Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
No. TR 18-01

Representing Constraints, Conditions and Assertions in

M4
Martin Scholz

Dortmund, April 25, 2002

1 Where M4 should be changed

In order to directly attach constraints, conditions and assertions to the operators
in the M4 model, some modifications are necessary. First of all the question
arises, how operators are represented in the model. Up to now, parameters are
attached to the class of operators, implying that operators in the model refer
to operator applications, rather than to operators as such. In the relational
representation, for each step an operator is embedded in, another instance of
the operator appears in the table OPERATOR._T.

It seems more intuitive to link the arguments, including inputs, outputs and
parameters', to the steps, rather than to single operators. Thus the first change
proposed here, is to change the semantics of the class OPERATOR.

Each operator should appear exactly once in this class and thus in the ta-
ble OPERATOR._T. For each step that the operator is embedded in, a foreign
key reference in STEP_T is sufficient to specify the particular operator. Further
foreign key references, from PARAMETER_T to STEP_T should determine the
arguments and output of the operator application. No changes are necessary
here, because references to STEP_T and OPERATOR_T are already foreseen
in M4. As a consequence of the new structure the table OP_NAME_T will be
redundant and can be removed from the M4 model, as soon as the compiler 1s
adjusted to this change. The attribute PAR_OPID of the table PARAMETER_T
will be replaced by PAR_STEPID, a foreign key reference to the step the pa-
rameters belong to. In this setting the constraints, conditions and assertions
can be defined referencing the operators specified in the table OPERATOR_T.
The table OPCONSTRAINT_T will be deleted. Instead four new tables will be
added.

Figure one depicts the changes to the model. The constraints are repre-
sented in two tables;, OP_PARAMS_T to define the inputs and outputs and
OP_CONSTR._T for other constraints. Conditions and constraints will be de-
scribed by two other tables. This results in the following list of new tables:

e OP_PARAMS_T defining the admissible inputs and outputs
e OP_CONSTR_T for constraints
e OP_COND._T for conditions

o OP_ASSERT_T for assertions.

The following sections will describe these tables in detail. An example sce-
nario for using the formalism is given in section 6. Please note, that this change
of the representation currently neither considers subchains nor recommendations
to the case designer.

IMisleadingly the sum of these arguments is called parameters in the model so far.

2

Param Step
n % Constraint

Operator o Condition

Assertion

Figure 1: Modifications

Specifying inputs and outputs

The first of the tables is added to be able to state restrictions on the arguments
used by operators. In detail:

type and number of input arguments

type of output

The new table OP_.PARAMS_T is the first of two tables implementing the con-
cept “Constraint” in figure 1. It has the following attributes:

PARAM_ID: ID of the parameter tuple
OP_ID: foreign key reference to OPERATOR_T
MINARG: minimum number of parameters of this kind - might be ”0”

MAXARG: maximum number of parameters of this kind - NULL, if un-
restricted

NAME: The name given here has to be used in table PARAMETER._T?
in order to be able to identify parameters. The name is interpreted as
a prefix, to allow more than one parameter. The ordering over the set
of parameters, matching the prefix, is determined by their number given

2Concept PARAM in figure 1.

within PARAMETER_T. The identification is necessary in order to for-
mulate applicability conditions, constraints and assertions.

T10: Is this parameter(set) an input or the output.
TYPE: The M4 model uses different kind of object types handled by

operators. The following list shows the alternatives:
— CON (CONCEPT)
— BA (BASE_ATTRIBUTE)
— REL (RELATION)
— V (VALUE)
— MCF (MULTI COLUMN FEATURE)
FUNC (FUNCTION)

The following types appear in deliverable D8/9, but seem to be deprecated,
or at least not handled by software of any kind:

- Q (QUERY)

— TT (TIME_INTERVAL, in D8/9: just output)

— DR (DEVIATION_RULES, in D8/9: just output)
Unless any software module makes use of these types, they will not be
supported. Time intervals can be represented by two time features and
are a typical kind of multi column features, anyway. Queries do not have

to be handled as an extra data type in M4 and deviation rules can be
stored as database functions, similar to decision trees and SVM models.

DOCU: Basically for the HCI, this attribute holds a brief free text de-
scription of the according parameter.

