
Boosting in PN Spaces

Martin Scholz

Artificial Intelligence Group, University of Dortmund, Germany
scholz@ls8.cs.uni-dortmund

Abstract. This paper analyzes boosting in unscaled versions of ROC
spaces, also referred to as PN spaces. A minor revision to AdaBoost’s
reweighting strategy is analyzed, which allows to reformulate it in terms
of stratification, and to visualize the boosting process in nested PN
spaces as known from divide-and-conquer rule learning. The analyzed
confidence-rated algorithm is proven to take more advantage of its base
models in each iteration, although also searching a space of linear dis-
crete base classifier combinations. The algorithm reduces the training
error quicker without lacking any of the advantages of original Ada-
Boost. The PN space interpretation allows to derive a lower-bound for
the area under the ROC curve metric (AUC) of resulting ensembles based
on the AUC after reweighting. The theoretical findings of this paper are
complemented by an empirical evaluation on benchmark datasets.

1 Introduction

Boosting is one of the most popular learning techniques in practice, but not yet
fully understood in terms of its selection metrics and convergence behavior. The
classical AdaBoost algorithm [1] has been presented more than one decade ago,
but is still on the agenda of research.

This paper shows how boosting translates into ROC spaces, more precisely
into their unscaled counterparts which are referred to as PN spaces. ROC analysis
provides a unifying framework for studying the behavior of different evaluation
metrics [2], for illustrating how to handle class skews, asymmetric misclassifica-
tion costs, and how to correctly choose a confidence threshold for soft classifiers
in different settings [3]. Moreover, the area under the ROC curve (AUC) is the
standard machine learning metric for the ranking performance of soft classifiers.

This paper analyzes a revised version of AdaBoost, which is basically sub-
sumed by the framework of confidence-rated boosting [4]. The adapted algorithm
allows for a simplified illustration in PN spaces. As its main advantage it allows
AdaBoost to take more advantage of its base models, generally increasing the
learning rate and generalization performance of boosting. The resulting algo-
rithm still searches a linear combination of crisp base classifiers and can be
reformulated in simpler terms, as to continuously stratify the target attribute.

The aim of the analysis is to foster a better understanding of the implicit
AUC optimization property of boosting. Original AdaBoost’s excellent ranking
behavior has just recently been explained by showing its similarity to RankBoost

if equal loss is suffered from positive and negative examples [5]; another technical
proof exists for Real AdaBoost [4]. This paper contributes an intuitive and much
simpler proof of a tighter ranking error (AUC) bound for Real AdaBoost-like
ensemble classifiers, derived from a geometric interpretation in PN spaces.

2 Formal framework and basic properties

ROC analysis has become a popular tool for analyzing classifier performances
and to study evaluation metrics [6]. The unscaled counter-part, PN spaces [2], are
well-suited to visualize the nested subspaces of divide-and-conquer rule learning.
The only difference to ROC spaces is that the axes of PN spaces show the
absolute numbers of positives and negatives, while in ROC spaces both axes are
scaled to the range of [0, 1]. This paper confines itself to boolean classification
problems, so models are functions mapping an instance space X to a boolean
target label Y = {+1,−1}. The notation used in this paper is chosen to be
similar to the one used in [2] for rule learning in PN spaces.

Definition 1. For a model h : X → Y and a given data set E with an absolute
number of P positive examples and N negative examples, the absolute number
of true positives is denoted as p, the number of false positives as n. Analogously,
the absolute number of false negatives is denoted as p, the absolute number of
true negatives as n.

Fig. 1 shows nested PN spaces from specific to general as obtained when adding
a single rule to a decision list in each iteration. The p+n examples for which the
rule applies are removed from further consideration, and the remaining examples
are represented by nested rectangles of shrinking size. Analogously, refining a rule
adding one literal at a time shrinks the covered subsets from general to specific.

