
Loalized Alternative Cluster Ensembles forCollaborative StruturingMihael Wurst, Katharina Morik and Ingo MierswaUniversity of Dortmund, Department of Computer SieneBaroperstr. 301, 44221 Dortmund, Germany{wurst,morik,mierswa}�ls8.s.uni-dortmundAbstrat. Personal media olletions are strutured in very di�erentways by di�erent users. Their support by standard lustering algorithmsis not su�ient. First, users have their personal preferenes whih theyhardly an express by a formal objetive funtion. Instead, they mightwant to selet among a set of proposed lusterings. Seond, users mostoften do not want hand-made partial strutures be overwritten by anautomati lustering. Third, given lusterings of others should not be ig-nored but used to enhane the own struture. In ontrast to other lusterensemble methods or distributed lustering, a global model (onsensus) isnot the aim. Hene, we investigate a new learning task, namely learningloalized alternative luster ensembles, where a set of given lusteringsis taken into aount and a set of proposed lusterings is delivered. Thispaper proposes an algorithm for solving the new task together with amethod for evaluation.1 IntrodutionCollaborative approahes allow users to share preferenes and knowledge with-out requiring a ommon semanti or expliit oordination. Data-driven methodsas link analysis for web searh and ollaborative �ltering have proven to besuessful despite their lak of a lear semanti. Furthermore, not requiring o-ordination is one of the key fators that led to the fast growth of the Internet,as users an ontribute information ompletely independently of other users.Reently, new appliations emerged under this Web 2.0 paradigm. Systemsas �ikr or del.iio.us allow users to annotate items with arbritrary hosen tags.Suh tags omplement global properties, e.g. artist, album, genre, et. for musiolletions used by media organizers as iTunes. In ontrast to these global prop-erties, many user-assigned tags are loal, i.e. they represent the personal viewsof a ertain user not aiming at a global struture or semanti.While users tend to start the organization of their personal olletion eagerly,they often end up with a large set of items whih are not yet annotated and astruture whih is too oarse. A major hallenge for mahine learning is to exploitsuh loal information in order to enable other users to navigate and struturemedia olletions.



If there are enough annotated items, lassi�ation learning an deliver adeision funtion ϕ whih maps items x of the domain X to a lass g in a set oflasses G. New items will be lassi�ed as soon as they ome in and the user hasno burden of annotation any more. However, lassi�ation does not re�ne thestruture. If there is no struture given yet, lustering is the method to hoose.It reates a struture of groups G for the not yet annotated items S ⊆ X .Traditional lustering shemes do not take into aount the struture whihusers already have built up. Semi-supervised lustering obeys given groupings[1,2℄, but it does not re�ne strutures. Non-redundant data lustering reatesalternative strutures to a set of given ones [3℄. Given a struture G for all itemsin the olletion, it reates an alternative struture G′ for all items. However, itdoes not fous on the not yet annotated items S but restrutures also the itemswhih were already arefully strutured.Non-redundant lustering is onneted to another area that has reentlyfound inreasing attention: lustering with bakground knowledge. In general,the idea of exploiting (user supplied) bakground knowledge has shown advan-tages, e.g., in text lustering [4℄ or lane �nding in GPS data [5℄. Although must-link onstrained lustering reuse existing lustering, the label information willnot be preserved. In addition, these approahes use a feature-based lusteringinstead of given input lusterings and are hene not appliable to our problem.We may onsider the struturing ahieved so far a set of partitionings ϕi,eah mapping S to a set of groups Gi. Ensemble lustering then produes aonsensus ϕ whih ombines these input partitionings [6℄. This is almost whatwe need. However, there are three major drawbaks: �rst, all input lusteringsmust be de�ned at least on S. Seond, the onsensus model does not take theloality of S into aount. Finally, merging several heterogenous user lusteringsby a global onsensus does not preserve valuable label information.In many urrent appliations it is important to onsider strutures of severalusers who interat in a network, eah o�ering a lustering ϕi : Si → Gi. Auser with the problem of struturing her left-over items S might now exploit theluster models of other users in order to enhane the own struture. Distributedlustering learns a global model integrating the various loal ones [7℄. However,this global onsensus model again destroys the struture already reated by theuser and does not fous on the set S of not appropriately strutured items.Whether own partial lusterings or those of other peers in a network are given,the situation is the same: urrent lustering methods deliver a onsensus modeloverwriting the given ones and do not take into aount S. In addition, usersmight want to selet among proposed models whih the learner delivers. Thepratial need of the user in organizing her media olletion is not yet overedby existing methods. The situation we are faing is atually a new learning task.Let X denote the set of all possible items. A funtion ϕ : S → G is a funtionthat maps objets S ⊆ X to a (�nite) set G of groups. The set Φ ontains allpossible funtions ϕ. We denote the domain of a funtion ϕ with Dϕ. In aseswhere we have to deal with overlapping and hierarhial groups, we denote theset of groups as 2G.