The intended usage of the above specifications of inputs and outputs is to
list the admissible arguments, one after another, declaring types and names.
To support arrays® as well, the minimum and maximum number of objects is
necessary. In this case the name is interpreted as a prefix. The names of the argu-
ments are important to identify single arguments on the instance level, namely
in the table PARAMETER_T. Having these references enables a formulation of

constraints, conditions and assertions.

As an example let’s give the declaration of the first argument of operator

no. 35, which has to be a (single) value labeled “HEAD_W”:

PARAM_ID

OP_ID

MINARG

MAXARG

NAME

10

TYPE

1001

35

1

1

“HEAD_W”

((IN??

((V??

Let us then specify an array of inputs. For arrays the following convention is

3By the same mechanism optional arguments could be handled, as well. However, there
was no necessity, yet.

used: Given NAME=“WEIGHT” all inputs with the appropriate type and name
prefix “WEIGHT” will be considered part of this input array. The ordering of
the array is derived from the order of the arguments in the table PARAME-

TER_T.

To specify a list of weights, the following statement can be used:

PARAM_ID | OP_ID | MINARG | MAXARG | NAME 10 TYPE

1002

35 1 NULL “WEIGHT” | “IN” | “V”

This would aggregate input arguments like “WEIGHT01” or “WEIGHTING”
with data type “V” (value) for this operator. The same convention is applicable,
if the output is an array.

3 Representing Operator Constraints

To formulate other operator constraint than expressable by the mechanism pre-
sented in section 2 the table OP_CONSTR_T is added to the M4 schema. It
contains the attributes CONSTR_ID, CONSTR_OPID, CONSTR_TYPE, CON-
STR-OBJ1, CONSTR_OBJ2, and CONSTR_SQL.

The semantics of these attributes is as follows:

o CONSTR_ID: constraint identifier

e CONSTR_OPID: foreign key reference to operator

o CONSTR_TYPE: different kinds of contraints can be used. Depending on
the type, CONSTR_OBJ1 and CONSTR_OBJ2 may have different seman-

tics

— ISA: the concept or relation (CONSTR_)OBJ1 isA concept or rela-

tion (CONSTR_)OBJ2

SAME_FEAT: The concepts OBJ1 and OBJ2 have the same set of
features, where “same” only means that feature names are equal. The
assumption is made, that two different BaseAttributes may have the
same name, e.g. “CUSTOMER” | one time with, one time without
missing values, as long as they do not share the same concept.

COPY_REPL: This constraint is especially meant for operators chang-
ing only one feature, leaving all the other features untouched. In this
case input and output concept share the same set of features, ex-
cept for one attribute, specified in OBJ2, while OBJ1 denotes the
input concept. Here the assumption is made, that BaseAttributes
may be part of several concepts. This implies another change of the
M* model.

COMP:
If OBJ1 is a CONCEPT, then OBJ2 is a relation. If OBJ1 is a rela-

tion, then OBJ2 can be either a concept or a relation. The constraint

states, that the relations or the concept and the relation are of com-
patible type.

* If a concept C' is followed by arelation R, then C' isA domain(R).

+ If arelation R; is followed by another relation Ra, then range(R;)
isA domain(Ra).

* If a relation R is followed by a concept C, then range(R) isA C.
Instead of a single relation, R might also denote a set of relations,
using their name prefix. The chaining of these relations is done
by their ordering, using the above rules. Finally a BaseAttribute
may be used, wherever a Concept is expected. In this case the
BaseAttribute must be present in the according concept.

— LINK:
This kind of constraint makes sure, that several features are deter-
ministically and efficiently reachable (“joinable”) on the level of re-
lational tables.
If OBJ1 and OBJ2 are BaseAttributes, then they have to refer to at-
tributes of the same relational table, or there has to be a foreign key
reference from the table containing OBJI1 to that containing OBJ2.
If OBJ1 and OBJ2 are concepts, then all of their features have to be
connected. Features are connected by sharing a relational table, by
beeing in tables connected by a foreign key reference or by chaining
these two alternatives. In case of chaining, references are directed and
all features in OBJ2 need to be reachable from OBJ1 (not necessarily
vice versa).
If one object is a feature and one i1s a concept, then the ideas above
will be canonically adopted, treating a feature like a single feature
concept.
Instead of single concepts, prefixes might be used, to have concept
arrays. The constraint for two concepts has to hold for each concept
and its successor.

