Distributed Subgroup Mining

Michael Wurst and Martin Scholz

Artificial Intelligence Group, University of Dortmund, Germany
{wurst,scholz}@ls8.cs.uni-dortmund

Abstract. Subgroup discovery is a popular form of supervised rule
learning, applicable to descriptive and predictive tasks. In this work
we study two natural extensions of classical subgroup discovery to dis-
tributed settings. In the first variant the goal is to efficiently identify
global subgroups, i.e. the rules an analysis would yield after collecting
all the data at a single central database. In contrast, the second con-
sidered variant takes the locality of data explicitly into account. The
aim is to find patterns that point out major differences between individ-
ual databases with respect to a specific property of interest (target at-
tribute). We point out substantial differences between these novel learn-
ing problems and other kinds of distributed data mining tasks. These dif-
ferences motivate new search and communication strategies, aiming at a
minimization of computation time and communication costs. We present
and empirically evaluate new algorithms for both considered variants.

1 Introduction

The aim of data mining is to find useful patterns in large data collections. Dis-
tributed computing plays an important role in this process for several reasons.
First, data mining often requires huge amounts of resources in storage space and
computation time. To make systems scalable, it is important to develop mecha-
nisms that distribute the work load among several sites in a flexible way. Second,
data is often inherently distributed to several databases, making a centralized
processing of this data very inefficient and prone to security risks. Algorithms for
several data mining tasks were proposed, for example for distributed association
rule mining [1], classification, clustering and dimensionality reduction [2].

The goal of subgroup discovery [3] is to identify interesting rules. In this
paper we study two distributed subgroup discovery tasks. The first one aims at
the discovery of global subgroups from distributed databases using distributed
algorithms. Its two objectives are to find the same rules as centralized learners [4],
and to minimize communication costs. The second distributed task aims to detect
relative local subgroups, which describe characteristics of individual databases
concerning a target value. Such rules can, for instance, capture information how
sales deviate at certain branches of a company.

In Sec. 2 existing work on subgroup discovery is presented and extended to
distributed settings in Sec. 3. Novel algorithmic solutions for distributed sub-
group discovery are proposed in Sec. 4 and evaluated in Sec. 5.

2 Subgroup discovery

Subgroup discovery aims at the identification of interesting and interpretable
rules [3,5]. Each subgroup describes a subset of the overall population in a
database, which deviates from the overall behavior in terms of a given property
of interest. Among the typical applications of subgroup discovery are the iden-
tification of homogeneous groups of clients in marketing, and the induction of
interpretable rules in medical domains. Case studies illustrating benefits of sub-
group discovery for decision support can be found in [6]. An example application
in a medical domain with a focus on incorporating background knowledge and
user-defined preferences is described in [7].

Formally, the learning task shares some of the characteristics of classifier
induction. In particular it is also a supervised learning task. Instances of the
population are referred to as ezamples x € X in this paper, while the property of
interest can be formalized as a target attribute). Every subgroup is represented
by a rule A — C with antecedent A : X — {true, false} that is a conjunction
of literals, and a conclusion C : Y — {true, false}.

In subgroup discovery the interestingness of rules is measured in terms of a
user-given utility function, a parameter of the task itself. Hence, subgroup discov-
ery can be considered to define a very broad rule discovery framework, covering
classification as a specific case. However, the focus of subgroup discovery differs
from inducing classifiers. Although the discovered sets of rules can well be used
to make predictions if interpreted probabilistically [8], subgroup discovery is typ-
ically used for descriptive data analysis. Different selection metrics reflecting rule
interestingness have been motivated in [5]. The main objective of utility func-
tions is to trade-off between two quantities, which both indicate interestingness
but tend to be diametric. These quantities are formalized in the following two
definitions. To ease notation we denote the absolute number of true positives of
arule r with p(r), and the number of its false positives with n(r). The argument
is omitted if clear from the context. P and N denote the number of positives
and negatives in the complete dataset.

Definition 1. For a given database E C X x Y the support of a rule A — C
is denoted as Sup(A — C). It is defined as

_ {A@) | {ay) € BY| _
B

Sup(A — C): p+n,

the fraction of examples (x,y) € E for which the antecedent A evaluates to true.
The notion of rule support is well-known from frequent itemset mining [9].

