01 / 164 48.65 / 460 16.67 / 289

people 5.71 / 139 8.57 / 99 71.43 / 1,306 4.76 / 115
pirate 22.76 / 293 11.72 / 192 40.00 / 396 17.93 / 339
plants 80.68 / 3,341 3.41 / 122 79.55 / 858 6.82 / 131

positive words 61.23 / 1,793 12.33 / 141 39.21 / 997 9.25 / 148
restaurant 28.57 / 156 16.48 / 121 15.38 / 156 12.09 / 118

sports 54.46 / 1,728 11.88 / 129 41.09 / 559 14.85 / 49
transportation 75.27 / 2,693 9.68 / 105 53.76 / 418 18.28 / 92

vacation 6.42 / 137 8.26 / 106 50.46 / 656 15.60 / 305
virtues 80.23 / 2,302 16.28 / 87 80.23 / 1,524 19.76 / 142
weather 23.93 / 177 11.97 / 115 46.15 / 249 23.08 / 105
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