Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
No. TR 18-02

Using Constraints, Conditions and Assertions

Martin Scholz
Dortmund, March 12, 2002

1

An Example on how to use Constraints in the
HCI

This section illustrates the use of the representation framework for the HCI.

Let’s

assume that the case designer wants to add a step embedding the opera-

tor MISSING_VALUES_WITH_REGRESSION_SVM. In table OPERATOR_T

the following information is stored’:

OP_ID | OP.NAME OP_LOOP | OP.MULTI | OP_.MANUAL

53

'MISSING_V._.WITH_R. SVM’ | 'YES’ 'NO’ 'NO’

As stated above, this operator is LOOPABLE, not MULTISTEPABLE and
not MANUAL.

The constraints for this operator can be read from the tables OP_PARAMS_T
and OP_CONSTR_T:

There is exactly one input concept In_Con.

A set of BaseAttributes Pred Attr specifies a subset of the input concept’s
features.

All attributes PredAttr are of type scalar.

A BaseAttribute specifies the target attribute T'arget, for which missing
values shall be replaced.

Target 1s of type scalar.

The output is a single Concept Out_C'on containing the predicting and
target features.

The parameters C', LossFunctionPos, LossFunctionNeg and Epsilon
are numerical values. All values are strictly positive.

The Kernell e 1s one of “dot”, “polynomial”, “radial”, “neural” and
’ ’ ’
“anova”.

The input/output constraints (OP_PARAMS_T) would be represented as

| D | OP_ID | MINARG | MAXARG | NAME | 10 | TYPE |
1018 53 1 1 “In_Con” “IN” “CON”
1019 | 53 1 NULL “PredAttr” “IN” “BA”
1020 53 1 1 “Target” “IN” “BA”
1021 53 1 1 “cr “IN” “Vr
1022 | 53 1 1 “LossFunctionPos” “IN” “Vr
1023 | 53 1 1 “LossFunctionNeg” | “IN” “vr
1024 | 53 1 1 Kernel Type” N wm
1025 | 53 1 1 “QOut_Con” “OuT” “CON”

1Omitting OP_REALIZES.

In table OP_CONSTR_T the other constraints can be stated as

| CONSTR.ID | OP_ID | CONSTR_TYPE | OBJ1 | OBJ2
1035 53 “IN” “Pred Attr” “In_Con”
1036 53 “TYPE” “Pred Attr” “SCALAR”
1037 53 “IN” “Target” “In_Con”
1038 53 “TYPE” “Target” “SCALAR”
1039 53 “TYPE” “cn “SCALAR”
1040 53 “TYPE” “LiossFunctionPos” “SCALAR”
1041 53 “TYPE” “LossFunctionNeg” | “SCALAR”
1042 53 “TYPE” “Epsilon” “SCALAR”
1043 53 “GT” “cr 0
1044 53 “GT” “LossFunctionPos” | 0
1045 53 “GT” “LossFunctionNeg” | 0
1046 53 “GT” “Epsilon” 0
1047 53 “ONE_OF” “Kernel Type” “dot,polynomial,...”
1048 53 “COPY_REPL” “In_Con” “Target”

The most important information for the case editor will be, which inputs and
outputs belong to a certain operator. As stated in OP_PARAMS_T a step em-
bedding the MISSING_VALUES_WITH_REGRESSION_SVM needs to be pro-
vided with an input concept, a target attribute, a set of base attributes used to
predict the missing target attribute and four parameters of type VALUE. The
operator produces a single output concept. Additionally to these constraints,
the second table gives further restrictions. The parameters have to be of match-
ing type and the numerical values need to be strictly positive. The user should
be guided to enter the necessary information.

Together, these constraints provide the HCI with all the necessary informa-
tion about the validity of steps, regarding the demands of operators. The output
needs to be specified, too, when setting up a step. In this case the user does not
have to fully specify the output concept by hand, but the HCI may exploit the
information given by the “COPY_REPL”-constraint: The output concept will
share all base attributes with the input concept, except for the target attribute.
The target attribute will be a different base attribute, having the same name
as the original target attribute. So the HCI could support the user by offering
to create a new concept, having the specified set of features. This new concept
can immediately be defined to be the output concept of the step.

After validating the set of parameters for a certain step with respect to the
general constraints given for the embedded operator, all the parameters have to
be entered into the table PARAMETER_T. The names that need to be specified
in this table have to be the same as given in the table OP_.CONSTR_T. It would
be reasonable, that the case editor enters the parameters using the M4 interface.

2 When to check Conditions and how to exploit
Assertions

The conditions can hardly be exploited by the case editor. To illustrate their
runtime specific character, let’s continue with the operator

MISSING_VALUES_WITH_REGRESSION_SVM, having the following condi-

tions:
e The predicting attributes Pred Attr do not containing any missing values.
e the target attribute has missing values.

Represented in the table OP_COND_T:

[[CONDID [OPID | COND_TYPE | OBJI [OBJ2 |
1050 53 HASNULLS | “Target” | NULL
1051 53 NOTNULL | “PredAttr” | NULL

In general it will not be possible to decide, if a base attribute contains
a missing value, without looking at the data. This condition could rather be
checked by the compiler at runtime, in order to avoid an unnecessary operator
application, if there are no missing values, anyway. In other cases, maybe if a
time attribute is not equidistant, although an equidistant time series is expected,
a runtime exception with a meaningful message to the user should be generated.

The main advantage of formalizing assertions is to avoid checking conditions,
which can already be concluded to hold or to be violated. For the example op-
erator the output base attribute will not contain any missing values, which is
represented in table OP_ASSERT_T as follows:

[ASSERT.ID | OP_ID | ASSERT_TYPE [OBJ1 [OBJ2 |
| 1035 | 53 | NOT_NULL | “Target” | NULL |

Once such an assertion is true, it can be memorized by the compiler, in order
to avoid unnecessary checks at runtime.