Definition 2. The bias of a rule r : A — C' is defined as the difference between
the conditional distribution of C given A and the default probability of C':

P P
p+n P4+ N’

Bias(r) :=

The bias reflects the degree to which a subgroup differs from expectation, i.e. that
the target attribute is distributed as in the overall dataset. A broad variety
of utility functions have been suggested for rule discovery, most of which are
monotone in the bias and support of rules. Please refer to [10] for an overview.
The most popular utility function for subgroup discovery is the weighted relative
accuracy [5,11], which is exemplarily used in our algorithms proposed in Sec. 4.

Definition 3. The weighted relative accuracy of a rule r is defined as

. +n P
WRAcc(r) := Sup(r) - Bias(r) = £+ N (pfn B P+N) '

For selecting rules only the order induced by an evaluation metric is relevant.

Since P and N are constants for any fixed dataset we may multiply the term
(P+N)?

above with N and reach at a more convenient formulation:

(P+N)? (P + N) p P
WhAce: —g—=+n)-—x '(p+n_P+N)
_p-(P+N)—(p+n)-P P

= N =p-yn=p-con (1)

for a database-dependent constant ¢ € IR*. This simple reformulation reflects
the fact that ROC isometrics of the weighted relative accuracy are parallel lines
with a slope of 1. Learners optimizing this evaluation metric handle class skews
differently than e.g. predictive accuracy does. Several search strategies have been
proposed to find rules optimizing this metric for different settings.

The most straight-forward subgroup discovery task is to identifying a set
of k rules with highest utility scores, where k is a user-given parameter. The
ILP system MIDOS [4] is the best-known algorithm for this task, optimizing
the weighted relative accuracy metric. It is designed for multi-relational learning
and searches the space of rules exhaustively, except for safe pruning. The use
of a refinement operator allows to evaluate rules from general to specific, while
making sure that no rule is evaluated twice. The pruning strategy exploits the
operator’s top-down search. The support of each rule r decreases monotonically
with each refinement, so for p positive and n negative examples the upper bound

P
W RAce(r) < Sup(r) - <1 P N) (2)
allows to prune all refinements of a rule with low support if it cannot improve
over the k-th best rule found so far.

In order to speed up the subgroup discovery process adaptive sampling has
been proposed [12]. The learning task needs to be reformulated to account for
the inevitable risk of drawing a poor sample. Hence, the goal is to find k approx-
imately best rules with high probability. For the most relevant utility functions
probabilistic guarantees can be given to find good rules with high probability.

Several authors have addressed subgroup discovery in the presence of (or rel-
ative to) prior knowledge. A recently presented system exploits different kinds

of background knowledge to select relevant features, to discretize variables in a
meaningful way, and to exploit user-given preferences for guiding search heuris-
tics [7]. Knowledge-based sampling [8] generically incorporates probabilistic prior
knowledge and can be combined with any of the other approaches. It yields un-
expected patterns and supports the induction of accurate classifier ensembles.

3 Discovering subgroups from distributed data

3.1 Global distributed subgroup mining

An extension to classical subgroup discovery that has not yet been investigated
by the data mining community is the discovery of subgroups from distributed
data. We start with a few definitions for evaluating rules on distributed data to
ease the formulation of the formal learning problems studied in this work.

In the remainder of this paper the global data E is assumed to be distributed
to nodes {1,...,m}, each holding a local subset E; C E so that E = [§J.", E;.
The number of positives and negatives at site i are denoted as P; and ;.

Definition 4. For any rule r : A — C' the absolute number of covered positives
and covered negatives in node i are denoted as

pi(r) == [{A@)A\C(y) | (x,y) € Ei}| and ni(r) := [{A(x)AC(y) | (z,y) € E}|.
This allows to restate the support and bias of rules for individual databases F;.

Definition 5. The local support of rule r at a site i is defined as

Sup;(r) = p_i(r)|—E’—i|ni(T)’

while the local bias is defined as

. (r) = pl(’r) - R(T)
Bias;(r) : pi(r) +ni(r) Pi(r) + Ni(r)

Global utility functions can be adapted in a straight-forward manner based on
these local quantities. We confine ourselves to weighted relative accuracy.

Definition 6. Local weighted relative accuracy of rule r at node i is defined as
W RAcc;(r) := Sup;(r) - Bias;(r).