ROC spaces can be considered to show stratified versions of PN spaces; axes
represent classes and are normalized to the same scale. The term stratification
will reoccur in this paper. It can be interpreted as the process of altering class
proportions in the training set, so that all classes are equally frequent. It is a
common preprocessing step in the machine learning literature, e.g. for training
classifiers under skewed class distributions or varying misclassification costs [3].

Stratification can be realized by reweighting or by subsampling. The goal in
the former case is to obtain the same total example weight for each class. To
this end, all examples sharing a class receive a common weight, chosen inverse
proportionally to the frequency of the class in the training set. In the latter case
one samples with equal probability from each class, hence implicitly samples from
another than the i.i.d. distribution underlying the training data. The following
definition captures the resulting implicit new target distribution.

Definition 2. For a distribution D : X × Y → IR+ over an instance space X
and a target label Y the stratified random sample distribution D′ of D is

D′(x, y) :=
D(x, y)

|Y| · P(x′,y′)∼D(y = y′)
.

A typical application of ROC analysis in machine learning is to visualize soft
classifiers, that yield continuous confidence scores for examples being positive.
Each crisp classifier obtained by applying a threshold to a soft classifier is rep-
resented in a ROC diagram as a point depicting the resulting true positive rate
p/P and false positive rate n/N [3]. The area under the resulting graph is re-
ferred to as the area under the ROC curve (AUC), which equals the probability
that a randomly selected positive example is ranked higher (higher confidence)
than a randomly selected negative example. Maximizing the AUC is a learning
task of its own right and has also been shown to lead to a competitive but more
robust selection of models regarding maximization of predictive accuracy [7].

In this paper a quantity closely related to the AUC is analyzed, the area over
the curve. An asterisk indicates quantities in PN space rather than ROC space.

Definition 3. For a given soft classifier and example set E = E+∪E− of positive
examples E+ and negative examples E− the area over the curve in PN spaces
(AOC∗) is defined as the number of misranked tuples (e+, e−) ∈ E+×E−, that is
the number of pairs for which e− is predicted positive with higher confidence than
e+. Example pairs (e+, e−) with associated weights w+ and w− are accounted
for by w+ · w− misranks.

Ties are considered to be broken randomly, so half of all equally ranked pairs are
considered to be misranked. It is easily seen that AOC∗ = (1−AUC) ·P ·N for
the unweighted case, which is a special case of the weighted case with w+/− := 1.
An example with a weight of w naturally represents an example set of size w.

The main diagonal in ROC/PN space represents the performances of default
classifiers and random classifiers that do not incorporate any data at all, but
predict y = +1 with a fixed probability. The AOC∗ of such uninformed models
equals half the area of the corresponding PN space, i.e. AOC∗ = (P · N)/2.
Changing the class proportions clearly does not affect this ranking performance.
To preserve fundamental semantics it is hence suggested not to change the AOC∗

during steps of skewing the data, as it reflects the absolute ranking error. This is
further justified at a later point. It translates into the constraint P ′ ·N ′ = P ·N
for the new values P ′ and N ′ obtained by skewing P and N , respectively.

The learning algorithms used in this paper are assumed to implicitly normal-
ize the training set, so that the weights describe a distribution. Hence, the only
quantities of interest for stratification are the class ratios P/N and P ′/N ′.

Proposition 1. The reweighting rule for changing the ratio of P/N by a factor c
while meeting the constraint P · N = P ′ · N ′ is unique:

w′(x, y) := w(x, y) ·
{√

c, for positive y
1√
c
, for negative y

Proof. It directly follows that after reweighting we have

P ′ =
√

cP , N ′ =
N√
c

,
P ′

N ′ = c , P ′ · N ′ = P · N.

Multiplying positives with a constant of c′ requires to divide negatives by the
same constant to satisfy the constraint. Only c′ =

√
c is valid, since P ′/N ′ = c′2.