De�nition 1 (Loalized Alternative Cluster Ensembles) Given a set S ⊆
X, a set of input funtions I ⊆ {ϕi : Si → Gi}, and a quality funtion

q : 2Φ × 2Φ × 2S → R (1)with R being partially ordered1 loalized alternative lustering ensem-bles delivers the output funtions O ⊆ {ϕi|ϕi : Si → Gi} so that q(I, O, S) ismaximized and for eah ϕi ∈ O it holds that S ⊆ Dϕi
.Note that in ontrast to luster ensembles, the input lusterings an be de�nedon any subset Si of X . Sine for all ϕi ∈ O it must hold that S ⊆ Dϕi

, all outputlusterings must at least over the items in S.We present a method solving this task in two steps: a base algorithm (Se-tion 2.1) whih is enhaned to beome a hierarhial lustering in Setion 2.2.The method is well suited for distributed lustering (Setion 3) and we presentthe appliation from whih the work originated (Setion 3.1). Based on atualstrutures of musi olletions we an evaluate our approah in a way similar tothat of evaluating supervised learning tasks (Setion 4).2 An Approah to Loalized Alternative ClusterEnsemblesIn the following, we desribe a lustering method, that is based on the idea ofbag of lusterings: deriving a new lustering from existing ones by extending theexisting lusterings and ombining them suh, that eah of them overs a subsetof objets in S. In order to preserve existing label information but allowing thegroup mapping for new objets we de�ne the extension of funtions ϕi:De�nition 2 (Extended funtion) Given a funtion ϕi : Si → Gi, the fun-tion ϕ′

i : S′

i → Gi is an extended funtion for ϕi, if Si ⊂ S′

i and ∀x ∈ Si :
ϕi(x) = ϕ′

i(x).Extended funtions allow us to de�ne a bag of extensions of non-overlappingoriginally labeled subsets that overs the entire olletion:De�nition 3 (Bag of lusterings) Given a set I of funtions. A bag oflusterings is a funtion
ϕi(x) =
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im} partitioning S.1 For example, R = R if one is interested in a unique solution.



Sine eah ϕ′

ij is an extension of an input lustering ϕij on a subset Sij , thelabel information is preserved. Now, we an de�ne the objetive funtion for ourbag of lusterings approah to loal alternative lustering ensembles.De�nition 4 (Quality of an output funtion) The quality of an indi-vidual output funtion is measured as
q∗(I, ϕi, S) =

∑

x∈S

max
x′∈Sij

sim(x, x′) with j = hi(x) (3)where sim is a similarity funtion sim : X × X → [0, 1] and hi assigns eahexample to the orresponding funtion in the bag of lusters hi : S → {1, . . . , m}with
hi(x) = j ⇔ x ∈ S′

ij . (4)The quality of a set of output funtions now beomes
q(I, O, S) =

∑

ϕi∈O

q∗(I, ϕi, S). (5)Besides optimizing this quality funtion, we want to over the set S with a bagof lusterings that ontains as few lusterings as possible.2.1 The AlgorithmIn the following, we present a greedy approah to optimizing the bag of luster-ings problem. The main task is to over S by a bag of lusterings ϕ. The basiidea of this approah is to employ a sequential overing strategy. In a �rst step,we searh for a funtion ϕi in I that best �ts the set of query objets S. Forall objets not su�iently overed by ϕi, we searh for another funtion in Ithat �ts the remaining points. This proess ontinues until either all objets aresu�iently overed, a maximal number of steps is reahed, or there are no inputfuntions left overing the remaining objets. All data points that ould not beovered are assigned to the input funtion ϕj ontaining the objet whih is los-est to the one to be overed. Alternative lusterings are produed by performingthis proedure several times using eah input funtion at most one.We now have to formalize the notion of a funtion su�iently overing anobjet and a funtion �tting a set of objets suh that the quality funtion isoptimized. When is a data point su�iently overed by an input funtion so thatit an be removed from the query set S? We de�ne a threshold based riterionfor this purpose:De�nition 5 A funtion ϕ suffiiently overs a objet x ∈ S (written as
x ⊏α ϕ ), i� x ⊏α ϕ :⇔ maxx′∈Zϕ