— IN:
OBJ1 holds the name of one or the prefix for more features.
OBJ2 is the name of a concept, containing all these features. If OBJ2
denotes the (an) output concept, then this concept needs to contain

a feature (or all, if a feature set is given) with the original name(s)
of the object(s) referenced by OBJ1.

— TYPE:
OBJ1 holds the name of one or the prefix for more features.
OBJ2 is the name of a conceptual data type, allowed for the ac-
cording attribute(s). If more data types are supported (not correctly
subsumable by one of the M4 categories) multiple tuples for a single
feature are possible.

~ LT, GT, LE, GE, NE:

OBJ1 is the name of one (or more — name prefix) input parameters.

OBJ2 is usually a number, in case of “NE” 1t might be a nominal
constant. The conditions are ”lower than”, ” greater than”, ”lower or

equal” | ”greater or equal” and "not equal”.

— ONE_OF:
OBJ1 is the name of one (or more — name prefix) input parameters.
OBJ2 is a comma separated string of possible values for this (these)
parameter(s). An example for parameter “kernel type” could be: “lin-
ear,polynomial,radial”. If necessary, a comma within a possible pa-
rameter value can be expressed by writing “\,”.

— SUM:
OBJ1 references a set of numerical parameters by their name prefix.
OBJ2 gives the value the sum of these parameters needs to have.

e CONSTR_DOCU: This attribute holds a brief free text description of the
constraint. It is intended to be used by the HCI.

e CONSTR_SQL: If possible an SQL-query implementing the test of the
constraint is stored here, NULL otherwise.

The following examples demonstrate the usage®:

e Constraint 1: For operator no. 35 the output concept C'_OUT has to be
of the same type or a specialization of the input concept C'_IN.

ID OPID | TYPE | OBJ1 OBJ2
1003 | 35 “ISA” | “C.OUT” | “C_IN”

e Constraint 2: A given array of relationships, passed to operator no. 35, de-
fines a domain compatible chain. The chain shall start with input concept
C'. The relationships should have the name prefix “REL” (e.g. RELOL, .. .,
REL20) and have to be given in the relevant order. The concept that corre-
sponds to the domain of the last relation should contain the BaseAttribute

F.

[ID [OPID [TYPE | OBJI | OBJ2 |

1004 | 35 “COMP” | “C” “REL”
1005 | 35 “COMP” | “REL” | “F”

e Constraint 3: A join on a given array of concepts, prefix ', has to be
efficiently computable. Thus first of all the concepts in the array need to
be stored in a single table, or to be easily joinable by exploiting foreign
key references. The same holds for successive concepts. They need to be
reachable via foreign key references, or might even be stored in the same
table as the predecessor concept. Finally the BaseAttribute ATT R should
be connected equivalently easy from the last concept of the array.

[ID_[OPID [TYPE [OBJI | OBJ2 |
[1006 [35 | “LINK” | “C" | “ATTR” |

4Omitting the suffix “CONSTR_” in attribute names.

e Constraint 4: All input attributes mentioned need to be part of the in-
put concept C. This can be stated by using “IN”-constraints. E.g. for
attributes Att_1, ..., A#¢_10 and B:

[ID_ [OPID [TYPE [OBJI | OBJ2 |

1007 35 ((IN?? ((Att_?? ((C??
1008 35 ((IN?? ((B?? ((C??

e Constraint 5: A BaseAttribute D has to be of type
TIME or CATEGORIAL:
| 1D | OPID | TYPE | OBJ1 | OBJ2 |

1009 | 35 “TYPE” | “D” “TIME”
1010 | 35 “TYPE” | “D” “CATEGORIAL”

o Constraint 6: The definition of a valid interval [0, 1] for a numerical param-
eter PROBABILITY of operator no. 35 can be expressed by the follwing

two tuples:
[ID | OPID | TYPE | OBJ1 | OBJ2 |
1011 | 35 “GE” | “PROBABILITY” | 0
1012 | 35 “LE” “PROBABILITY” | 1
e Constraint 7: The sum of an array of weights, name prefix W EIGHT, has
to be 1:
| 1D | OPID | TYPE | OBJ1 | OBJ2 |
[1013 [35 | “SUM” | “WEIGHT” | 1 |

4 Representing Conditions for Operator Appli-
cations

Conditions are represented using the table OP_COND_T, which contains the at-
tributes COND_ID, COND_OPID, COND_TYPE, COND_OBJ1, COND_OBJ2
and COND_SQL:

e COND_ID: condition identifier
o COND_OPID: foreign key reference to OPERATOR._T

o COND_TYPE: different kinds of conditions can be formulated. Depending
on the type, COND_OBJ1 and COND_OBJ2 may have different semantics.
For conditions taking one argument only, COND_OBJ2 needs to be NULL.

