
Comparing Knowledge-Based Sampling to
Boosting

Martin Scholz

University of Dortmund, 44221 Dortmund, Germany,

scholz@ls8.cs.uni-dortmund.de,

http://www-ai.cs.uni-dortmund.de/

July 25, 2005

Abstract

Boosting algorithms for classification are based on altering the ini-
tial distribution assumed to underly a given example set. The idea
of knowledge-based sampling (KBS) is to sample out prior knowledge
and previously discovered patterns to achieve that subsequently ap-
plied data mining algorithms automatically focus on novel patterns
without any need to adjust the base algorithm. This sampling strat-
egy anticipates a user’s expectation based on a set of constraints how
to adjust the distribution. In the classified case KBS is similar to
boosting. This article shows that a specific, very simple KBS algo-
rithm is able to boost weak base classifiers. It discusses differences to
AdaBoost.M1 and LogitBoost, and it compares performances of
these algorithms empirically in terms of predictive accuracy, the area
under the ROC curve measure, and squared error.

1 Introduction

The task of finding novel patterns in the presence of prior knowledge has
recently been addressed by a technique referred to as knowledge-based sam-
pling [1, 2]. For a specific rule induction task a simple reweighting strategy

1



has been shown to produce diverse rulesets, each rule describing a sepa-
rate, independent “subgroup” of its own. In [3] some early successful experi-
ments with the KDD cup data of 2004 are reported, based on using the same
reweighting strategy to boost decision trees. This article compares the corre-
sponding algorithm to the best known and practically most relevant boosting
algorithm AdaBoost.M1, and more briefly to the regression-based Logit-
Boost. Both boosting algorithms are described in section 2, before section 3
repeats the main ideas guiding knowledge-based sampling. A subsequent dis-
cussion compares the sampling technique to boosting from a methodological
point of view, and it explains how this kind of sampling can be used to boost
weak base classifiers. The claims are empirically evaluated in section 4.
The crisp predictions of AdaBoost.M1 are compared to KBS in terms of
predictive accuracy. The proposed KBS boosting algorithm is designed to
yield soft predictions, which allows for a finer-grained comparison to Logit-
Boost. The rankings induced by the KBS-boosting and LogitBoost are
compared in terms of AUC. To evaluate the absolute predictions the squared
error is applied as a second measure. Section 5 summarises the results shown
in this report.

2 Boosting Weak Classifiers

The ensemble method of boosting allows to induce a set (or an ensemble) of
classifiers by repeatedly running a “weak” base learner. In each iteration the
training set is slightly altered, assigning higher weights to subsets that have
been misclassified in previous iterations. This technique allows to improve on
the classification performance of the weak learner, and to reach arbitrarily ac-
curate combined classifiers, as long as each weak hypothesis is slightly better
than random guessing [4]. The first boosting algorithm of practical interest
was AdaBoost.M1 [5], depicted in figure 1. It combines single classifiers by
a weighted majority vote, deriving the weights based on individual accura-
cies. As discussed in [5] the voting strategy is identical to the Bayes optimal
decision rule if the conditional independence assumptions of NäıveBayes [6]
applies to the predictions of base classifiers. AdaBoost.M1 has been anal-
ysed elaborately. It has been shown to maximise the margin [7], and it can
also be derived in terms of projecting entropy [8]. As an important property
for practical applications it has been reported to hardly overfit to the training
data.

2



1. Let D1 denote the uniform distribution over training set
E = 〈x1, y1〉, . . . , 〈xm, ym〉.

2. For i = 1 to n do

(a) Call WeakLearner(Di, E), find accurate model hi : X → Y .

(b) εi := Pr〈x,y〉∼Di
[hi(x) 6= y] (weighted empirical training error)

(c) βi := εi

1−εi

(d) Di+1(xj , yj) :=
Di(xj ,yj)

Zi
·
{

βi, if hi(xj) = yj

1 , otherwise

with Zi being a normalisation factor.