The first studied distributed subgroup discovery task is referred to as global
subgroup discovery. It aims at the identification of the same k best subgroups in
the global data E, but without shifting all the data to a single database.
Global subgroup discovery is an unexpectedly hard problem. If the distribu-
tion underlying different databases E; may deviate from the global distributions,
i.e. they cannot be considered to be uniform subsamples of F, then globally best
rules may perform poor at all local sites [13]. More precisely, collecting all the

locally best rules with respect to W RAce; does not necessarily yield a set that
contains one of the k globally best rules, neither exactly nor approximately in the
sense of the approximately k best rules problem (see Sec. 2). As a consequence,
algorithms addressing global subgroup discovery need to exchange either exam-
ples or models and counts if guarantees are required. A new algorithm tailored
towards the specific characteristics of the task will be presented in Sec. 4.1.

3.2 Relative local subgroup discovery

The novel task of relative subgroup mining takes the locality of data explicitly
into account. A rule is considered to be interesting, if it is well supported by local
data, and if its local confidence deviates substantially from the corresponding
confidence when evaluating the same rule globally.

Relative subgroups are relevant in several domains. E.g. in a marketing appli-
cation the corresponding rules may identify spatial regions in which the buying
behavior of customers differs from that observed in other parts of the country.
An unsupervised approach with a related aim, mining high contrast frequent
itemsets, has recently been presented [14]. Based on entropy, it identifies item-
sets with counts that are inhomogeneously distributed to the different sites. In
this paper we address supervised relative rule discovery, a learning task proposed
in recent prior work [13]. It aims at the identification of rules maximizing the
following evaluation metric:

Definition 7. The relative local utility of a rule r at node i is defined as

P; P

RLU;(r) := Sup;(r) - (Bias;(r) — Bias(r) + ¢;), with ¢; := P+N, P+N

Different class skews P;/N; are of minor interest in this setting, so the term ¢;
is used to focus on deviations of globally and locally different conditional class
distributions for subsets covered by considered rules. This turns the term in
brackets into deviations of local and global confidences, as motivated above.
As for WRAce, a more convenient version of the RLU metric can be derived:

RLUi(r):Supi('r).< pi(r) __ p(r))

pi(r) +ni(r) p(r) +n(r)

= |Ei|7" - | pi(r) —p(r) -

pi(r) +ni(r) | _ pi(r) = pi(r)
p(r) +n(r) |Eil

The term p;(r) can be interpreted as the estimated number of positives within
the subset covered by rule r at site i. This estimate is based on the fraction of
positives in the subset of the global data that are covered by the rule, i.e. on the
global confidence. A factor-equivalent metric to RLU is RLU} (r) := p;(r)—p:(r).

The task of discovering the best k relative local subgroups has been shown
to be at least as hard as discovering global subgroups from distributed data [13].

4 Algorithms for distributed subgroup discovery

4.1 Distributed global subgroup discovery

In this section we propose an algorithm for distributed global subgroup mining
based on count polling and distributed rule pruning based on optimistic esti-
mates. A basic principle of the algorithm is that for each rule r all refinements
of this rule 7" are created and counted at exactly one node. We use a refinement
operator as defined in [4]. The following definition assumes a fixed total order
on the set of attributes.

Definition 8. A refinement operator p is a function that maps each rule to the
set of its direct successors. A ruler’ : A" — C" is a direct extension of r : A — C,
if and only if C = C', A = AU{X,; = v} for a variable X; with the property
that all attributes X; in A have an index j which is strictly lower than i. The
transitive relation v’ < r denotes, that v’ is a refinement of r.

Our pruning method exploits the following relationship. If for each node the
counts for a rule r or a predecessor of r, denoted as ' are known, we can calculate
a tight upper bound on the WRAcc(r). If this highest possible score is worse
than the currently k-best rule, then the algorithm can safely prune the rule r.

Lemma 1. The (global) utility of a rule r is bounded by the following term

> i Pi(ry) p N K
A < Li= (11— - (),
WhAce(r) < =55 P+N) (PN ;p (i)

where r; = r orr < 1. For the most specific rules p;(r;) is known for, this bound
18 tight.

Proof. The correctness of the lemma follows from eqn. (1), implying that W R Acc
is order-equivalent to p — % -n. Hence, optimal refinements discard all negatives
but no positives, which leads to the score used as an upper bound.

