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t. Subgroup dis
overy is a popular form of supervised rulelearning, appli
able to des
riptive and predi
tive tasks. In this workwe study two natural extensions of 
lassi
al subgroup dis
overy to dis-tributed settings. In the �rst variant the goal is to e�
iently identifyglobal subgroups, i.e. the rules an analysis would yield after 
olle
tingall the data at a single 
entral database. In 
ontrast, the se
ond 
on-sidered variant takes the lo
ality of data expli
itly into a

ount. Theaim is to �nd patterns that point out major di�eren
es between individ-ual databases with respe
t to a spe
i�
 property of interest (target at-tribute). We point out substantial di�eren
es between these novel learn-ing problems and other kinds of distributed data mining tasks. These dif-feren
es motivate new sear
h and 
ommuni
ation strategies, aiming at aminimization of 
omputation time and 
ommuni
ation 
osts. We presentand empiri
ally evaluate new algorithms for both 
onsidered variants.1 Introdu
tionThe aim of data mining is to �nd useful patterns in large data 
olle
tions. Dis-tributed 
omputing plays an important role in this pro
ess for several reasons.First, data mining often requires huge amounts of resour
es in storage spa
e and
omputation time. To make systems s
alable, it is important to develop me
ha-nisms that distribute the work load among several sites in a �exible way. Se
ond,data is often inherently distributed to several databases, making a 
entralizedpro
essing of this data very ine�
ient and prone to se
urity risks. Algorithms forseveral data mining tasks were proposed, for example for distributed asso
iationrule mining [1℄, 
lassi�
ation, 
lustering and dimensionality redu
tion [2℄.The goal of subgroup dis
overy [3℄ is to identify interesting rules. In thispaper we study two distributed subgroup dis
overy tasks. The �rst one aims atthe dis
overy of global subgroups from distributed databases using distributedalgorithms. Its two obje
tives are to �nd the same rules as 
entralized learners [4℄,and to minimize 
ommuni
ation 
osts. The se
ond distributed task aims to dete
trelative lo
al subgroups, whi
h des
ribe 
hara
teristi
s of individual databases
on
erning a target value. Su
h rules 
an, for instan
e, 
apture information howsales deviate at 
ertain bran
hes of a 
ompany.In Se
. 2 existing work on subgroup dis
overy is presented and extended todistributed settings in Se
. 3. Novel algorithmi
 solutions for distributed sub-group dis
overy are proposed in Se
. 4 and evaluated in Se
. 5.



2 Subgroup dis
overySubgroup dis
overy aims at the identi�
ation of interesting and interpretablerules [3, 5℄. Ea
h subgroup des
ribes a subset of the overall population in adatabase, whi
h deviates from the overall behavior in terms of a given propertyof interest. Among the typi
al appli
ations of subgroup dis
overy are the iden-ti�
ation of homogeneous groups of 
lients in marketing, and the indu
tion ofinterpretable rules in medi
al domains. Case studies illustrating bene�ts of sub-group dis
overy for de
ision support 
an be found in [6℄. An example appli
ationin a medi
al domain with a fo
us on in
orporating ba
kground knowledge anduser-de�ned preferen
es is des
ribed in [7℄.Formally, the learning task shares some of the 
hara
teristi
s of 
lassi�erindu
tion. In parti
ular it is also a supervised learning task. Instan
es of thepopulation are referred to as examples x ∈ X in this paper, while the property ofinterest 
an be formalized as a target attribute Y. Every subgroup is representedby a rule A → C with ante
edent A : X → {true, false} that is a 
onjun
tionof literals, and a 
on
lusion C : Y → {true, false}.In subgroup dis
overy the interestingness of rules is measured in terms of auser-given utility fun
tion, a parameter of the task itself. Hen
e, subgroup dis
ov-ery 
an be 
onsidered to de�ne a very broad rule dis
overy framework, 
overing
lassi�
ation as a spe
i�
 