3. Output the final hypothesis:

h(x) := arg max
y∈Y

(
∑

i:hi(x)=y

log
1

βi

)

Figure 1: Algorithm AdaBoost.M1

3



1. Let D1 denote the uniform distribution over training set E =
〈x1, y1〉, . . . , 〈xm, ym〉.

2. For all 〈xi, yi〉 ∈ E initialise pi = 1/2 (estimator of Pr [y+ | xi]) and
F0(xi) := 0.

3. For j = 1 to n (and i = 1 to m) do

(a) Update working responses: zi ← yi−pi

pi·(1−pi)

(b) Update weights: wi ← pi · (1− pi)

(c) Select a function f(x) predicting z based on least squares regres-
sion.

(d) Let Fj(x) := Fj−1(x) + 1
2
f(x)

(e) and P̂ rj(y+ | x) := eFj(xi)
(
eFj(xi) + e−Fj(xi)

)−1

(f) For 〈xi, yi〉 ∈ E update: pi ← P̂ r(y+ | xi)

4. Output function P̂ rj : X → [0, 1] estimating Pr [y+ | x].

Figure 2: Algorithm 2-class LogitBoost

Despite some minor short-comings the original version proposed in [5] is
probably still the most popular boosting algorithm in practice. Top-down
induction of decision trees is known to be a well suited base learner. As some
authors report, for many datasets boosting a very restricted class of decision
trees performs equally well or better, for instance the so called DecisionS-
tumps, consisting of a single node, only.

Friedman pointed out, that AdaBoost.M1 is very similar to a tech-
nique known as additive logistic regression in statistics [9]. This connection
inspired some new boosting algorithms, the probably best known of which
is LogitBoost, depicted in figure 2. In contrast to AdaBoost.M1 this
boosting procedure allows to estimate class probabilities. It is often used in
combination with DecisionStumps or similar simple base learners.

4



3 Knowledge-based Sampling

This section introduces a new boosting algorithm based on a constraint-
guided example reweighting or sampling approach. Knowledge-based sam-
pling was originally suggested to incorporate prior knowledge into supervised
data mining algorithms by means of sampling [1, 2]. It addresses the ques-
tion of how to pre-process the data in the presence of prior knowledge, so
that subsequent data mining steps do not report previously found patterns
again, neither explicitly, nor patterns describing similar instances, but rather
focus on uncorrelated new patterns. The sampling strategy suggested in [1]
succeeds if the task is to find novel or surprising patterns, and if novelty
is formalised by deviation from a user’s expectation. The “expectation” is
required to be given in a form that allows to compute probability estimates
for the target attribute. A task referred to as subgroup discovery [10, 11]
aims at finding interesting rules, where interestingness is formalised in terms
of a utility function. This function combines deviation from expectation and
coverage.

Patterns that are found in one iteration extend the user’s expectation
or prior knowledge in the next one. Hence, in each iteration the sampling
procedure produces training sets that are “orthogonal” to the combined prob-
ability estimate corresponding to the prior knowledge. This aspect is very
close to boosting classifiers.

3.1 Constraint-guided sampling

Before going into detail the idea of removing prior knowledge by biased sam-
pling is formulated in terms of constraints. Formally, this step defines a new
distribution, as close to the original function as possible, but orthogonal to
the estimates produced by available prior knowledge. Monte Carlo methods
like rejection sampling allow to sample with respect to the new distribution,
provided with just a procedure to sample from the original distribution [12].
As a result of switching distributions the utility functions – when applied to
these kind of samples – are “blinded” regarding the parts of the data that
can be concluded from prior knowledge. All that is accounted for is the
unexpected component of each rule or model.

For the experiments described in this article the only kind of “prior”
knowledge are the weak models yielded by preceding iterations. In princi-
ple the techniques allow for an incorporation of “real” prior knowledge into

5



boosting, an idea that has also been discussed in [13]. Manually encoded prior
knowledge can be expected to show a similar behaviour as those rules that
are typically found in early iterations. Unfortunately it is hard to elicit prior
knowledge for the domains relevant to public datasets in a fashion that can
be expected to be representative for practical applications. For this reason
this aspect is not evaluated empirically.

For a given instance space X and nominal target attribute Y examples
are expected to be sampled i.i.d. from an initial distribution D : X → IR+.
Each example x ∈ X is assigned a class by an unknown but fixed function
C : X → Y . For k ∈ IN let h : X → Y denote a weak hypothesis from
hypothesis space H, predicting a value of the target attribute.