Fig. 1. Nested PN-Spaces

Initialize weights w1(xi, yi) := 1 for (xi, yi) ∈ E
for t = 1 to k do

ht ← base learner(E , wt)

Compute ǫt :=
P|E|

i=1 wt(xi, yi)I [ht(xi) 6= yi]
Let αt := 1

2
ln 1−ǫt

ǫt

wt+1(xi, yi) := wt(xi, yi) · exp(−yiαtht(xi))
end for

Output classifier: Predict sign
“

Pk

i=1 αtht(x)
”

Fig. 2. AdaBoost for y ∈ {+1,−1}

As required, the weighting does not change the AOC∗ (Def. 3). Stratification is
a specific case of skewing the data, leading to equal class proportions. It has a
further important property in the context of boosting, as will be shown in Sec. 3.

Proposition 2. Among all skewing operations preserving P ·N , stratifying the
data by choosing c = N/P leads to the minimal total example weight of 2

√
PN .

Proof. For valid reweightings we have P ′·N ′ = P ·N . The weight to be minimized
is P ′ + N ′ =

√
cP + N/

√
c =: f(c). Setting the derivative to 0 yields the result.

3 Boosting

3.1 AdaBoost

Combining individual classifiers to weighted ensembles is an effective way to
increase predictive accuracy and other metrics like the AUC. The best known,
most studied, and probably the most frequently applied ensemble method is Ada-
Boost [1], depicted in Fig. 2. It fits a sequence of base models ht : X → Y, each
to a reweighted version of the training set, or to an analogously constructed sub-
sample, respectively. The term I[·] used in the algorithm refers to the indicator
function. To simplify subsequent analysis the algorithm is formulated without
the step of normalizing weights, which is left to the base learner.

The reweighting scheme of AdaBoost gives higher weight to the “hard” ex-
amples of the training set, and finally predicts based on a weighted majority
vote. A different perspective has been fostered in [8], pointing out AdaBoost’s
similarity to additive logistic regression. From an optimization point of view
AdaBoost fits into the broader AnyBoost framework [9], as it performs gradi-
ent descent in function space in order to minimize the exponential loss function
exp(−yi

∑k
t=1 αtht(xi)). For a (weighted) error rate of ǫt of the base classifier in

iteration t and βt(x) := (1−ǫt)/ǫt = exp(2αt) the reweighting strategy computes

wt+1(x, y) = wt(x, y) · exp(−yαtht(xi)) =

k∏

t=1

(
√

βt)
−y·ht(x) (1)

as the new weight for each example (x, y), starting with uniform weights. All
examples with a final weight wt+1 of less than 1 are classified correctly, since

∑

t|ht(x)=y

αt >
∑

t|ht(x) 6=y

αt ⇔ 1/2


 ∑

t|ht(x)=y

ln
1 − ǫt

ǫt
−

∑

t|ht(x) 6=y

ln
1 − ǫt

ǫt


 > 0

⇔
k∏

t=1

√
βt

(y·ht(x))
> 1 ⇔ wt+1(x, y) < 1.

In turn, examples with a weight of greater than 1 are misclassified. For this
reason one of the most important properties of AdaBoost is that it reduces the
total weight quickly if the base learner provides useful classifiers ht.

3.2 Ada2Boost

One disadvantage of AdaBoost is that it does not take full advantage of its base
models. For illustration we consider a classification rule covering significantly
less than half of the examples (respecting weights), but having a low error rate
for this subset. Such a model is generally useful for ensemble learning. However,
it is not necessarily useful for AdaBoost, because the error rate of the large
uncovered part might be significantly higher, resulting in a value of αt ≈ 0.