ase. However, the fo
us of subgroup dis
overy di�ersfrom indu
ing 
lassi�ers. Although the dis
overed sets of rules 
an well be usedto make predi
tions if interpreted probabilisti
ally [8℄, subgroup dis
overy is typ-i
ally used for des
riptive data analysis. Di�erent sele
tion metri
s re�e
ting ruleinterestingness have been motivated in [5℄. The main obje
tive of utility fun
-tions is to trade-o� between two quantities, whi
h both indi
ate interestingnessbut tend to be diametri
. These quantities are formalized in the following twode�nitions. To ease notation we denote the absolute number of true positives ofa rule r with p(r), and the number of its false positives with n(r). The argumentis omitted if 
lear from the 
ontext. P and N denote the number of positivesand negatives in the 
omplete dataset.De�nition 1. For a given database E ⊆ X × Y the support of a rule A → Cis denoted as Sup(A → C). It is de�ned as
Sup(A → C) :=

|{A(x) | 〈x, y〉 ∈ E}|

|E|
= p + n,the fra
tion of examples 〈x, y〉 ∈ E for whi
h the ante
edent A evaluates to true.The notion of rule support is well-known from frequent itemset mining [9℄.De�nition 2. The bias of a rule r : A → C is de�ned as the di�eren
e betweenthe 
onditional distribution of C given A and the default probability of C:

Bias(r) :=
p

p + n
−

P

P + N
.



The bias re�e
ts the degree to whi
h a subgroup di�ers from expe
tation, i.e. thatthe target attribute is distributed as in the overall dataset. A broad varietyof utility fun
tions have been suggested for rule dis
overy, most of whi
h aremonotone in the bias and support of rules. Please refer to [10℄ for an overview.The most popular utility fun
tion for subgroup dis
overy is the weighted relativea

ura
y [5, 11℄, whi
h is exemplarily used in our algorithms proposed in Se
. 4.De�nition 3. The weighted relative a

ura
y of a rule r is de�ned as
WRAcc(r) := Sup(r) · Bias(r) =

p + n

P + N

(
p

p + n
−

P

P + N

)

.For sele
ting rules only the order indu
ed by an evaluation metri
 is relevant.Sin
e P and N are 
onstants for any �xed dataset we may multiply the termabove with (P+N)2

N
and rea
h at a more 
onvenient formulation:

WRAcc ·
(P + N)2

N
= (p + n) ·

(P + N)

N
·

(
p

p + n
−

P

P + N

)

=
p · (P + N) − (p + n) · P

N
= p −

P

N
· n = p − c · n (1)for a database-dependent 
onstant c ∈ IR+. This simple reformulation re�e
tsthe fa
t that ROC isometri
s of the weighted relative a

ura
y are parallel lineswith a slope of 1. Learners optimizing this evaluation metri
 handle 
lass skewsdi�erently than e.g. predi
tive a

ura
y does. Several sear
h strategies have beenproposed to �nd rules optimizing this metri
 for di�erent settings.The most straight-forward subgroup dis
overy task is to identifying a setof k rules with highest utility s
ores, where k is a user-given parameter. TheILP system MIDOS [4℄ is the best-known algorithm for this task, optimizingthe weighted relative a

ura
y metri
. It is designed for multi-relational learningand sear
hes the spa
e of rules exhaustively, ex
ept for safe pruning. The useof a re�nement operator allows to evaluate rules from general to spe
i�
, whilemaking sure that no rule is evaluated twi
e. The pruning strategy exploits theoperator's top-down sear
h. The support of ea
h rule r de
reases monotoni
allywith ea
h re�nement, so for p positive and n negative examples the upper bound