As a first constraint the new distribution D′ to be constructed should no
longer support the knowledge encoded in the hypothesis h, so the predictions
h(x) and the true label should be independent considering D′:

(∀y, y′ ∈ Y) : Prx∼D′ [C(x) = y | h(x) = y′] = Prx∼D′ [C(x) = y] (1)

It is easy to see, that in all other cases the same hypothesis allows to derive
further information about the true label’s conditional distribution given the
prediction of h.

As a second constraint the probability to observe an example that belongs
to a specific class y ∈ Y , or is predicted to have a specific class y′ ∈ Y should
not change from D to D′, since it is sufficient and possible to remove only
the correlation between the random variables Y and h(X ):

(∀y ∈ Y) : Prx∼D′ [h(x) = y] = Prx∼D [h(x) = y] (2)

(∀y ∈ Y) : PrD′ [C(x) = y] = PrD [C(x) = y] (3)

The former of these equalities makes sure that the class skew does not change,
which would result in an implicitly altered cost model for misclassifying ex-
amples. The latter equality expresses that e.g. rules should apply equally
often for both distributions, avoiding to introduce unnecessary skews to the
marginal distribution.

Finally, within each partition sharing the same predicted and true class
the new distribution is defined proportionally to the initial one. The simple
reason is that having just a hypothesis h as prior knowledge all instances
within one partition are indistinguishable. A change to the conditional prob-
abilities within one partition means to prefer some instance over the others,

6



despite their equivalence with respect to the available prior knowledge. This
translates into the following constraint:

(∀x ∈ X )(∀y, y′ ∈ Y) :

Prx∼D′(x | h(x) = y′, C(x) = y) = Prx∼D(x | h(x) = y′, C(x) = y) (4)

Constraints (1)-(4) induce a unique target distribution. The following defi-
nition eases notation.

Definition 1 The Lift of an example x ∈ X for a given class y ∈ Y and
hypothesis h : X → Y is defined as

LiftD(x→ y | h) :=
Prx∼D [h(x) = y′, C(x) = y]

Prx∼D [h(x) = y′] · Prx∼D [C(x) = y]

Theorem 1 For any initial distribution D and partitioning ruleset h ∈ H
the constraints (1)-(4) are equivalent to

PrD′(〈x, y〉) = PrD(〈x, y〉) · (LiftD(x→ y | h))−1 .

A proof is given in [1]. Theorem 1 defines a new distribution to sample from,
given a hypothesis h as prior knowledge. Assuming a single hypothesis is
not very restrictive, since it is possible to directly incorporate each new weak
hypothesis into a single “global” model. A simple strategy based on this idea
is evaluated in the remaining article: The theorem is applied iteratively. Hy-
pothesis hi is selected based on distribution Di. Distribution Di+1 is defined
by applying theorem 1 to Di and hi. The inverse of this strategy allows to
approximately reconstruct the original distribution D1 as a combination of
the single hypotheses.

The following equalities illustrate how to compute estimates of the con-
ditional distribution for a boolean target attribute Y = {y+, y−}. If Y is
boolean then this estimate can be simplified by considering the odds, since

β(x) :=
Pr(x→ y+)

Pr(x→ y−)
, P r(x→ y+) =

β(x)

1 + β(x)
, P r(x→ y−) =

1

1 + β(x)
.

7



1. Let D1 denote the uniform distribution over E = 〈x1, y1〉, . . . , 〈xm, ym〉.
2. For i = 1 to n do

(a) Call WeakLearner(Di, E) to find an accurate model hi : X →
Y .

(b) Compute LiftDi
(x→ y | hi) applying definition 1.

(c) Let Di+1(xj , yj) := Di(xj , yj) · (LiftDi
(xj → yj | hi))

−1.

3. Output {h1, . . . , hn} and the Lift values. Predict Pr(y | x) with
eqn. (5).

Figure 3: Algorithm KBS

The term β(x) can then be estimated based on {h1, . . . , hn}, a sequence of n
hypothesis, each of which is the result of a separate iteration:

β(x) ≈ Pr(y+)

Pr(y−)
·

n∏
i=1

LiftDi
(x→ y+ | hi)

LiftDi
(x→ y− | hi)

(5)

Please note the subscripts Di of the Lift terms.
Figure 3 shows the knowledge-based sampling algorithm, which is anal-

ysed on the following pages. To the best of the author’s knowledge this is the
most simple boosting algorithm proposed in the literature so far. Eqn. (5)
is used by the algorithm to operationalise the reconstruction of D1. It is
discussed in more detail in the next subsection. For classification the most
probable class is computed from the estimated conditional distribution.