The difference to eqn. (2) is that the support is replaced by the fraction of
true positives, a quantity which is strictly smaller unless r cannot further be
improved by refinements, anyway. The pruning strategy exploits the fact that
W RAcc increases monotonically if refinements “discard” only negatives. It is
maximized by refinements that discard all negatives and no positives. For this
reason straightforward adaptations of eqn. (2) apply to the broad class of utility
functions sharing this property of monotonicity, e.g. to the binomial test func-
tion. It is sufficient to substitute the tightest known counts during optimistic
score computation in lemma 1 for each rule, and to optimistically assume that
a subsequent refinement is able to discard only the covered negatives.

The lemma, can be used to prune rules for which exact counts are available
only from a subset of all nodes. If the upper bound for W RAcc(r) is worse than
the k-th best rule, r can be pruned without polling further counts. Lemma 1 also
implies a second pruning condition. If a rule 7’ is pruned, then all refinements

r < r’ of this rule can be pruned as well, as their optimistic scores are known to
be no better than the optimistic score of 7.

These pruning strategies are combined with count polling to derive an al-
gorithm for distributed subgroup mining that scales linearly in the number of
nodes. Each node i keeps three data structures. First, a list B; containing the
k currently best hypotheses. Second, a list of pruned hypotheses Z;. These are
rules for which it is known that no descendant can reach a score better than

kb; :== min W RAcce(r),
reB;
the k-th best score at node i. To this end an optimistic upper-bound is computed
using lemma 1. Finally, each node keeps a list of all rules, for which it is polling
counts. This list is denoted as Q.

The algorithm is initialized by assigning all rules with an empty body to an
arbitrary node. The computation then follows Fig. 1. A node that receives an
assignment for a rule r generates all canonical refinements (direct successors)
p(r) and serves as their polling node. A rule r : A — C can be pruned (i) based
on its optimistic score, or (ii) because it is subsumed by a previously pruned rule
A" — ' that is C' = C and A’ C A, so {A(z) |z € X} C {A'(z) | x € X}
and hence p;(r) < p;(r') at all sites. For each refined rule 7’ the algorithm
first obtains the local counts from the database and checks whether v’ can be
pruned. If the rule is pruned based on its optimistic score, the node additionally
informs all other nodes about this step of pruning. In contrast, subsumption-
based pruning of a rule 7’ does not require to broadcast r’, since each node is
known to have a rule subsuming 7’ in its list of pruned rules Z;. If a rule is not
pruned the node broadcasts a query for counts on r and adds r to the list of
open hypotheses Q;. The individual nodes then reply their local counts for 7. As
more and more local counts arrive the bound on the global count gets tighter.

If all local counts for a rule r are available and r cannot be pruned, it is first
checked, if the rule is better than kb;. If this is the case, it is inserted into B; as
described above and broadcasted to all other nodes. Then the rule is assigned to
a node that is responsible for generating and counting the canonical refinements
of the rule. Besides the rule itself, the local counts for rule r are transmitted
from all the nodes. This information is necessary to allow for pruning based
on partially available counts, as described above. The node to which a rule is
assigned is determined by the support of the rule. The rationale of this choice is,
that such a node is the most likely to be able to prune the rule without querying
other nodes for counts.

The algorithm has communication costs in O(m|C|), where m is the number
of nodes and C is the set of evaluated candidates. Hence, the algorithm scales
linearly with the number of nodes and candidates. This can easily be seen from
the fact that at most O(m) messages are exchanged per candidate: a query for
counts, its replies, and possibly a broadcast for a new best hypothesis or for
pruning. These messages contain only rules and individual counts. Additionally,
at most one delegation message for a rule is produced, containing a set of local
counts. This message is of size O(m).