WRAcc(r) ≤ Sup(r) ·

(

1 −
P

P + N

) (2)allows to prune all re�nements of a rule with low support if it 
annot improveover the k-th best rule found so far.In order to speed up the subgroup dis
overy pro
ess adaptive sampling hasbeen proposed [12℄. The learning task needs to be reformulated to a

ount forthe inevitable risk of drawing a poor sample. Hen
e, the goal is to �nd k approx-imately best rules with high probability. For the most relevant utility fun
tionsprobabilisti
 guarantees 
an be given to �nd good rules with high probability.Several authors have addressed subgroup dis
overy in the presen
e of (or rel-ative to) prior knowledge. A re
ently presented system exploits di�erent kinds



of ba
kground knowledge to sele
t relevant features, to dis
retize variables in ameaningful way, and to exploit user-given preferen
es for guiding sear
h heuris-ti
s [7℄. Knowledge-based sampling [8℄ generi
ally in
orporates probabilisti
 priorknowledge and 
an be 
ombined with any of the other approa
hes. It yields un-expe
ted patterns and supports the indu
tion of a

urate 
lassi�er ensembles.3 Dis
overing subgroups from distributed data3.1 Global distributed subgroup miningAn extension to 
lassi
al subgroup dis
overy that has not yet been investigatedby the data mining 
ommunity is the dis
overy of subgroups from distributeddata. We start with a few de�nitions for evaluating rules on distributed data toease the formulation of the formal learning problems studied in this work.In the remainder of this paper the global data E is assumed to be distributedto nodes {1, . . . , m}, ea
h holding a lo
al subset Ei ⊂ E so that E =
⊎m

i=1 Ei.The number of positives and negatives at site i are denoted as Pi and Ni.De�nition 4. For any rule r : A → C the absolute number of 
overed positivesand 
overed negatives in node i are denoted as
pi(r) := |{A(x)∧C(y) | 〈x, y〉 ∈ Ei}| and ni(r) := |{A(x)∧C(y) | 〈x, y〉 ∈ Ei}|.This allows to restate the support and bias of rules for individual databases Ei.De�nition 5. The lo
al support of rule r at a site i is de�ned as

Supi(r) :=
pi(r) + ni(r)

|Ei|
,while the lo
al bias is de�ned as

Biasi(r) :=
pi(r)

pi(r) + ni(r)
−

Pi(r)

Pi(r) + Ni(r)Global utility fun
tions 
an be adapted in a straight-forward manner based onthese lo
al quantities. We 
on�ne ourselves to weighted relative a

ura
y.De�nition 6. Lo
al weighted relative a

ura
y of rule r at node i is de�ned as
WRAcci(r) := Supi(r) · Biasi(r).The �rst studied distributed subgroup dis
overy task is referred to as globalsubgroup dis
overy. It aims at the identi�
ation of the same k best subgroups inthe global data E, but without shifting all the data to a single database.Global subgroup dis
overy is an unexpe
tedly hard problem. If the distribu-tion underlying di�erent databases Ei may deviate from the global distributions,i.e. they 
annot be 
onsidered to be uniform subsamples of E, then globally bestrules may perform poor at all lo
al sites [13℄. More pre
isely, 
olle
ting all the



lo
ally best rules with respe
t to WRAcci does not ne
essarily yield a set that
ontains one of the k globally best rules, neither exa
tly nor approximately in thesense of the approximately k best rules problem (see Se
. 2). As a 
onsequen
e,algorithms addressing global subgroup dis
overy need to ex
hange either exam-ples or models and 
ounts if guarantees are required. A new algorithm tailoredtowards the spe
i�
 
hara
teristi
s of the task will be presented in Se
. 4.1.3.2 Relative lo
al subgroup dis
overyThe novel task of relative subgroup mining takes the lo
ality of data expli
itlyinto a

ount. A rule is 
onsidered to be interesting, if it is well supported by lo
aldata, and if its lo
al 
on�den
e deviates substantially from the 
orresponding
on�den
e when evaluating the same rule globally.Relative subgroups are relevant in several domains. E.g. in a marketing appli-
ation the 
orresponding rules may identify spatial regions in whi
h the buyingbehavior of 
ustomers di�ers from that observed in other parts of the 
ountry.An unsupervised approa
h with a related aim, mining high 
ontrast frequentitemsets, has re
ently been presented [14℄. Based on entropy, it identi�es item-sets with 
ounts that are inhomogeneously distributed to the di�erent sites. Inthis paper we address supervised relative rule dis
overy, a learning task proposedin re
ent prior work [13℄. It aims at the identi�
ation of rules maximizing thefollowing evaluation metri
:De�nition 7. The relative lo
al utility of a rule r at node i is de�ned as
RLUi(r) := Supi(r) · (Biasi(r) − Bias(r) + ci) , with ci :=