3.2 How KBS boosts base classifiers

The KBS algorithm consists of a strategy for reweighting examples, and
one for combining induced base classifiers. This subsection discusses the
underlying idea of these strategies and explains why they match.

Let D1 denote the original distribution the learner tries to approximate.
Whenever the base learner is run for a distribution Di a weak hypotheses
is selected that captures correlations between X and Y . These correlations

8



are then “removed” in the step from Di to Di+1. With a growing number
of iterations the conditional distributions of Y given X converge towards the
class priors.

To understand how the resulting model is applied, the definition of an
atomic subset of X is useful. An atomic subset is a subset having the prop-
erty that the vector of all n predictions 〈h1(x), . . . , hn(x)〉 is identical for all
contained examples x. Assuming that the conditional distribution is approx-
imately equal to the priors for Dn+1 it is possible to stepwise “retract” the
application of theorem 1 used to reach this distribution. If the probability of
seeing an example with a specific label under Dn+1 is equivalent to the class
prior, then the distribution of classes under Dn can be derived by multiplying
the priors of the atomic subset with the corresponding Lift values for each
class and prediction. Renormalising and iteratively applying the correspond-
ing Lifts for each hi the initial D1 can be reconstructed precisely for this
subset.

Of course in practice one cannot assume to end up with an “ideal” Dn+1

as assumed, but the idea still applies unless strong correlations between X
and Y are not captured by the weak hypotheses. Applying just a single base
classifier, the conditional distribution of classes given its prediction consti-
tutes the probability estimator. Even this most coarse approximation is not
unintuitive from a practical point of view.

The classification model is not altered when considering the logarithm of
eqn. (5) instead of the original estimate. In this form it can be seen that the
KBS strategy of constructing a decision rule is close to additive modelling
as described in [9]. This is due to the fact that the Lift ratios for hi are
estimated based on Di, containing the remaining patterns (or residuals), only.

3.3 Learning rate

The learning rate is analysed for two-class problems only, and for the simpli-
fied situation in which the boosting procedure yields a set of equally accurate
base classifiers with conditionally independent predictions. This does not
clarify all questions, but allows to compare the learning rates of KBS and
AdaBoost.M1 qualitatively.

Let n denote the number of iterations, Acc > 1/2 be the common ac-
curacy of all weak hypotheses, and γ = Acc − 1/2 be the advantage over
random guessing. Given that the predictions of all base learners are condi-
tionally independent the (expected) accuracies with and without reweighting

9



are equivalent. In [5] this specific case has been analysed for AdaBoost.M1:
The rule used by AdaBoost.M1 to combine models assigns equal weight to
each of the base classifiers, because of the common accuracy, and regardless
of which are the predicted classes. This implies that the most frequently
predicted class gets selected. The expected error rate ε is thus bounded by
the probability of at least half of the weak models voting for the wrong class.
Translated to more technical terms this is equivalent to seeing the less prob-
able class in a Binomial experiment at least k = n/2 times, which is bounded
by (according to Chernoff):

ε ≤
(

n− n ·Acc

n− k

)n−k (
n ·Acc

k

)k

=

(
n(1−Acc)

n− n/2

)n−n/2 (
n ·Acc

n/2

)n/2

= (2(1−Acc) · 2Acc)n/2 = ((1− 2γ)(1 + 2γ))n/2 =
(√

1− 4γ2
)n

≤ e−2nγ2

It can easily be seen that the same bound holds for KBS: Because of
the assumed conditional independence the base classifiers may be combined
applying NäıveBayes, which yields exact probabilities in this case and leads
to the optimal Bayes’ decision rule. The subscripts Di of eqn. (5) may be
ignored, because the Lift ratios are equivalent for all distributions. Without
these subscripts eqn. (5) is just a reformulation of NäıveBayes1. This
implies that KBS computes ratios and probabilities precisely, and succeeds
no worse in selecting the most probable class than AdaBoost.M1.