The list below describes the set of applicable conditions. If nothing else is
stated, a BaseAttribute (or multiple BaseAttributes, using name prefixes)
is given by (COND_)OBJI1, while (COND_)OBJ2 has to be NULL.

— HAS_NULLS: At least one NULL value is present in the BaseAt-
tribute.

— NOT_NULL: No values are missing. If OBJ1 specifies a concept, then
in each of the concept’s features no NULL entries are allowed.

— UNIQUE: The given BaseAttribute contains no duplicates.

— ORDERED: The concept values are ordered by the given feature,
while OBJ2 determines if ascending (“INC”), descending (“DEC”),
or if it does not matter (NULL).

— EQUIDIST: This condition is especially interesting for time series. It
is checked, if the BaseAttribute (specified by OBJ1) is ordered and
equidistant, which is the normal form for time series. OBJ2 might be
NULL or specify a stepsize.

— LOWER_BOUND: The given BaseAttribute may not contain values
below OBJ2. This condition applies to attributes of type TIME, as
well.

— UPPER_BOUND: analogous for upper bounds

— AVG: The given feature has to have the average value specified by
OBJ2.

— STD_DEV: The feature has a standard deviation of OBJ2.

— LE, LT, GE, GT: As for constraints, “LLE” stands for “lower or equal”,
“G'T” means “greater than” and so on. In case of such a condition
it has to be checked, if the inequality between two BaseAttributes,
given as arguments OBJ1 and OBJ2, holds for all instances of the ac-
cording concept®. If the BaseAttributes belong to different concepts,
the condition is not met.

OBJ2 might also be a numerical constant, rather than a BaseAt-
tribute.

Further on, OBJ1 and/or OBJ2 can also refer to multiple BaseAt-
tributes by giving their name prefixes, stating that the condition is
met between all objects 01 and o5, with 0y € OBJ1 and 0, € OBJ2.

e COND_DOCU: This attribute holds a brief free text description of the
condition.

e COND_SQL: If possible an SQL-query implementing the test of the con-
dition is stored here, NULL otherwise.

Examples on usage®:

5Please note, that in the original version each BaseAttribute belongs to exactly one concept,
so there is no need to provide the concept as an additional argument. In a later version there
might be a n..m relation between Concepts and BaseAttributes. Even in this case it does not
matter, which Concept containing both BaseAttributes will be chosen to check the condition.
For all these concepts the same columns will be referenced, and the pairing of the columns
values within each tuple will be the same.

8Omitting the suffix “COND_” in attribute names.

e Condition 1: A concept T'C' constituting a time series that is ascendingly
sorted over the time feature TA7:

[ID [OPID [TYPE [OBJL [OBJ2_ |
[1014[35 | “ORDERED” | “TA” | “INC” |

e Condition 2: A numerical BaseAttribute labeled Attr has to be strictly
positive (e.g. for LogScaling):
| 1D | OPID | TYPE | OBJ1 | OBJ2 |
| 1015 | 35 | “GT” | “Attr” | 0 |

e Condition 3: Two attributes of type TIME belong to the same concept and
specify time intervals. Thus for all instances the starting time (START)
must not be later than the end of the interval (EN D):
| ID | OPID | TYPE | OBJ1 | OBJ2 |
1016 [35 | “LE” | “START” [“END” |

5 Representation of Assertions

Assertions are at the same level as conditions, giving guarantees about chara-
teristics of the output. If an assertion 1s related to a feature of the output, while
the output i1s a concept, then the following kind of reference is ment: The out-
put needs to contain a feature with the same original name than the specified
feature. The statement is about this feature.