Such asymmetric cases can be handled by using separate estimates of the
error rate for the covered part Ct := {(x, y) ∈ E|ht(x) = +1} and the uncovered
part Ct := {(x, y) ∈ E|ht(x) = −1}. Both local error rates, denoted as

ǫ+ := n/(p + n) for Ct, and ǫ− := p/(p + n) for Ct

can easily be computed from the contingency matrix and will usually differ.
Please note, that for Ct the negative examples are the correctly classified ones.
We will replace the static values of βt by functions βt(ht(x)) that depend only on
the prediction of their corresponding base model ht(x) ∈ {+1,−1}. This leads
to two separate factors, the odds ratio for Ct, and the inverse odds ratio for Ct:

β(+1) :=
1 − ǫ+

ǫ+
=

p

n
, β(−1) :=

1 − ǫ−

ǫ−
=

n

p
(2)

With α(h(x)) := (lnβ(h(x))/2 the weight update of AdaBoost translates into:

wt+1(xi, yi) := wt(xi, yi) · exp [−yi · αt(ht(xi)) · ht(xi)]

The rule for predicting a label ŷ ∈ {+1,−1} is changed accordingly:

ŷ := sign

(
k∑

t=1

αt(ht(x))ht(x)

)
(3)

This adapted version of AdaBoost is referred to as Ada2Boost in this paper. It is
only analyzed in combination with plain boolean base classifiers, which does not

require regression-capabilities of base learners, as e.g. LogitBoost [8] that uses
working responses and weights at the same time.

Ada2Boost is similar to the confidence-rated Real AdaBoost [4], which allows
for continuous predictions ht : X → IR. Real AdaBoost reweights examples using
the same rule as shown for AdaBoost, but the more general setting of continuous
functions ht requires to optimize αt “manually” (not based on ǫt) to minimize the
total example weight. The prediction rule is identical to the one shown in Fig. 2. If
each ht takes only values from {−1, +1} the choice of asymmetric model weights
made by Ada2Boost reduces weights optimally. Differences to Real AdaBoost
are that Ada2Boost (i) uses boolean crisp base classifiers, adding confidence-like
scores as part of the boosting procedure, and (ii) that it incorporates confidence
ratings only in a very moderate form, which constrains the potential to overfit to
the training data; when using the same fixed number of base models, Ada2Boost
selects ensemble models from almost the same search space as AdaBoost:

Proposition 3. If estimated error rates are bounded away from zero the search
space of AdaBoost and Ada2Boost for boolean classification tasks are identical
up to a constant additive offset.

Proof. A model of the form given by eqn. (3) can be transformed into another
classifier of the form

ŷ := sign

(
α′

0 +

k∑

t=1

α′
thi(x)

)
, (4)

with offset α′
0 and model weights α′

1, . . . , α
′
k ∈ IR by computing for each model

avg0,t :=
αt(+1) + αt(−1)

2
, α′

t := αt(+1) − avg0,t α′
0 :=

k∑

t=1

avg0,t.

The transformed model (4) is obviously identical to the original model.

Aiming to minimize generalization error it is quite natural to bound the error
rates away from 0, e.g. by using Laplace or m-estimates for pure subsets.

Although the difference in expressiveness seems marginal, it allows Ada2Boost
to take more advantage of its base models, reflected by quicker weight reduction.

Theorem 1. If ǫ = ǫ+ = ǫ− then the reweighting strategies of AdaBoost and
Ada2Boost are identical. Otherwise Ada2Boost reduces the weights more quickly.

Proof. AdaBoost reweights the p + n = 1 − ǫ correctly classified examples mul-
tiplying with

√
β, and misclassified examples dividing by the same term. Hence

the total weight Wt+1 =
∑|E|

i=1 wt+1(xi, yi) in iteration t+1 can be computed as

Wt+1 =
1√
β

((1 − ǫ)Wt) +
√

β(ǫWt) = 2Wt

√
ǫ · (1 − ǫ) = 2Wt

√
(p + n)(p + n).