Finally it is interesting to understand, why the samples produced by
KBS make base classifiers rank models according to their contribution to
the overall accuracy. To this end, please note that after KBS “samples out”
a model h the accuracy of all overlapping (correlated) models with respect to
the new distribution is reduced according to the degree of overlap. Because
of constraint (1) the Lift of the subset with a common prediction h(x) is 1.
Accuracy can be rewritten as

Acc(h) =
∑
y∈Y

Pr(h(x) = y)Pr(C(x) = y)Lift((h(x) = y)→ (C(x) = y)),

which is linear in the Lift of covered subsets. This implies that using the
reweighted examples the base classifier will favour models according to their

1Details on how to rewrite NäıveBayes accordingly are discussed in more detail in
[1, 2], but are rather trivial.

10



independent contributions. For pairs of models that are correlated with re-
spect to D1 the Lifts multiply, which improves on the convergence rate
shown above. This reflects the fact that the model which has been trained
later uses a Lift estimate based on a sample in which the knowledge repre-
sented by the former model has already been anticipated.

3.4 Differences between KBS and boosting

In the following paragraphs AdaBoost.M1 and LogitBoost are compared
to the KBS algorithm depicted in figure 3. AdaBoost.M1 and KBS both
apply a (“weak”) base learner several times to reweighted versions of the same
example set E . The main difference during training is the way examples are
reweighted from one iteration to the next one. The reweighting scheme of
KBS is based on theorem 1, so it meets all the constraints introduced in
subsection 3.1.

The reweighting scheme of AdaBoost.M1 meets constraint (4), since
all examples that are indistinguishable in terms of predicted and true class
are rescaled by the same factor of 1

Zi
or β

Zi
. According to this reweighting

scheme only correctly classified examples receive a lower weight. If εi denotes
the training error of the latest model then the weight is reduced by a factor
of βi = εi

1−εi
. Normalisation reweights misclassified examples implicitly. It is

easily seen that by the choice of βi the correctly classified subset receives the
same weight as the incorrectly classified subset.

In general the reweighting scheme of AdaBoost.M1 does not satisfy
constraint (1). The precision of the hypothesis usually depends on the spe-
cific prediction. As a consequence, in an example set reweighted by Ad-
aBoost.M1 the target variable is often not independent of the weak hy-
pothesis. In other words AdaBoost.M1 wastes information extractable
from hypotheses. This is illustrated by the following example. Let hi denote
a rule covering a small subset of E , e.g. with 99% positives, while the fraction
of positives in the huge non-covered part is close to the default probability
of e.g. 50%, then AdaBoost.M1 is not able to distinguish between covered
and uncovered parts. Both, the reweighting during learning and the predic-
tion during application of the model will be based on the overall global error
rate, which can easily be as large as 45% for typical rule induction scenarios.
A consequence of using a single quality estimate per model (βi) the reweight-
ing scheme of AdaBoost.M1 does not meet constraints (2) and (3), which
can easily be validated along the same example.

11



In fact, one way of concluding the correctness of KBS is that it is identical
to AdaBoost.M1 if the class priors of a two-class problem are equal (so
Lifts are proportional to precisions) and if the precisions for all predictions
are identical. If the precisions are not identical than KBS exploits this
fact by “splitting” the global model into local ones, and by using the more
precise accuracies for the corresponding subsets. KBS can be thought of as
applying the reweighting scheme of AdaBoost.M1 without any change to
these subsets, just based on the local precisions in this case.

Classification rules with low coverage and high precision illustrate the
main difference between the reweighting schemes of AdaBoost.M1 and
KBS. KBS-reweighting is more expressive, since the Lift values introduce
a different precision for each prediction. This helps to reduce the training
error with fewer iterations, which will often result in lower generalisation
error due to the Occam’s razor principle.

Compared to LogitBoost the KBS procedure is much simpler. There
is no separate working response, since the base learning problems are not
formulated in terms of regression. This means that apart from resampling
(or instance weighting) neither the data nor the base learning task is changed
by the procedure. Please note, that LogitBoost makes use of a continu-
ous working response and of example weighting. As a final difference KBS
does not transform the odds by the logistic function. It directly relies on
empirically observed frequencies to estimate probabilities.