sim(x, x′) > α.The set Zϕi
of items is delivered by ϕ. This threshold allows us to balane thequality of the resulting lustering and the number of input lusters. A smallvalue of α allows a single input funtion to over many objets in S. This, on



average, redues the number of input funtions needed to over the whole queryset. However, it may also redue the quality of the result, as the algorithmovers many objets in a greedy manner, whih ould be overed better usingan additional input funtion.Turning it the other way around: when do we onsider an input funtionto �t the items in S well? First, it must ontain at least one similar objetfor eah objet in S. This is essentially what is stated in the quality funtion
q∗. Seond, it should over as few additional objets as possible. This onditionfollows from the loality demand. Using only the �rst ondition, the algorithmwould not distinguish between input funtions whih span a large part of the dataspae and those whih only span a small loal part. This distintion, however, isessential for treating loal patterns in the data appropriately. The situation weare faing is similar to that in information retrieval. The target onept S � theideal response � is approximated by ϕ delivering a set of items � the retrievalresult. If all members of the target onept are overed, the retrieval result hasthe highest reall. If no items in the retrieval result are not members of S, it hasthe highest preision. We want to apply preision and reall to haraterize howwell ϕ overs S. We an de�ne

prec(Zϕi
, S) =

1

|Zϕi
|

∑

z∈Zϕi

max {sim(x, z)|x ∈ S} (6)and
rec(Zϕi

, S) =
1

|S|

∑

x∈S

max {sim(x, z)|z ∈ Zϕi
}. (7)Please note that using a similarity funtion whih maps idential items to 1 (and0 otherwise) leads to the usual de�nition of preision and reall. The �t betweenan input funtion and a set of objets now beomes a ontinuous f-measure:

q∗f (Zϕi
, S) =

(β2 + 1)rec(Zϕi
, S)prec(Zϕi

, S)

β2rec(Zϕi
, S) + prec(Zϕi

, S)
. (8)Reall diretly optimizes the quality funtion q∗, preision ensures that the resultaptures loal strutures adequately. The �tness q∗f (Zϕi

, S) balanes the tworiteria.Deiding whether ϕi �ts S or whether an objet x ∈ S is su�iently overedrequires to ompute the similarity between an objet and a luster. If the lusteris represented by all of its objets (Zϕi
= Si, as usual in single-link agglomerativelustering), this entral step beomes ine�ient. If the luster is represented byexatly one point (|Zϕi

| = 1, a entroid in k-means lustering), the similarityalulation is very e�ient, but sets of objets with irregular shape, for instane,annot be aptured adequately. Hene, we adopt the representation by �wellsattered points� Zϕi
as representation of ϕi [8℄, where 1 < |Zϕi

| < |Si|. Thesepoints are seleted by strati�ed sampling aording to G.



O = ∅
I ′ = Iwhile (|O| < maxalt) do

S′ = S

B = ∅
step = 0while ((S′ 6= ∅) ∧ (I ′ 6= ∅) ∧ (step < maxsteps)) do

ϕi = arg max
ϕ∈J

q∗f (Zϕ, S′)

I ′ = I ′ \ {ϕi}
B = B ∪ {ϕi}
S′ = S′ \ {x ∈ S′|x ⊏α ϕi}
step = step + 1end while

O = O ∪ {bag(B, S)}end whileFig. 1. The sequential overing algorithm �nds bag of lusterings in a greedy manner.
maxalt denotes the maximum number of alternatives in the output, maxsteps denotesthe maximum number of steps that are performed during sequential overing. Thefuntion bag onstruts a bag of lusterings by assigning eah objet x ∈ S to thefuntion ϕi ∈ B that ontains the objet most similar to x.We an now dare to ompute the �tness q∗f of all Zϕi