// Update best rules
for best;;(r,WRAcc(r)) € M; do
if WRAcc(r) > kb; then
insert(B;,r);

// Handle assignment to refine a rule
for assigni;(r, {(p1(r),...)}) € M; do
for r' € refinements(r) do
recalculate optscore(r’);
if not(prunable(r')) then
beast(query(r'));

Qj=Q;U{r'};

// Update pruned rules
for prune;;(r) € M; do
Zj=Z; U{r};

// Obtain message counts
for count;;(r,n;(r),pi(r)) € M; do
recalculate optscore(r);
if prunable(r) then
Zj = Z; U{r};
else
if counts-complete(r) then
if WRAcc(r) > kb; then
best.insert(Bj, r);
beast(best(r, WRAcc(r)));
Qi =Qi \{r}k;
m = argmax;(ni(r) + pi(r));
send(assignm (r, {(p1(r),...)}));

// Answer queries for local counts
for query;;(r) € M; do
send(count i (r,n;(r), p;(r)));

prunable(r):
if r<r':r' € Z; then
return true;
if optscore(r) < kb; then
beast(prune(r));
return true;
return false;

Fig. 1. Algorithm for distributed global subgroup mining at node j. M; denotes the
input message queue of node j. best;j, prune;j, count;j, query;; and assign;; are
messages, where i denotes the sender and j the receiver. The procedures above are
executed as long as messages arrive.

4.2 Distributed relative subgroup discovery

Finding relative local subgroups differs from finding global subgroups in that
each node finds an own, individual set of rules. The score of a rule is defined
with respect to its local support and its relative bias. While the support of a rule r
can easily be computed locally at each database, global counts for r are required
for computing the bias. Global counts of rules are aggregated as described in
the last section. There is one important difference however. Rules can only be
pruned, if they are pruned at every node. We propose an algorithm that is based
on count polling and optimistic pruning. The following tight optimistic pruning
rule holds for the task of relative local subgroup mining.

Lemma 2. For relative local subgroup discovery, rules r with p;(r) positives,
n;(r) negatives, and p;(r) estimated positives covered by rule r at site i,

pi(r) — max(0, pi(r) —n,(r))

RLU,(") <
|

is a tight upper-bound for the local utilities of all rules r' < r.

Proof. Considering the factor-equivalent metric RLU™* it is easily seen that an
optimal refinement of rule r reduces p;(r) by covering less examples that are

“predicted” positive, while not reducing p;(r). If the n;(r) negative examples
covered by r are predicted positive by p;(r), and if a refinement ' < r exists
that covers only the p;(r) positive examples, then we reach at a utility of

RLU; (r") = pi(r) — max(0, ps(r) — ni(r)).

This cannot be improved any further by refinements, since ' covers only pos-
itives, and further refinement reduces p;(r) at least as much as p;(r) — n;(r).
Since RLU* = RLU - |E;| this proves the lemma.

Our algorithm for relative subgroup mining works as follows. Again, each
node has a list of best rules, pruned rules, and open rules. Additionally, nodes
keep a rule cache, that is used to store the global counts of rules for which a
node serves as the polling node. The mapping of rules to responsible nodes is
realized by a hash function.

Each node starts with an empty set of rule candidates. It then generates
first-level rules that are evaluated locally. If a rule r can be pruned based on
lemma 2 it is discarded. Otherwise, the node requests global counts n(r) and
p(r) for r from a polling node that is determined by calculating a hash value for
the rule. The node that receives this request checks whether it finds the rule in
its cache. If so, it directly returns the corresponding global counts. Otherwise,
the node first queries all other nodes for their corresponding local counts. After
aggregating all local counts n;(r) and p;(r) the polling node stores and returns
the global counts. Given the global counts and the local counts for a rule r, the
exact utility score of r can be computed. If r is better than the k-best rule it
is inserted into B; as described in the last section. If r, and thus each of its
refinements, receive an optimistic score that is worse than the lowest score in
B;, then r is pruned. Neither best rules nor pruned rules are broadcasted, as
they are not relevant to other nodes.

While the pruning strategies for relative local subgroup mining are weaker
than for distributed global subgroup mining, the approach still scales linearly
with the number of nodes. Thus, relative local subgroup mining is in O(|C|m),
where |C] are the candidates considered by at least one node. Relative local
subgroup mining for all nodes is usually more expensive than global subgroup
mining, because rules may only be pruned, if they would be pruned at all nodes.

5 Experiments

We performed experiments to analyze the properties of the proposed algorithms.
As both algorithms are guaranteed to find the best rules, evaluation is only
concerned with communication costs. These costs are evaluated on three datasets
taken from the UCI library, mushroom, adult, and german. For adult and german
numerical attributes were discretized using minimal entropy partitioning.