Pi

Pi + Ni

−
P

P + N
.Di�erent 
lass skews Pi/Ni are of minor interest in this setting, so the term ciis used to fo
us on deviations of globally and lo
ally di�erent 
onditional 
lassdistributions for subsets 
overed by 
onsidered rules. This turns the term inbra
kets into deviations of lo
al and global 
on�den
es, as motivated above.As for WRAcc, a more 
onvenient version of the RLU metri
 
an be derived:

RLUi(r) = Supi(r) ·

(
pi(r)

pi(r) + ni(r)
−

p(r)

p(r) + n(r)

)

= |Ei|
−1 ·








pi(r) − p(r) ·
pi(r) + ni(r)

p(r) + n(r)
︸ ︷︷ ︸

=:p̂i(r)








=
pi(r) − p̂i(r)

|Ei|The term p̂i(r) 
an be interpreted as the estimated number of positives withinthe subset 
overed by rule r at site i. This estimate is based on the fra
tion ofpositives in the subset of the global data that are 
overed by the rule, i.e. on theglobal 
on�den
e. A fa
tor-equivalent metri
 to RLU is RLU∗

i (r) := pi(r)−p̂i(r).The task of dis
overing the best k relative lo
al subgroups has been shownto be at least as hard as dis
overing global subgroups from distributed data [13℄.



4 Algorithms for distributed subgroup dis
overy4.1 Distributed global subgroup dis
overyIn this se
tion we propose an algorithm for distributed global subgroup miningbased on 
ount polling and distributed rule pruning based on optimisti
 esti-mates. A basi
 prin
iple of the algorithm is that for ea
h rule r all re�nementsof this rule r′ are 
reated and 
ounted at exa
tly one node. We use a re�nementoperator as de�ned in [4℄. The following de�nition assumes a �xed total orderon the set of attributes.De�nition 8. A re�nement operator ρ is a fun
tion that maps ea
h rule to theset of its dire
t su

essors. A rule r′ : A′ → C′ is a dire
t extension of r : A → C,if and only if C = C′, A′ = A ∪ {Xi = v} for a variable Xi with the propertythat all attributes Xj in A have an index j whi
h is stri
tly lower than i. Thetransitive relation r′ < r denotes, that r′ is a re�nement of r.Our pruning method exploits the following relationship. If for ea
h node the
ounts for a rule r or a prede
essor of r, denoted as r′ are known, we 
an 
al
ulatea tight upper bound on the WRAcc(r). If this highest possible s
ore is worsethan the 
urrently k-best rule, then the algorithm 
an safely prune the rule r.Lemma 1. The (global) utility of a rule r is bounded by the following term
WRAcc(r) ≤

∑m

i=1 pi(r
′

i)

P + N
·

(

1 −
P

P + N

)

=
N

(P + N)2

m∑

i=1

pi(r
′

i),where r′i = r or r < r′i. For the most spe
i�
 rules pi(ri) is known for, this boundis tight.Proof. The 
orre
tness of the lemma follows from eqn. (1), implying that WRAccis order-equivalent to p− P
N
·n. Hen
e, optimal re�nements dis
ard all negativesbut no positives, whi
h leads to the s
ore used as an upper bound.The di�eren
e to eqn. (2) is that the support is repla
ed by the fra
tion oftrue positives, a quantity whi
h is stri
tly smaller unless r 
annot further beimproved by re�nements, anyway. The pruning strategy exploits the fa
t that