∈ I with respet toa query set S in order to selet the best ϕi for our bag of lusterings. Thewhole algorithm works as depited in �gure 1. We start with the initial set ofinput funtions I and the set S of objets to be lustered. In a �rst step, weselet an input funtion that maximizes q∗f (Zϕi
, S). ϕi is removed from the setof input funtions leading to a set I ′. For all objets S′ that are not su�ientlyovered by ϕi, we selet a funtion from I ′ with maximal �t to S′. This proessis iterated until either all objets are su�iently overed, a maximal numberof steps is reahed, or there are no input funtions left that ould over theremaining objets. All input funtions seleted in this proess are ombined toa bag of lusters, as desribed above. Eah objet x ∈ S is assigned to the inputfuntion ontaining the objet being most similar to x. Then, all input funtionsare extended aordingly, again by nearest-neighbor lassi�ation (f. de�nition2). We start this proess anew with the omplete set S and the redued set I ′of input funtions until the maximal number of alternatives is reahed.As eah funtion is represented by a �xed number of representative points,the number of similarity alulations performed by the algorithm is linear in thenumber of query objets and in the number of input funtions, thus O(|I||S||Zϕi

|).The same holds for the memory requirements.2.2 Hierarhial MathingA severe limitation of the algorithm desribed so far is, that it an only om-bine omplete input lusterings. In many situations, a ombination of partial



lusterings or even individual lusters would yield a muh better result. Thisis espeially true, if loal patterns are to be preserved being aptured by maxi-mally spei� onepts. Moreover, the algorithm does not yet handle hierarhies.Our motivation for this researh was the struturing of media olletions. Flatstrutures are not su�ient with respet to this goal. We annot use a standardhierarhial lustering algorithm, sine we still want to solve the new task ofloal alternative luster ensembles. In the following, we extend our approah tothe ombination of partial hierarhial funtions. A hierarhial funtion mapsobjets to a hierarhy of groups.De�nition 6 (Group hierarhy) The set Gi of groups assoiated with a fun-tion ϕi builds a group hierarhy, i� there is a relation < suh that (g < g′) :⇔
(∀x ∈ Si : g′ ∈ ϕi(x) ⇒ g ∈ ϕi(x)) and (Gi, <) is a tree. The funtion ϕi is thenalled a hierarhial funtion.It should be possible to math funtions that orrespond to only a partialgroup hierarhy. We formalize this notion by de�ning a hierarhy on funtions,whih extends the set of input funtions suh that it ontains all partial funtions.De�nition 7 (Funtion hierarhy) Two hierarhial funtions ϕi and ϕj ,are in diret sub funtion relation ϕi ≺ ϕj , i� Gi ⊂ Gj , ∀x ∈ Si :
ϕi(x) = ϕj(x) ∩ Gi, and ¬∃ϕ′

i : Gi ⊂ G′

i ⊂ Gj .Let the set I∗ be the set of all funtions whih an be ahieved following thediret sub funtion relation starting from I, thus
I∗ = {ϕi|∃ϕj ∈ I : ϕi ≺

∗ ϕj} (9)where ≺∗ is the transitive hull of ≺. While it would be possible to apply thesame algorithm as above to the extended set of input funtions I∗, this would berather ine�ient, beause the size of I∗ an be onsiderably larger than the oneof the original set of input funtions I. We therefore propose an algorithm whihexploits the funtion hierarhy and avoids multiple similarity omputations. Eahfuntion ϕi ∈ I∗ is again assoiated with a set of representative objets Zϕi
. Weadditionally assume the standard taxonomy semantis:

ϕi ≺ ϕj ⇒ Zϕi
⊆ Zϕj

. (10)Now, the preision an be alulated reursively in the following way:
prec(Zϕi
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|Z∗

ϕi
|
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|
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ϕi
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ϕj≺ϕi

|Zϕj
|

|Zϕi
|
prec(Zϕj

, S) (11)where Z∗

ϕi
= Zϕi

\
⋃

ϕj≺ϕi
Zϕj

. For reall a similar funtion an be derived.Note, that neither the number of similarity alulations is greater than in thebase version of the algorithm nor are the memory requirements inreased.Moreover, the bottom-up proedure also allows for pruning. We an opti-mistially estimate the best preision and reall, that an be ahieved in funtion



hierarhy using all representative objets Ze for whih the preision is alreadyknown. The following holds:
prec(Zϕi