Ada2Boost reweights the p+n covered examples (C) multiplying with
√

β(+1)
(±1)

Since positives are divided by and negatives are multiplied with
√

p/n the weight

of C reduces from Wt · (p + n) to Wt

(
p/
√

p/n + n
√

p/n
)

= 2Wt
√

p · n. The

weight of C changes analogously, applying the factor
√

β(−1)
(±1)

=
√

n/p
(±1)

instead, so the new total weight for Ada2Boost is Wt+1 = 2Wt ·
(√

p · n +
√

p · n
)
.

We hence need to show
√

(p + n)(p + n) ≥ √
p · n +

√
p · n, which follows from

√
(p + n)(p + n) ≥ √

p · n +
√

p · n ⇔ (p + n)(p + n) ≥ pn + pn + 2
√

pnpn

⇔ pp + nn ≥ 2
√

pnpn ⇔ (pp)2 + 2pnpn + (nn)2 ≥ 4pnpn ⇔ (pp − nn)2 ≥ 0.

Both strategies yield the same result, iff pp = nn. This is equivalent to

p

n
=

n

p
⇔ p/(p + n)

n/(p + n)
=

n/(n + p)

p/(n + p)
⇔ 1 − ǫ+

ǫ+
=

1 − ǫ−

ǫ−
⇔ ǫ+ = ǫ−

If n or p are 0, then either both error rates need to be 0, or one of the local error
rates is undefined, because the subset contains no examples. The fact that ǫ is
a weighted average of ǫ+ and ǫ− completes the proof.

The following proposition summarizes some useful properties of Ada2Boost.

Proposition 4. After Ada2Boost reweights for the first time we have P ′ = N ′.
After each iteration t the subsets Ct and Ct corresponding to model ht are both
stratified. The error rates ǫ+t and ǫ−t of ht are exactly 1/2 with respect to wt+1.

Ada2Boost performs especially well in in the case of conditionally indepen-
dent base classifiers. Denoting with Pt(·) probabilities based on weights wt it uses
a product of βt terms as defined in eqn. (2) to compute odds-ratio estimates

β̂(x) =
P (y = +1 | h1(x)...hk(x))

P (y = −1 | h1(x)...hk(x))
=

k∏

t=1

Pt(y = +1 | ht(x))

Pt(y = −1 | ht(x))
(5)

This happens to be identical to the estimate of NäıveBayes on top of the base
model predictions ht(x), which yields the Bayes’ optimal decision rule in this
setting. This simple interpretation requires discrete prediction domains for base
models. Even in cases where conditional independence is lacking Ada2Boost
continuously fits an additive model to the log-odds, similar to logistic regression,
which suggests that it may yield good estimates of conditional class distributions.

3.3 An analysis in PN spaces

The reweighting strategy of Ada2Boost is very similar to the stratification pro-
posed in Sec. 2. In each iteration both the covered (C) and the uncovered subsets
(C) are stratified in the sense of Prop. 1.

These results suggest a reformulation of boosting in terms of stratification.
The use of exponential or logarithmic functions (αt values) seems to be unnec-
essarily complicated in this setting, because Ada2Boost only requires the more
intuitive βt values. As a further simplification the algorithm uses β′

t, which al-
ways refers to the odds ratio, while βt refers to the inverse odds ratio whenever a

// Init with uniform weights:

Let w1(x, y) := 1 for all (x, y) ∈ E
// Train k base classifiers:

for t = 1 to k do

ht ← base learner(E , wt)
// Compute odds ratios:

β′
t(+1) := pt/nt, β′

t(−1) := pt/nt

// Stratification:

wt+1(x, y) := wt(x,y)√
β′

t
(ht(x))

y

end for

Output: β̂(x) =
Qk

t=1 β′
t(ht(x))

P̂ (y = +1 | x) := β̂(x)/(1 + β̂(x))

Fig. 3. Ada2Boost for y ∈ {+1,−1} Fig. 4. Illustration for proof of theorem 2.