WRAcc in
reases monotoni
ally if re�nements �dis
ard� only negatives. It ismaximized by re�nements that dis
ard all negatives and no positives. For thisreason straightforward adaptations of eqn. (2) apply to the broad 
lass of utilityfun
tions sharing this property of monotoni
ity, e.g. to the binomial test fun
-tion. It is su�
ient to substitute the tightest known 
ounts during optimisti
s
ore 
omputation in lemma 1 for ea
h rule, and to optimisti
ally assume thata subsequent re�nement is able to dis
ard only the 
overed negatives.The lemma 
an be used to prune rules for whi
h exa
t 
ounts are availableonly from a subset of all nodes. If the upper bound for WRAcc(r) is worse thanthe k-th best rule, r 
an be pruned without polling further 
ounts. Lemma 1 alsoimplies a se
ond pruning 
ondition. If a rule r′ is pruned, then all re�nements



r < r′ of this rule 
an be pruned as well, as their optimisti
 s
ores are known tobe no better than the optimisti
 s
ore of r′.These pruning strategies are 
ombined with 
ount polling to derive an al-gorithm for distributed subgroup mining that s
ales linearly in the number ofnodes. Ea
h node i keeps three data stru
tures. First, a list Bi 
ontaining the
k 
urrently best hypotheses. Se
ond, a list of pruned hypotheses Zi. These arerules for whi
h it is known that no des
endant 
an rea
h a s
ore better than

kbi := min
r∈Bi

WRAcc(r),the k-th best s
ore at node i. To this end an optimisti
 upper-bound is 
omputedusing lemma 1. Finally, ea
h node keeps a list of all rules, for whi
h it is polling
ounts. This list is denoted as Qi.The algorithm is initialized by assigning all rules with an empty body to anarbitrary node. The 
omputation then follows Fig. 1. A node that re
eives anassignment for a rule r generates all 
anoni
al re�nements (dire
t su

essors)
ρ(r) and serves as their polling node. A rule r : A → C 
an be pruned (i) basedon its optimisti
 s
ore, or (ii) be
ause it is subsumed by a previously pruned rule
r′ : A′ → C′, that is C′ = C and A′ ⊂ A, so {A(x) | x ∈ X} ⊂ {A′(x) | x ∈ X}and hen
e pi(r) < pi(r

′) at all sites. For ea
h re�ned rule r′ the algorithm�rst obtains the lo
al 
ounts from the database and 
he
ks whether r′ 
an bepruned. If the rule is pruned based on its optimisti
 s
ore, the node additionallyinforms all other nodes about this step of pruning. In 
ontrast, subsumption-based pruning of a rule r′ does not require to broad
ast r′, sin
e ea
h node isknown to have a rule subsuming r′ in its list of pruned rules Zi. If a rule is notpruned the node broad
asts a query for 
ounts on r and adds r to the list ofopen hypotheses Qi. The individual nodes then reply their lo
al 
ounts for r′. Asmore and more lo
al 
ounts arrive the bound on the global 
ount gets tighter.If all lo
al 
ounts for a rule r are available and r 
annot be pruned, it is �rst
he
ked, if the rule is better than kbi. If this is the 
ase, it is inserted into Bi asdes
ribed above and broad
asted to all other nodes. Then the rule is assigned toa node that is responsible for generating and 
ounting the 
anoni
al re�nementsof the rule. Besides the rule itself, the lo
al 
ounts for rule r are transmittedfrom all the nodes. This information is ne
essary to allow for pruning basedon partially available 
ounts, as des
ribed above. The node to whi
h a rule isassigned is determined by the support of the rule. The rationale of this 
hoi
e is,that su
h a node is the most likely to be able to prune the rule without queryingother nodes for 
ounts.The algorithm has 
ommuni
ation 
osts in O(m|C|), where m is the numberof nodes and C is the set of evaluated 
andidates. Hen
e, the algorithm s
aleslinearly with the number of nodes and 
andidates. This 
an easily be seen fromthe fa
t that at most O(m) messages are ex
hanged per 
andidate: a query for
ounts, its replies, and possibly a broad
ast for a new best hypothesis or forpruning. These messages 
ontain only rules and individual 
ounts. Additionally,at most one delegation message for a rule is produ
ed, 
ontaining a set of lo
al
ounts. This message is of size O(m).