, S) ≤
|Ze|prec(Ze, S) + |Zϕi

\ Ze|

|Zϕi
|

(12)with Ze ⊂ Zϕi
. An optimisti estimate for the reall is one. If the optimistif-measure estimate of the hierarhy's root node is worse than the urrent bestsore, this hierarhy does not need to be proessed further. This is due to theoptimisti sore inreasing with |Zϕi

| and |Zϕi
| > |Zϕj

| for all sub funtions
ϕj ≺ ϕi. No sub-funtion of the root an be better than the urrent best sore,if the sore of the root is equal or worse than the urrent best sore.This onversion to hierarhial luster models onludes our algorithm forLoal Alternative Cluster Ensembles (LACE).3 A Distributed AlgorithmThe LACE algorithm is well suited for distributed senarios. We assume a setof nodes onneted over an arbitrary ommuniation network. Eah node hasone or several funtions ϕi together with the sets Si. If a node A has a set ofobjets S to be lustered, it queries the other nodes and these respond with aset of funtions. The answers of the other nodes form the input funtions I. Aomputes the output O for S. The node B being queried uses its own funtions
ϕi as input and determines the best �tting ϕi for S and sends this output bakto A. The algorithm is the same for eah node. Eah node exeutes the algorithmindependently of the other nodes.We introdue three optimizations to this distributed approah. First, givena funtion hierarhy, eah nodes returns exatly one optimal funtion in thehierarhy. This redues the ommuniation ost, without a�eting the result,beause any but the optimal funtion would not be hosen anyway (see pruningin the last setion).Seond, input funtions returned by other nodes an be represented moree�iently by only ontaining the items in the query set, that are su�ientlyovered by the orresponding funtion. Together with the f-measure value q∗f(equation 8) for the funtion, this information is su�ient for the querying nodein order to perform the algorithm.In many appliation areas, we an apply a third optimization. If objets areuniquely identi�ed, suh as audio �les, �lms, web resoures, et. they an berepresented by these IDs only. In this ase, the similarity between two objetsis 1, if they have the same ID, and 0 otherwise. A distributed version of ouralgorithm only needs to query other nodes using a set of IDs. This redues theommuniation ost and makes mathing even more e�ient. Furthermore, suhqueries are already very well supported by urrent (p2p) searh engines.In a distributed senario, network lateny and ommuniation ost must betaken into aount. If objets are represented by IDs, both are restrited to anadditional e�ort of O(|S|+ |I∗|). Thus, the algorithm is still linear in the numberof query objets.



3.1 Distributed Media ManagementThe LACE algorithm is applied within Nemoz2, a distributed media organiza-tion system whih fouses on the appliation of data mining in p2p networks. Itsupports users in struturing their private media olletions by exploiting infor-mation from other peers. Eah user may reate arbitrary, personal lassi�ationshemes to organize her media, e.g. musi. For instane, some users struturetheir olletion aording to mood and situations, others aording to genres,et. Some suh strutures overlap, e.g., the blues genre may over similar musias does the melanholi mood.Nemoz supports the users in struturing their media objets while not foringthem to use the same set of onepts or annotations. If an ad ho network hasbeen established, peers support eah other in struturing. A user who needsto struture a set of media objets S (e.g., re�ning an over-full node in hertaxonomy) invokes the distributed algorithm desribed above. Then, the systemo�ers a set of alternative lusterings, eah ombined from peers' response andovering S. The user hooses whih of the lusterings she wants to inorporateinto her olletion's struture. Note, that in this senario, the enhaned funtionsfrom de�nition 2 beome partiularly meaningful � she reeives reommendationsfor similar musi in addition to her own set S!4 ExperimentsThe evaluation of LACE is performed on a real world benhmark dataset gath-ered in a student projet on distributed audio lassi�ation based on peer-to-peernetworks (Nemoz). The data set ontains 39 taxonomies (funtions ϕ1, ..., ϕ39)and overall 1886 songs [9℄3. All experiments desribed in this paper were per-formed with the mahine learning environment Yale [10℄4.The evaluation of LACE is performed by subsequently leaving out one fun-tion ϕi of the dataset. Then we apply lustering to reonstrut this taxonomy.Hene, we an evaluate luster models in a way similar to lassi�ation learning.We have a �ground truth� available. A user taxonomy ϕ is ompared with a tax-onomy ϕ′ reated automatially by lustering as follows. We onstrut the usualtree distane matrix for the two taxonomies and ompare these matries on allpairs of objets in the set S. For the absolute distane riterion, the di�erenebetween the tree distane in ϕ and the one in ϕ′ are summed-up and divided bythe number of objets (see Table 1 for illustration).As seond riterion we use the orrelation between these tree distanes. Fi-nally, for eah luster in the left-out taxonomy we searh for the best orre-sponding luster in the learned taxonomy aording to f-measure. The averageperformane over all user-given lusters is then used as the (FSore) evaluationmeasure [11℄. Note, that although we report the FSore, it is not normalized with2 Available at http://www.soureforge.net/projets/nemoz3 Available at http://www-ai.s.uni-dortmund.de/audio.html4 Available at http://yale.sf.net.