First of all the substantial difference between the tasks of subgroup and
association rule mining is illustrated exemplarily. Association rule and frequent
itemset mining rely on a user-provided support threshold and are usually applied

12000

felative ——
| global -

mushroom —+—

10000

8000

6000

communication cost (kbyte)
communication cost (kbyte)

4000

2000 \

0k - —— —— 300
5 10 15 20 25 30 35 40 45 50 0 0.2 0.4 0.6 0.8 1
number of nodes p (degree of skew)

Fig. 2. Communication costs for dis- Fig.3. Data skew / communication costs
tributed global subgroup mining for global and relative subgroup mining

to find huge amounts of rules. Subgroup discovery finds only the &k best rules with
respect to a user-specified utility function, not requiring a threshold. Even if the
best rule utility was known to a frequent itemset mining algorithm in advance, it
would be more costly to generate all itemsets based on a corresponding support,
threshold in a distributed setting than to run distributed subgroup discovery;
state-of-the-art algorithms for distributed frequent itemset mining evaluate at
least all frequent itemsets at all nodes. E.g. the german dataset contains more
than 50.000 frequent itemsets using the support-based pruning threshold of the
MIDOS algorithm (see eqn. (2)) in combination with the (usually unknown)
utility of the best subgroup. In contrast, the global subgroup discovery algorithm
evaluates less than 3.000 candidates.

Still, the communication costs for our algorithm grow no more than linearly in
the number of nodes. We validated this property in a first experiment, measuring
costs by accounting 4 bytes for each rule transmitted over the network and
2 bytes for each count. To be able to measure the impact of data skews in
the distribution of data to individual nodes we used the following procedure.
First, the data was clustered using an EM algorithm. The number of clusters
was chosen as the number of nodes. We use a parameter pgpe,, denoting the
probability that an example is assigned to a node according to the corresponding
cluster. Otherwise it is assigned randomly at equal probability. For pggew = 1
each node receives all data points in its corresponding cluster. For psge,, = 0 all
examples are distributed randomly. This allows to adjust the data skew between
both extremes. The results for the datasets using psgewy = 0 and finding one
global rule (k = 1) for rules of constrained length as in MIDOS (we searched
for best rules containing up to 3 literals) are shown in Fig. 2. For all three
datasets the curves confirm our theoretical findings concerning the scalability of
our method. Please note, that in this experiment each database contains about
the same amount of data, which is the worst case for our method.

The second experiment compares the communication costs for distributed
global and relative subgroup mining for varying degrees of skew. The results of
mining the most interesting rule of length up to 3 literals for the mushroom data

set is shown in Fig. 3 for a network of m = 5 nodes. We see that distributed global
subgroup mining shows a low sensitivity regarding the data skew. For relative
subgroup mining the situation is different. Given a low skew, the costs for finding
relative subgroups increases. The reason is that relative subgroups can only be
found if the data distribution among nodes deviates. For low skews only rules
with very low scores can be identified, which however forces all nodes to search a
very large search space as pruning cannot be applied. Reaching at a certain level
of skew the distributions deviate sufficiently to identify corresponding logical
rules, leading to a sharp decrease of costs in Fig. 3 for relative subgroup mining.

6 Discussion and conclusion

Discovering distributed global and relative local subgroups are two novel know-
ledge discovery tasks. Since subgroup discovery is a supervised learning task it
could be approached with state of the art distributed classification algorithms,
e.g. distributed boosting [15] in order to find probabilistic rule ensembles as in [§].
Distributed boosting and similar algorithms are however not complete, thus do
not guarantee to find optimal rules. As noted in [15] the quality of rules that
can be discovered depends on the distribution of examples over the individual
databases. Results presented in [13] support this observation. For this reason we
focused on complete algorithms for distributed rule mining.