// Update best rulesfor bestij(r,WRAcc(r)) ∈ Mj doif WRAcc(r) > kbj theninsert(Bj ,r);// Update pruned rulesfor pruneij(r) ∈ Mj do
Zj = Zj ∪ {r};// Obtain message 
ountsfor countij(r, ni(r), pi(r)) ∈ Mj dore
al
ulate opts
ore(r);if prunable(r) then

Zj = Zj ∪ {r};elseif 
ounts-
omplete(r) thenif WRAcc(r) > kbj thenbest.insert(Bj , r);b
ast(best(r,WRAcc(r)));
Qj = Qj \ {r};
m = argmaxi(ni(r) + pi(r));send(assignjm(r, {(p1(r), ...)}));

// Handle assignment to re�ne a rulefor assignij(r, {(p1(r), ...)}) ∈ Mj dofor r′ ∈ refinements(r) dore
al
ulate opts
ore(r′);if not(prunable(r′)) thenb
ast(query(r′));
Qj = Qj ∪ {r′};// Answer queries for lo
al 
ountsfor queryij(r) ∈ Mj dosend(countji(r, nj(r), pj(r)));prunable(r):if r ≤ r′ : r′ ∈ Zj thenreturn true;if optscore(r) < kbj thenb
ast(prune(r));return true;return false;Fig. 1. Algorithm for distributed global subgroup mining at node j. Mj denotes theinput message queue of node j. bestij , pruneij , countij , queryij and assignij aremessages, where i denotes the sender and j the re
eiver. The pro
edures above areexe
uted as long as messages arrive.4.2 Distributed relative subgroup dis
overyFinding relative lo
al subgroups di�ers from �nding global subgroups in thatea
h node �nds an own, individual set of rules. The s
ore of a rule is de�nedwith respe
t to its lo
al support and its relative bias. While the support of a rule r
an easily be 
omputed lo
ally at ea
h database, global 
ounts for r are requiredfor 
omputing the bias. Global 
ounts of rules are aggregated as des
ribed inthe last se
tion. There is one important di�eren
e however. Rules 
an only bepruned, if they are pruned at every node. We propose an algorithm that is basedon 
ount polling and optimisti
 pruning. The following tight optimisti
 pruningrule holds for the task of relative lo
al subgroup mining.Lemma 2. For relative lo
al subgroup dis
overy, rules r with pi(r) positives,

ni(r) negatives, and p̂i(r) estimated positives 
overed by rule r at site i,
RLUi(r

′) ≤
pi(r) − max(0, p̂i(r) − ni(r))

|Ei|is a tight upper-bound for the lo
al utilities of all rules r′ < r.Proof. Considering the fa
tor-equivalent metri
 RLU∗ it is easily seen that anoptimal re�nement of rule r redu
es p̂i(r) by 
overing less examples that are



�predi
ted� positive, while not redu
ing pi(r). If the ni(r) negative examples
overed by r are predi
ted positive by p̂i(r), and if a re�nement r′ < r existsthat 
overs only the pi(r) positive examples, then we rea
h at a utility of
RLU∗