base classifier predicts negatively. Ada2Boost (Fig. 3) boosts boolean base classi-
fiers in a very simple fashion. In each iteration t another stratified (for t > 1, see
Prop. 4) example set is presented to the base learner. The learner returns a base
classifier ht : X → {+1,−1} that partitions the example set into “unstratified”
subsets C and C; this automatically happens when maximizing accuracy [10].
The terms pt to nt denote the true positives to false negatives of model ht using
example weights wt. For both partitions, C and C, the odds are computed and
stored for later predictions, before stratifying the subsets separately, respecting
the constraint stated in Prop. 1. When predicting a label the local odds are
combined applying eqn. (5), which easily allows to derive probability estimates.

Fig. 5 shows a step of stratification for two partitions, e.g. for a classification
rule in PN space. The two rectangles represent the performances of the two dual
rules (ht(x) = +1) → (y = +1) and (ht(x) = −1) → (y = −1), where the
slope of the diagonal is β′

t(+1) = p/n in the former, and β′
t(−1) = p/n in the

latter. Stratification turns each of these rectangles into a square of equal size
(hence Ada2). This can also be thought of as a transformation of the underlying
distribution (see Def. 2) that can be inverted precisely when making predictions.

It is interesting to note that the role of the base learner can as well be
stated as to divide E into “unstratified” subsets, which are continuously stratified
(conquered) by the meta-algorithm as long as the base learner succeeds.

In divide-and-conquer rule learning examples that are covered are removed
from subsequent learning iterations. Similarly, boosting can be considered to
probabilistically discard examples. Shifting both squares to the upper right, as
depicted on the right side of Fig. 5, we reach at a visualization of boosting as
nested PN-spaces. The weight lost by this transformation shows as the part of
the axes of the original PN space below and left to the embedded PN space. As
for AdaBoost, the total weight upper-bounds the number of misclassified exam-
ples, because only examples with a weight of greater than 1 are misclassified.
Prop. 2 states, that Ada2Boost reduces the total weight as much as possible,

Fig. 5. Ada2Boost transforms the boxes representing C and C into squares (left) by
reweighting. Moving these squares to the upper right (right) yields a PN subspace.

while respecting the constraint to preserve the area of each subset in PN space.
The advantage of this constraint is that the areas of the nested PN spaces reflect
the progress in minimizing the ranking error at the same time.

Theorem 2. The absolute ranking error (AOC∗) of Ada2Boost ensemble models
for the original (unweighted) data is upper-bounded by the AOC∗ of the model
for the inner nested PN space (reweighted example set).

Proof. The crucial observation is, that final confidences and weights are closely
related. A pair of examples (e+, e−) with weights w+ and w− will be misranked,
iff the estimated confidence of being positive is higher for e− than for e+. The
confidences are monotone in the estimated odds β̂(e+) and β̂(e−). Applying the

reweighting scheme of Ada2Boost recursively and computing β̂(x) we find that

wk+1(x, y) :=

k∏

t=1

√
β′

t(ht(x))
(−y)

and β̂(x) =

k∏

t=1

β′
t(ht(x))

for an ensemble of size k. This implies w+ =

√
1/β̂(e+) and w− =

√
β̂(e−).

If β̂(e−) > β̂(e+), then we have (w−)2 > 1/(w+)2 ⇔ w+ · w− > 1. This
means that each misranked pair (e+, e−) “occupies” a rectangle with an area
of at least 1 in the inner nested PN space. All rectangles representing different
pairs (e+, e−) are disjoint. Hence, if the nested PN space has a size of P ′ · N ′,
then this quantity upper-bounds the AOC∗ of the ensemble for the original data.