Existing complete algorithms for distributed rule mining are mostly con-
cerned with finding association rules [1]. A straightforward extension of the Apri-
ori algorithm is Count Distribution (CD) [16]. At each round, every database
generates all k + 1 candidates from the globally large k-itemsets and broad-
casts all counts to all other nodes. This procedure causes communication costs
of 2(]C|m?), where |C| is the number of candidates and m is the number of
nodes. One way to improve the CD algorithm is to use a designated node for
each candidate that is responsible for polling and redistributing all counts of
the candidate itemset. This method is applied in the FDM algorithm [17]. It
reduces the communication complexity of the algorithm to O(|C|m). Two ad-
ditional pruning techniques are applied in FDM. Local pruning is based on the
observation that for an item to be frequent it must be frequent at least at one
node. Only for such items counts need to be exchanged. Second, nodes use an
optimistic estimate for the support of an itemset based on partial counts re-
ceived from other nodes. If this estimate is smaller than the minimal support,
the candidate can be pruned. The idea of a polling site, as introduced by FDM
helps to avoid costly broadcasts and is very general.

The real power of the above approaches lies in their local pruning strategies,
however, which do not apply to distributed global subgroup mining as shown
in [13]; globally optimal rules can simultaneously be inferior at each individual
node, while pruning strategies applied to distributed frequent itemset mining rely
on the fact that globally frequent itemsets must be frequent at least at one node.
This reflects that subgroup utility functions are lacking the monotonicity of rule

support, a prerequisite for efficient itemset mining. This substantial difference
remains even for more sophisticated pruning strategies as proposed in [14, 18].

Association rule based approaches are not applicable to relative subgroup

mining either, because the relative score of each rule does not only depend on its
local support, but also on the (independent) local and global rule confidences.

Hence, we presented two new algorithms for distributed subgroup discovery

that guarantee to deliver optimal rules at communication costs linear in the num-
ber of nodes and rule candidates, an essential property for scalable distributed
algorithms. The complexity was shown theoretically and confirmed empirically.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Zaki, M.J.: Parallel and Distributed Association Mining: A Survey. IEEE Concur-
rency 7 (1999)

Park, B.H., Kargupta, H.: Distributed Data Mining: Algorithms, Systems; and
Applications. In Ye, N., ed.: Data Mining Handbook. IEA (2002)

Klosgen, W.: Subgroup discovery. In: Handbook of Data Mining and Knowledge
Discovery. Oxford University Press (2002)

Wrobel, S.: An Algorithm for Multi-relational Discovery of Subgroups. In: Princi-
ples of Data Mining and Knowledge Discovery: First European Symposium (1997)
Klgsgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In
Advances in Knowledge Discovery and Data Mining. AAAT Press (1996)

Lavrac, N., Cestnik, B., Gamberger, D., Flach, P.: Decision support through sub-
group discovery: three case studies and the lessons learned. MLJ 57 (2004)
Atzmiiller, M., Puppe, F., Buscher, H.P.: Exploiting background knowledge for
knowledge-intensive subgroup discovery. In: Proc. of IJCAI (2005)

Scholz, M.: Sampling-Based Sequential Subgroup Mining. In: Proc. of KDD (2005)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large data
bases. In: Proc. of VLDB (1994)

Fiirnkranz, J., Flach, P.: ROC 'n’ Rule Learning Towards a Better Understanding
of Covering Algorithms. MLJ 58 (2005)

Nada Lavrac, N., Flach, P., Zupan, B.: Rule Evaluation Measures: A Unifying
View. In: 9th International Workshop on Inductive Logic Programming (1999)
Scheffer, T., Wrobel, S.: Finding the Most Interesting Patterns in a Database
Quickly by Using Sequential Sampling. JMLR. 3 (2002)

Scholz, M.: On the Tractability of Rule Discovery from Distributed Data. In: Proc.
of ICDM (2005)

Otey, M.E., Parthasarathy, S., Wang, C., Veloso, A., Meira, W.: Parallel and
Distributed Methods for Incremental Frequent Itemset Mining. IEEE Transactions
on Systems, Man, and Cybernetics, Part B 34 (2004) 2439-2450

Lazarevic, A., Obradovic, Z.: Boosting algorithms for parallel and distributed
learning. Distributed and Parallel Databases Journal 11 (2002)

Agrawal, R., Shafer, J.C.: Parallel mining of association rules. IEEE Transactions
On Knowledge And Data Engineering 8 (1996)

Cheung, D., Han, J., Ng, V., Fu, A, Fu, Y.: A Fast Distributed Algorithm for
Mining Association Rules. In: International Conference on Parallel and Distributed
Information Systems. (1996)

Schuster, A., Wolff, R.: Communication-efficient distributed mining of association
rules. In: Proc. of SIGMOD (2001)