i (r′) = pi(r) − max(0, p̂i(r) − ni(r)).This 
annot be improved any further by re�nements, sin
e r′ 
overs only pos-itives, and further re�nement redu
es pi(r) at least as mu
h as p̂i(r) − ni(r).Sin
e RLU∗ = RLU · |Ei| this proves the lemma.Our algorithm for relative subgroup mining works as follows. Again, ea
hnode has a list of best rules, pruned rules, and open rules. Additionally, nodeskeep a rule 
a
he, that is used to store the global 
ounts of rules for whi
h anode serves as the polling node. The mapping of rules to responsible nodes isrealized by a hash fun
tion.Ea
h node starts with an empty set of rule 
andidates. It then generates�rst-level rules that are evaluated lo
ally. If a rule r 
an be pruned based onlemma 2 it is dis
arded. Otherwise, the node requests global 
ounts n(r) and
p(r) for r from a polling node that is determined by 
al
ulating a hash value forthe rule. The node that re
eives this request 
he
ks whether it �nds the rule inits 
a
he. If so, it dire
tly returns the 
orresponding global 
ounts. Otherwise,the node �rst queries all other nodes for their 
orresponding lo
al 
ounts. Afteraggregating all lo
al 
ounts ni(r) and pi(r) the polling node stores and returnsthe global 
ounts. Given the global 
ounts and the lo
al 
ounts for a rule r, theexa
t utility s
ore of r 
an be 
omputed. If r is better than the k-best rule itis inserted into Bi as des
ribed in the last se
tion. If r, and thus ea
h of itsre�nements, re
eive an optimisti
 s
ore that is worse than the lowest s
ore in
Bi, then r is pruned. Neither best rules nor pruned rules are broad
asted, asthey are not relevant to other nodes.While the pruning strategies for relative lo
al subgroup mining are weakerthan for distributed global subgroup mining, the approa
h still s
ales linearlywith the number of nodes. Thus, relative lo
al subgroup mining is in O(|C|m),where |C| are the 
andidates 
onsidered by at least one node. Relative lo
alsubgroup mining for all nodes is usually more expensive than global subgroupmining, be
ause rules may only be pruned, if they would be pruned at all nodes.5 ExperimentsWe performed experiments to analyze the properties of the proposed algorithms.As both algorithms are guaranteed to �nd the best rules, evaluation is only
on
erned with 
ommuni
ation 
osts. These 
osts are evaluated on three datasetstaken from the UCI library, mushroom, adult, and german. For adult and germannumeri
al attributes were dis
retized using minimal entropy partitioning.First of all the substantial di�eren
e between the tasks of subgroup andasso
iation rule mining is illustrated exemplarily. Asso
iation rule and frequentitemset mining rely on a user-provided support threshold and are usually applied
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ommuni
ation 
ostsfor global and relative subgroup miningto �nd huge amounts of rules. Subgroup dis
overy �nds only the k best rules withrespe
t to a user-spe
i�ed utility fun
tion, not requiring a threshold. Even if thebest rule utility was known to a frequent itemset mining algorithm in advan
e, itwould be more 
ostly to generate all itemsets based on a 
orresponding supportthreshold in a distributed setting than to run distributed subgroup dis
overy;state-of-the-art algorithms for distributed frequent itemset mining evaluate atleast all frequent itemsets at all nodes. E.g. the german dataset 
ontains morethan 50.000 frequent itemsets using the support-based pruning threshold of theMIDOS algorithm (see eqn. (2)) in 
ombination with the (usually unknown)utility of the best subgroup. In 
ontrast, the global subgroup dis
overy algorithmevaluates less than 3.000 
andidates.Still, the 
ommuni
ation 
osts for our algorithm grow no more than linearly inthe number of nodes. We validated this property in a �rst experiment, measuring
osts by a

ounting 4 bytes for ea
h rule transmitted over the network and2 bytes for ea
h 
ount. To be able to measure the impa
t of data skews inthe distribution of data to individual nodes we used the following pro
edure.First, the data was 
lustered using an EM algorithm. The number of 
lusterswas 
hosen as the number of nodes. We use a parameter pskew denoting theprobability that an example is assigned to a node a

ording to the 
orresponding
luster. Otherwise it is assigned randomly at equal probability. For pskew = 1ea
h node re
eives all data points in its 
orresponding 
luster. For pskew = 0 allexamples are distributed randomly. This allows to adjust the data skew betweenboth extremes. The results for the datasets using pskew = 0 and �nding oneglobal rule (k = 1) for rules of 
onstrained length as in MIDOS (we sear
hedfor best rules 
ontaining up to 3 literals) are shown in Fig. 2. For all threedatasets the 
urves 
on�rm our theoreti
al �ndings 
on
erning the s
alability ofour method. Please note, that in this experiment ea
h database 
ontains aboutthe same amount of data, whi
h is the worst 
ase for our method.The se
ond experiment 
ompares the 
ommuni
ation 
osts for distributedglobal and relative subgroup mining for varying degrees of skew. The results ofmining the most interesting rule of length up to 3 literals for the mushroom data