12



Dataset J48 AdaBoost/J48 KBS/J48

Contraceptive 51.66% 51.66% 52.27 %
German 71.80% 69.92% 73.41 %
Hepatitis 60.65% 63.23% 65.16 %
Sat-Image 86.13% 89.74 % 88.55%

Quantum Physics 65.62% 67.60% 68.21 %
Homology Prediction 99.66% 99.77 % 99.76%

Table 1: Predictive accuracies for different datasets

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

1 5 10 15 20

A
U

C
 (

ad
ul

t d
at

as
et

)

iterations

KBS/DS
LogitBoost/DS

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

1 5 10 15 20

sq
ua

re
d 

er
ro

r 
(a

du
lt 

da
ta

se
t)

iterations

KBS/DS
LogitBoost/DS

Figure 4: AUC and squared errors for KBS and LogitBoost using Deci-
sionStumps

4 Experiments

KBS has been implemented as an operator of the learning environment
YALE2 [14] to evaluate the claims of the last sections experimentally. Ad-
aBoost.M1, LogitBoost, DecisionStumps, and the decision tree in-
duction algorithm J48 are part of the WEKA learning environment [15].
All datasets used in the following experiments are part of the UCI Machine
Learning Library [16], except for the Quantum Physics and the Homology
Prediction dataset which have been subject to the KDD cup 20043.

The first experiments compare the predictive accuracies achieved by the
decision tree induction algorithm J48, AdaBoost.M1 on top of J48, and
KBS on top of J48 for a few datasets. All accuracies reported in table 1
have been estimated by 10fold cross-validation. For the dataset Contra-

2http://yale.cs.uni-dortmund.de/
3http://kodiak.cs.cornell.edu/kddcup/

13



0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

1 5 10 15 20

A
U

C
 (

io
no

sp
he

re
)

iterations

KBS/DS
LogitBoost/DS

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

1 5 10 15 20

sq
ua

re
d 

er
ro

r 
(io

no
sp

he
re

)

iterations

KBS/DS
LogitBoost/DS

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

1 5 10 15 20

A
U

C
 (

pi
m

a-
in

di
an

s)

iterations

KBS/DS
LogitBoost/DS

0.165

0.17

0.175

0.18

0.185

0.19

0.195

0.2

1 5 10 15 20

sq
ua

re
d 

er
ro

r 
(p

im
a-

in
di

an
s)

iterations

KBS/DS
LogitBoost/DS

Figure 5: AUC and squared errors for KBS and LogitBoost using Deci-
sionStumps

ceptive AdaBoost.M1 does not improve over the accuracy of J48. KBS
manages to improve the accuracy if run for 20 iterations on 10% bootstraps
of the data. All other performance values reported for AdaBoost.M1 and
KBS are the results of 10 iterations without any internal bootstrapping.
The results indicate that KBS is competitive to and often even outperforms
AdaBoost.M1 using real-world datasets.

LogitBoost yields probability estimates, which may also be interpreted
as confidence values for predictions. The area under the ROC curve (AUC)
measure is used to compare the corresponding rankings for two-class clas-
sification problems, while absolute values of probability estimates are eval-
uated using the squared error criterion. The base learner applied in the
subsequently presented experiments is DecisionStumps. In contrast to the
experiments of the preceding subsection KBS is applied after a step of strat-
ification as described in [1, 2]. This step can be considered to turn the base
learner into one that optimises for a different utility function than accuracy,
namely

WRAcc(h(x)→ y+) := Pr(h(x)) · (Pr(y+ | h(x))− Pr(y+)) .

14



This function is commonly used for subgroup discovery [10, 17]. It allows to
select even weaker models than commonly considered useful in the domain
of boosting, because it is not necessary that the precision exceeds 50%. In
combination with DecisionStumps stratification gave better experimental
results.

Experiments have been carried out for three different datasets with boolean
target attributes. The results shown in figures 4 and 5 have been estimated
by 10fold cross-validation.

For the largest datasets Adult (30k examples) shown in figure 4 the AUC
and squared error curves of both algorithms are very similar, but Logit-
Boost seems to converge a bit quicker. Overfitting is not an issue, so both
AUC and squared error decrease monotonically. In contrast, for the smallest
datasets considered (Ionosphere, 351 examples) KBS reaches the best AUC
performance after 3 iterations, but then overfits (fig. 5). Overfitting can be
addressed by cross-validation to find an optimal number of base learners in
this case. LogitBoost performs slightly better regarding squared error on
this dataset. For Pima-Indians (768 examples) KBS outperforms Logit-
Boost marginally.