Assertions are stated using the table OP_ASSERT_T containing the at-
tributes ASSERT_ID, ASSERT_OPID, ASSERT_TYPE, ASSERT_OBJ1, AS-
SERT_OBJ2, ASSERT SQL:

o ASSERT_ID: assertion identifier
o ASSERT_OPID: reference to OPERATOR_T

e ASSERT_TYPE: different kinds of conditions can be formulated. Depend-
ing on the type, ASSERT_OBJ1 and ASSERT_OBJ2 may have different
semantics. For assertions taking one argument only, ASSERT_OBJ2 needs
to be NULL.

— SUBSET: (ASSERT_)OBJ1 is an input concept of which the output
concept is a subset. This statement makes sense only, if the input
and the output concept are of same type (same features).

— PROJ: OBJ1 is an input concept of which the output concept is a
projection (Complete projection of all tuples!).

"That T A has to be a feature of concept TC' is a constraint, that should be stated in the
according table, using “IN”.

10

— NOT_NULL: OBJ1 denotes the name of the feature which is asserted
not to be NULL in the output. Alternatively the name of the output
concept may be entered here, stating that in all of the features no
missing values are present.

— LOWER_BOUND and UPPER_BOUND: The output feature OBJ1
only contains values greater or equal / lower or equal OBJ2. This
kind of assertion is applicable for TIME features, as well.

— UNIQUE, ORDERED, EQUIDIST, AVG, STD_DEV might be used
as well, in the meaning described for conditions, but this is not nec-
essary, yet.

e ASSERT_DOCU: A brief free text description of the assertion should be

entered here.
e ASSERT_SQL: If possible an SQL-query implementing a test of the asser-
tion is stored here, NULL otherwise.

Examples for Assertions®:

e Asgsertion 1: The output concept of an operator is a projection of the input
concept IN_C'ON. This can be stated as

ID OPID | TYPE OBJ1 OBJ2
1015 | 35 “PROJ” | “IN_.CON” | NULL

e Assertion 2: An attribute A which is part of the input concept IN_CON
and of the output concept QOUT_CON does not have missing values in
the output concept. This bundles two constraints with an assertion. The
constraints, A being in IN_CON and A being in OUT_CON, can be

formulated using “IN” | as illustrated before.
The tuple representing the “NOT_NULL” assertion, again for example
operator no. 35, looks like this:

ID OPID | TYPE OBJ1 | OBJ2
1017 | 35 “NOT_NULL” | “A” NULL

8 Omitting the suffix “ASSERT_” in attribute names.

11

6 A Use-Case

This section illustrates the use of the representation framework for a specific op-
erator. Let’s specify the details for the operator FeatureSelection, having ID 43
in M*. First of all it should be recalled, that this operator with the corresponding
ID is stored in table OPERATOR_T rather than in OP_NAME_T, which was
deleted from the M* schema. The entry in this table, omitting OP_REALIZES:

OP_ID | OP.NAME OP_LOOP | OP_.MULTT | OP_.MANUAL
43 “FEATURE_SEL.” | “NO” “NO” “YES”

This operator has the following constraints:

e There 1s exactly one input concept.

e A set of BaseAttributes specifies a subset of the concept’s features.
e The output is a single concept.

Using the same variables as in deliverable 8/9 the input/ouput constraints

(OP_PARAMS_T) would be represented as

| 1D | OP_ID | MINARG | MAXARG | NAME | 10 | TYPE |
1018 | 43 1 1 “TheConcept” “IN” “CON”
1019 | 43 1 NULL “TheAttributes” “IN” “BA”
1020 | 43 1 1 “TheOutputConcept” | “OUT” “CON”

The constraint that TheAttributes are all present in TheConcept is still miss-
ing. It is entered in table OP_CONSTR._T:

| ID | OPID | TYPE | OBJ1 | OBJ2 |
| 1021 | 43 | “IN” | “TheAttributes” | “TheConcept” |

To illustrate, how this is related to the corresponding instances, let’s have a look
at table STEP_T?, step no. 1 of case 123, embedding this operator:

[STIID [ST.CAID [STNR [ST_OPID |
[1022 | 123 [1 | 43 |

The arguments for this specific step are stored in table PARAMETER._T, as
shown below!?. The attribute (PAR_)OBJID references the parameter object.
For a concept the according concept ID of table CONCEPT_T will be given
here, for relations or other types the IDs of the according M* tables will be
referenced, instead. The type is defined in (PAR_)OBJTYPE. (PAR.)STID is a

foreign key reference to the step.