set is shown in Fig. 3 for a network of m = 5 nodes. We see that distributed globalsubgroup mining shows a low sensitivity regarding the data skew. For relativesubgroup mining the situation is di�erent. Given a low skew, the 
osts for �ndingrelative subgroups in
reases. The reason is that relative subgroups 
an only befound if the data distribution among nodes deviates. For low skews only ruleswith very low s
ores 
an be identi�ed, whi
h however for
es all nodes to sear
h avery large sear
h spa
e as pruning 
annot be applied. Rea
hing at a 
ertain levelof skew the distributions deviate su�
iently to identify 
orresponding logi
alrules, leading to a sharp de
rease of 
osts in Fig. 3 for relative subgroup mining.6 Dis
ussion and 
on
lusionDis
overing distributed global and relative lo
al subgroups are two novel know-ledge dis
overy tasks. Sin
e subgroup dis
overy is a supervised learning task it
ould be approa
hed with state of the art distributed 
lassi�
ation algorithms,e.g. distributed boosting [15℄ in order to �nd probabilisti
 rule ensembles as in [8℄.Distributed boosting and similar algorithms are however not 
omplete, thus donot guarantee to �nd optimal rules. As noted in [15℄ the quality of rules that
an be dis
overed depends on the distribution of examples over the individualdatabases. Results presented in [13℄ support this observation. For this reason wefo
used on 
omplete algorithms for distributed rule mining.Existing 
omplete algorithms for distributed rule mining are mostly 
on-
erned with �nding asso
iation rules [1℄. A straightforward extension of the Apri-ori algorithm is Count Distribution (CD) [16℄. At ea
h round, every databasegenerates all k + 1 
andidates from the globally large k-itemsets and broad-
asts all 
ounts to all other nodes. This pro
edure 
auses 
ommuni
ation 
ostsof Ω(|C|m2), where |C| is the number of 
andidates and m is the number ofnodes. One way to improve the CD algorithm is to use a designated node forea
h 
andidate that is responsible for polling and redistributing all 
ounts ofthe 
andidate itemset. This method is applied in the FDM algorithm [17℄. Itredu
es the 
ommuni
ation 
omplexity of the algorithm to Θ(|C|m). Two ad-ditional pruning te
hniques are applied in FDM. Lo
al pruning is based on theobservation that for an item to be frequent it must be frequent at least at onenode. Only for su
h items 
ounts need to be ex
hanged. Se
ond, nodes use anoptimisti
 estimate for the support of an itemset based on partial 
ounts re-
eived from other nodes. If this estimate is smaller than the minimal support,the 
andidate 
an be pruned. The idea of a polling site, as introdu
ed by FDMhelps to avoid 
ostly broad
asts and is very general.The real power of the above approa
hes lies in their lo
al pruning strategies,however, whi
h do not apply to distributed global subgroup mining as shownin [13℄; globally optimal rules 
an simultaneously be inferior at ea
h individualnode, while pruning strategies applied to distributed frequent itemset mining relyon the fa
t that globally frequent itemsets must be frequent at least at one node.This re�e
ts that subgroup utility fun
tions are la
king the monotoni
ity of rule



support, a prerequisite for e�
ient itemset mining. This substantial di�eren
eremains even for more sophisti
ated pruning strategies as proposed in [14, 18℄.Asso
iation rule based approa
hes are not appli
able to relative subgroupmining either, be
ause the relative s
ore of ea
h rule does not only depend on itslo
al support, but also on the (independent) lo
al and global rule 
on�den
es.Hen
e, we presented two new algorithms for distributed subgroup dis
overythat guarantee to deliver optimal rules at 
ommuni
ation 
osts linear in the num-ber of nodes and rule 
andidates, an essential property for s
alable distributedalgorithms. The 
omplexity was shown theoreti
ally and 
on�rmed empiri
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