When ordering examples by confidence, as for soft classifier ROC plots,
weights of positives ascend along the P ′ axis, while weights of negatives descend
along the N ′ axis (see Fig. 4). The areas of rectangles representing example pairs
grow monotonically towards the upper left corner (0, P ′). The border where ar-
eas become larger than 1 is depicted as a thick line. Example pairs share their
estimated odds along the border, since w+ · w− = 1 ⇒ β̂(e+) = β̂(e−), so a
threshold is associated to each point. Apart from the scale, Fig. 4 provides a
ROC plot of the ensemble for the reweighted example set. By construction we
expect the ensemble to perform as good as random guessing after reweighting,

having an AOC∗ of (P ′ ·N ′)/2. In this case only half of the nested PN space rep-
resents misclassified pairs (areas ≥ 1), which also halves the AOC∗ upper-bound
for the original data. The same argument applies for any other AOC∗ score.

The proof does not require base classifiers to provide boolean partitionings of X ,
so theorem 2 holds for Real AdaBoost-like ensemble classifiers in general. The
derived bounds are tighter than those provided in [4], based only on the worst
case AOC∗ of P ′ ·N ′. To the best of the author’s knowledge theorem 2 provides
the first AUC (AOC∗) bound based on ranking performances after reweighting.

Corollary 1. For an example set E = E+ ∪ E− a reduction of the initial weight
of |E| to W results in an AUC ≥ 1 − W 2/(8 · |E+| · |E−|) if the AUC of the
ensemble is at least 1/2 (random guessing) for the reweighted example set.

For AdaBoost nested PN spaces are less intuitive, but also share the seman-
tics of the quantity P ′ · N ′. Improved weight reduction strategies imply a more
efficient reduction of this quantity, however. This becomes obvious when finally
adding a classifier with constant predictions to each AdaBoost ensemble, which
just stratifies the example set, so that the weight determines P ′ · N ′.

4 Evaluation

This section empirically evaluates generalization performances of the previously
analyzed metrics on 4 benchmark datasets taken from the UCI library [11], and
on a 10k sample of the quantum physics datasets from KDD Cup 2004. The
evaluated metrics are accuracy (ACC), the area under the ROC curve (AUC),
and finally, since evidence has been provided that Ada2Boost may perform well in
estimating conditional class probabilities, the root mean squared error (RMSE).

Ada2Boost was implemented in YALE1 [12] without any optimizations like
LaPlace estimates. The Weka library [13] provides AdaBoost and decision stumps
as base learners. Decision stumps are popular base classifiers and do not apply
a greedy search themselves, which eases the evaluation of greedily operating
boosting techniques. In the proposed experimental setting Real AdaBoost with
“reasonable” confidence ratings for each decision stump yields the same predic-
tions as Ada2Boost. The focus of the evaluation is on AUC maximization and
its relation to ACC optimization; for error rate minimization refer to [4] or [14].

Fig. 6 shows the learning curves for different numbers of base models. Each
point in the plots is the result of a ten-fold cross-validation. The results illustrate
that boosting in fact maximizes all three considered metrics simultaneously,
with AUC and RMSE providing finer-grained indicators of progress than ACC.
Moreover, the moderate adaptation of AdaBoost does not only improve the ACC
learning rate, as shown earlier, but leads to similar improvements for the metrics
AUC and RMSE. The difference between AdaBoost and Ada2Boost for Credit-G
containing very few examples and attributes (16) are the smallest (if any), lying
within half a standard deviation. For adult (32K examples) improvements are