?Loop and multistep information is omitted.

10The column PAR_STLOOPNR and the prefix “PAR_” of attribute names are omitted.

12

[ID [NAME

OBJID | OBJTYPE [OPID | TYPE | NR [STID |

1023 | TheConcept 1029 “CON” 43 IN 1 1022
1024 | TheAttributesl 1030 “BA” 43 IN 2 1022
1025 | TheAttributes2 1031 “BA” 43 IN 3 1022
1026 | TheAttributes3 1032 “BA” 43 IN 4 1022
1027 | TheAttributes4 1033 “BA” 43 IN 5 1022
1028 | TheOutputConcept | 1034 “CON” 43 ouT 6 1022

The names of (PAR_)NAME have to match the specifications given in the table
OP_PARAMS_T. The object IDs of the arguments (PAR_OBJID) and the inter-
nal names of these objects, e.g. the CONCEPT name, can of course not be used
for the formulation of constraints, etc. Instead the arguments are referenced by
the parameter names of OP_PARAMS_T. Together with the above specification
in table OP_PARAMS_T the following set of arguments is found from the table
PARAMETER._T:

e The_Concept points to the object with ID 1029 in table CONCEPT_T.

e TheAttributes is an array of four BaseAttributes, referenced by their ID:

TheAttributes[1] points to BA no. 1030
TheAttributes[2] points to BA no. 1031
— TheAttributes[3] points to BA no. 1032
— TheAttributes[4] points to BA no. 1033

The ordering of these four BaseAttributes is given by their (PAR_)NR
values. The elements of this array are all input arguments of type BaseAt-
tribute, which have a name beginning with “TheAttributes”.

e TheOutputConcept is the concept with ID 1034.

Now let’s formulate the assertion for the FeatureSelection operator:
TheOutputConcept is an extensionally equivalent projection of TheC'oncept.
This can be formulated using an assertion of type projection (“PROJ”):

ID OPID | TYPE OBJ1 OBJ2
1035 | 43 “PROJ” | “The_Concept” | NULL

7 Embedding the knowledge

The knowledge represented by the altered part of M4, described in the previous
sections, will be necessary to maintain case consistency. The consistency is en-
forced by different parts of the system. To some extent the referential integrity
constraints in the database will forbid to enter problematic data into M4, for
instance steps not embedding any operator.

However, due to limitations in representing constraints at this level, the main
efforts for consistency checking will be elsewhere, namely in the case editor. The

13

constraints and conditions provided in the tables named above should be checked
whenever the case designer adds a step and/or modifies a case.

Figure 1 shows the organization of the relevant parts of M*. The concepts
CASE, STEP and PARAM can be conceived as instances, while OPERATOR,
CONSTRAINT, CONDITION and ASSERTION are comparable to classes'!
in the sense of object oriented modelling. Steps are instances of operators. If
a case designer adds a step, then the case editor should automatically check,
which input and output arguments are required and forbid to submit any combi-
nation of argument settings, not allowed due to constraints represented in M*.
In contrast to steps, the list of existing operators and the information about
operator constraints, conditions and assertions may not be altered by the case
designer, but can be considered as fixed. If a case designer wants to connect two
steps, then assertions might be of relevance, as well.

Operator conditions can generally be checked at runtime, only, because be-
fore the relational tables behind the meta-data cannot be analyzed. In the ex-
treme case of steps using a FeatureSelection operator, even the conceptual level
cannot be specified before executing the operator, because the features of the
output concept depend on the specific dataset. The compiler needs to check
the conditions of an operator before executing it. This is necessary in order to
generate runtime exceptions and meaningful messages to the user. Additionally
to checking conditions, it would do no harm, if the compiler could check the
constraints, as well, before executing an operator. However, this 1s redundant
somehow, because it should have happened in the case editor, before. Meta-data
resulting from assertions like “NOT NULL” helps to avoid unnecessary checking
of data properties at runtime.

11 Please note, that this distinction is different from conceptual and relational/executable
level. One should also keep in mind that the distinction between information available early
on (while designing a case) and that, available at runtime (executing a case) is still something
else. All these distinctions are of importance for the given context!

14