5 Conclusion

This article compared the boosting algorithms AdaBoost.M1 and Log-
itBoost to the knowledge-based sampling algorithm recently introduced
to find new interesting patterns in the presence of prior knowledge. It was
pointed out that AdaBoost.M1 does not meet all the constraints that
motivated the presented sampling technique. KBS uses a more expressive
interpretation of the base learner, as it is able to distinguish between the pre-
cisions for different predictions. This helps to reduce the training error more
quickly. It has been explained why KBS is capable of boosting (weak) base
classifiers like decision trees and stumps. This claim has also been shown em-
pirically, using real-world datasets. For 4 of 6 datasets KBS outperforms Ad-
aBoost.M1. Surprisingly, according to further experiments the probability
estimates of KBS are even competitive to the more complex LogitBoost,
which uses example weights and continuous working responses in a regres-
sion framework. Keeping in mind the simplicity of the reweighting scheme of
KBS the successful boosting capabilities deserve further attention. Future
work will have to investigate more sophisticated knowledge-based algorithms

15



in the scope of supervised Data Mining. A combination with data streams
is a straightforward extension, since KBS seems to perform especially well
when applied to independent samples in each iteration.

Acknowledgements

This work has been supported by the Collaborative Research Center “Re-
duction of Complexity for Multivariate Data Structures” (SFB 475) of the
German Research Foundation (DFG).

References

[1] Scholz, M.: Knowledge-Based Sampling for Subgroup Discovery. In
Morik, K., Boulicaut, J.F., Siebes, A., eds.: Local Pattern Detection.
Volume 3539 of Lecture Notes in Computer Science. Springer (2005)
171–189

[2] Scholz, M.: Sampling-Based Sequential Subgroup Mining. In: Proc. of
the 11th ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases
(KDD ’05).

[3] Foussette, C., Hakenjos, D., Scholz, M.: KDD-Cup 2004: Protein Ho-
mology Task. ACM SIGKDD Explorations Newsletter 6 (2004) 128 –
131

[4] Schapire, R.E.: The Strength of Weak Learnability. Machine Learning
5 (1990) 197–227

[5] Freund, Y., Schapire, R.R.: A decision–theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and
System Sciences 55 (1997) 119 – 139

[6] Mitchell, T.M.: Machine Learning. McGraw Hill, New York (1997)

[7] Schapire, R.E., Freund, Y., Bartlett, P., Lee, S.: Boosting the Margin:
A New Explanation for the Effectiveness of Voting Methods. Annals of
Statistics (1998) 1651–1686

16



[8] Kivinen, J., Warmuth, M.K.: Boosting as Entropy Projection. In: Proc.
of the 12th Conf. on Computational learning theory (COLT ’99). 134 –
144

[9] Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression:
A statistical view of boosting. Annals of Statistics (2000) 337–374

[10] Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery
Assistant. In: Advances in Knowledge Discovery and Data Mining.
AAAI Press/The MIT Press, (1996) 249–272

[11] Wrobel, S.: An Algorithm for Multi–relational Discovery of Subgroups.
In: Principles of Data Mining and Knowledge Discovery (PKDD 97),
78–87

[12] Mackay, D.: Introduction To Monte Carlo Methods. In: Learning in
Graphical Models. (1998) 175–204

[13] Schapire, R.E., Rochery, M., Rahim, M., Gupta, N.: Incorporating prior
knowledge into boosting. In: Proc. of the 19th International Conference
on Machine Learning. (2002)

[14] Mierswa, I., Klinkenberg, R., Fischer, S., Ritthoff, O.: A Flexible
Platform for Knowledge Discovery Experiments: YALE – Yet Another
Learning Environment. In: LLWA 03 - Tagungsband der GI-Workshop-
Woche. (2003)

[15] Witten, I., Frank, E.: Data Mining – Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann (2000)

[16] Blake, C., Merz, C.: UCI repository of machine learning databases
(1998) http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[17] Lavrac, N., Flach, P., Zupan, B.: Rule Evaluation Measures: A Unifying
View. In: 9th Int. Workshop on Inductive Logic Programming. LNCS,
Springer (1999)

17