1 http://yale.sf.net/

accuracy AUC RMSE

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 0 5 10 15 20 25 30

AdaSquare/DS
AdaBoost/DS

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 5 10 15 20 25 30

AdaSquare/DS
AdaBoost/DS

 0.415

 0.42

 0.425

 0.43

 0.435

 0.44

 0.445

 0.45

 0.455

 0.46

 0 5 10 15 20 25 30

AdaSquare/DS
AdaBoost/DS

Credit-G data set (UCI), 16 attributes, 690 examples

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

Adult data set (UCI), 15 attributes, 32K examples

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25 30

AdaSquare/DS
AdaBoost/DS

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 5 10 15 20 25 30

AdaSquare/DS
AdaBoost/DS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30

AdaSquare/DS
AdaBoost/DS

Mushrooms data set (UCI), 23 attributes, 8K examples

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20 25 30 35 40

AdaSquare/DS
AdaBoost/DS

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40

AdaSquare/DS
AdaBoost/DS

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35 40

AdaSquare/DS
AdaBoost/DS

Musk data set (UCI), 169 attributes, 476 examples

 0.66

 0.665

 0.67

 0.675

 0.68

 0.685

 0.69

 0.695

 0.7

 0.705

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

 0.43

 0.435

 0.44

 0.445

 0.45

 0.455

 0.46

 0.465

 0.47

 0.475

 0 5 10 15 20 25 30 35 40 45 50

AdaSquare/DS
AdaBoost/DS

KDD Cup 2004, quantum physics data set, 80 attributes, 10K sample

Fig. 6. Generalization performances: AdaBoost vs. Ada2Boost for decision stumps.

small but significant: For all 3 metrics and e.g. 10 or 50 stumps it passes a t-test
at a level of 2%. Advantages are much clearer for the remaining 3 data sets.
On mushrooms, Ada2Boost produces a perfect ranking with only 9, and perfect
soft predictions with 19 stumps. In contrast, AdaBoost requires 24 stumps to
rank perfectly and 100 stumps to reach an RMS of 2%. The curves differ most
drastically for musk, having few examples but 169 attributes. The monotonicity
of the AUC plots, well visible e.g. for the KDD Cup data, reflects the high
robustness of this metric. AUC and RMSE behave similarly for all data sets.

5 Conclusions

A simplified confidence-rated AdaBoost variant based on stratification was an-
alyzed. Visualizing the boosting process in nested PN spaces allowed to point
out similarities between boosting and rule learning. Theoretical results have been
provided that ease to understand (i) why boosting with accuracy as the objective
function implicitly maximizes the AUC, and (ii) why confidence-rated strategies
perform even better. Finally, a tighter than the commonly known bound for
the AUC of boosting ensembles has been derived from a PN space analysis. An
empirical study confirmed the results on implicit AUC maximization, indicating
similar benefits for minimizing the root mean squared error.

References

1. Freund, Y., Schapire, R.R.: A decision–theoretic generalization of on-line learning
and an application to boosting. Computer and System Sciences 55(1) (1997)

2. Fürnkranz, J., Flach, P.: ROC ’n’ Rule Learning – Towards a Better Understanding
of Covering Algorithms. Machine Learning 58(1) (2005)

3. Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Researchers
Tech report HPL-2003-4. HP Laboratories, Palo Alto, CA, USA (2004)

4. Schapire, R.E., Singer, Y.: Improved Boosting Using Confidence-rated Predictions.
Machine Learning 37(3) (1999)

5. Rudin, C., Cortes, C., Mohri, M., Schapire, R.E.: Margin-Based Ranking Meets
Boosting in the Middle. In Proc. of COLT (2005)

6. Flach, P.A.: The Geometry of ROC Space: Understanding Machine Learning Met-
rics through ROC Isometrics. In Proc. of ICML (2003)

7. Rosset, S.: Model Selection via the AUC. In Proc. of ICML (2004)
8. Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical

view of boosting. Annals of Statistics (28) (2000)
9. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient

descent in function space. Technical report, Australian National University (1999)
10. Scholz, M.: Sampling-Based Sequential Subgroup Mining. In Proc. of KDD (2005)
11. Blake, C., Merz, C.: UCI Repository of machine learning databases (1998)
12. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid

Prototyping for Complex Data Mining Tasks. In Proc. of KDD (2006)
13. Witten, I., Frank, E.: Data Mining – Practical Machine Learning Tools and Tech-

niques with Java Implementations. Morgan Kaufmann (2000)
14. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In Proc.

of ICML (1999)