S x1 x2 ... xm sum of di�erenes
x1 - ϕ:1;ϕ′:3 2+
x2 - ϕ:1;ϕ′:2 1+... -
xm -Total 3+Table 1. Tree distane matrix indiating for all pairs of items in S how many edgesthey are away from eah other, one onerning the hierarhy of ϕ and one onerningthe hierarhy of ϕ′. For instane, in ϕ there is only one edge between x1 and x2, butin ϕ, there are three. The last olumns sums-up the di�erenes between the distanesin ϕ and ϕ′ for one item with respet to all other items. The last �eld gives the totalof all di�erenes. Total/m gives the absolute distane of ϕ and ϕ′.Method Correlation Absolute distane FSoreLACE 0.44 0.68 0.63TD audio 0.19 2.2 0.51TD ensemble 0.23 2.5 0.55single-link audio 0.11 9.7 0.52single-link ensemble 0.17 9.9 0.60random 0.09 1.8 0.5Table 2. The results for di�erent evaluation measures.respet to the number of reated lusters. Finer grained strutures therefore al-ways lead to equal or better performane than their oarse grained variants.This, however, does often not re�et the similarity to the user-given taxonomy.We ompare our approah with single-link agglomerative lustering using o-sine measure, top down divisive lustering based on reursively applying kernelk-means [12℄ (TD), and with random lustering. Loalized Alternative ClusterEnsembles were applied using osine similarity as inner similarity measure. TDand random lustering were started �ve times with di�erent random initializa-tions. We use a set of 20 features whih were shown to work well in a widerange of appliations [13℄ as underlying audio features. Sine, here, we want totest the new lustering method, we do not investigate di�erent feature sets. Theparameter β was set to 1.Table 2 shows the results. As an be seen, the loal alternative luster ensem-bles approah LACE performs best. Note however, that absolute distane doesnot lead to results that are representative for agglomerative lustering as suh,beause it usually builds-up quite deep hierarhies, while the user onstrutedhierarhies were rather shallow.A seond experiment inspets the in�uene of the representation on the a-uray. The results of LACE with di�erent numbers of instanes at a node areshown in Table 3. Representing funtions by all points performs best. Using asingle entroid for representing a subtree leads to inferior results, as we already



Representation Correlation Absolute distane FSoreall points 0.44 0.68 0.63
|Z| = 10 0.44 0.68 0.63
|Z| = 5 0.41 0.69 0.63
|Z| = 3 0.40 0.69 0.62entroid 0.19 1.1 0.42Table 3. The in�uene of onept representation (ardinality of |Z|).Alternatives Correlation Absolute distane FSore5 0.44 0.68 0.633 0.38 0.73 0.601 0.34 0.85 0.56Table 4. The in�uene of response set ardinality |O|.expeted. Well sattered points perform well. We obtain good results even for avery small number of representative items at eah node of the luster model.We also evaluated how the number of output funtions in�uenes the qualityof the result. The result should be learly inferior with a dereasing number.Table 4 shows the result. On one hand, we observe that even with just onemodel, i.e. |O| = 1, LACE still outperforms the other methods with respet totree distane. On the other hand, the results are, indeed, getting worse with lessalternatives. Providing alternative solutions seems to be essential for improvingthe quality of results at least in heterogeneous settings as the one disussed here.Probably, the performane would inrease even further for more output luster-ings. Although a user still would selet the best available lustering from allalternatives � whih motivates this form of evaluation � the number of solutionsshould be rather small and was restrited to 5 in this setting.5 ConlusionStruturing media olletions is one of the most important tasks for urrent andfuture media organization appliations. Clustering is a basi tehnique for thisproblem. A orret or optimal lustering of items depends strongly on intentionsand preferenes of the user. An important hallenge for new lustering tehniquesis the question of how to integrate lusterings provided by other users in a waythat allows for a ertain personalization whih re�ets the loality of the dataand preserves user reated lusterings. In ontrast to other luster ensemblemethods or distributed lustering, a global model (onsensus) is not the aim.Investigating the pratial needs arefully has led to the de�nition of a newlearning task, namely learning loalized alternative luster ensembles, where aset of given lustering is taken into aount and a set of proposed lusterings isdelivered. We have formalized the learning task and developed a greedy approah
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