Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
Deliverable No. D7b

Description of the Metadata-Compiler using the
M4-Relational Metadata-Schema,

Regina Ziicker!

Swiss Life, CC/ITRD
Information Technology Research & Development
CH-8022 Ziirich, Switzerland
regina.zuecker@swisslife.ch
http://research.swisslife.ch

June 22, 2001

Abstract

In this part b of the deliverable, the metadata compiler, short MD-Compiler,
is described. It is responsible for generating executable SQL-code from the
information stored within the M4-Relational Metadata-Schema. The paper
is structured into two parts.

The first part describes the actual state of the compiler. It explains the
general functionality of the MD-Compiler, the basic ideas of the underlying
concept and how much is realized up to now. In this version the compiler
can ’only’ generate one manual preprocessing operator at a time. It is still
an open question how the process will look like for handling a whole pre-
processing chain and which part of the system will have the control over
that.

The second part gives some ideas on compiler-optimization and how a
preprocessing chain could be handled. These topics have to be solved in the
continuing work package WP7+. Also, some open questions are described.
Even if this part specifies future work, it’s important to embed the current
state into a complete picture of the compiler functionality.

Chapter 1

Actual state of the
MD-Compiler

1.1 General functionality

Today the MD-Compiler is responsible for handling manual preprocessing
operators. It first reads the metadata for an operator from the database, cre-
ates executable SQL-code from that, compiles the SQL-code and writes the
output-results as metadata back into the M4-Relational Metadata-Schema.
The MD-Compiler works with the implementational level of the M4-MetaModel.
Because the parameters of an operator are defined with objects of the con-
ceptual level (the case designer is doing this) the MD-Compiler must con-
vert these objects to the implementational level. The results of an operator,
which are written back, belong only to the implementational level.

Considering the list of manual preprocessing operators, which shall be
available within the Mining Mart system, they can be divided into two
groups: (1) operators which have as output a BaseAttribute and (2) opera-
tors which have as output a Concept.

1.1.1 Operators with a BaseAttribute as output

For manual preprocessing operators, which have as output a BaseAttribute,
this BaseAttribute belongs to the input concept of the operator. So the MD-
Compiler must ’create’ a new column for an existing column set. In case
the column set is a database table, this would mean to physically add a new
column to the table. Changing such an operator respectively the output
BaseAttribute of that operator would mean to copy the table physically
into a temporary table, delete the original table and create a new table with
the changed column. Considering database performance, this process is not
acceptable. Therefore the compiler creates always a ’virtual column’ by only
generating a sql-string describing this new column. This sql-string is stored

Mining Mart IST-1999-11993, Deliverable No. D7b 2

Physical Database- M4-Relational Metadata-Schema
Object
Sttuation before Table_X COLUMNSET_T
Operator A
Column_1 CSID| CSNAVE [.] Cs_saL
Column_2 100 | Table X ||
Column_3
COLUMN_T
COL_ID| COL_NAME [..|GOL GSID CoL_saL
105 Column_1 100
108 Column_2 100
107 Column3a |..| 100
Situation after Table_X COLUMNSET_T
Operator A
which creates as Column_1 CS_ID [CSNAME _[.] Cs_saL
outputa Column_2 100 | Table X ||
BaseAttribute Column_3
COLUMN_T
COL D] COL_NAME [..|COL GSID COL saL
105 Column_1 100
106 Column2 || 100
107 Column_3 100
108 Column 4 |.. 100 substr(Column 1,1,50)

Figure 1.1: New ’virtual column’

Physical Database-

Object M4-Relational Metadata-Schema

Operator B
CSID| GCS_NAME [..[Cs_saL

which creates as
output a Concept 500 | View_Y || select Column_1 from Table X...

Situation after COLUMNSET_T

Figure 1.2: New ’'virtual view’

in the M4-Relational Metadata-Schema. The existing database table is not
changed. Figure 1.1 illustrates this process.

1.1.2 Operators with a Concept as output

Operators which have as output a concept are faced with the same problem
of how to handle physical database objects. Imagine the case designer defines
a feature-selection operator with 5 base attributes. After executing this
operator he wants to re-execute this operator, but now only choosing 4 base
attributes. If the output concept would be a physical database table, it
would have to be deleted and re-created. As solution for this problem, the
MD-Compiler always creates a view-object. The database view-object does
not have own data so changing attributes of a view is no problem. The
MD-Compiler stores the view-definition as sql-string in the M4-Relational
Metadata-Schema. We call this a ’virtual view’. Figure 1.2 illustrates this
process. As far as we know today a physical view-object is still necessary
for some reasons which are explained in section 2.1.2.

We are aware of the problem that some manual preprocessing operators
need a physical database table, i.,e. RANDOM_SAMPLING. Because this
operator is not realized yet, we cannot present THE solution. But for such
cases the MD-Compiler will probably create a physical database table in the

Mining Mart IST-1999-11993, Deliverable No. D7b 3

Table_x Table_y
x_id y_id
X a ym
x_b y_n
X_C

CREATE VIEW v_1 AS SELECT
1.x_a,
substr(1.x_b,5,30),
2y m
FROM Table_x 1, Table_y 2
WHERE 1.x_id =2.y_id
AND 1.x_a =500;

FeatureSelection
FeatureConstruction + FeatureSelection
FeatureSelection

#—— MultiColumnFeatureConstruction

L

RowSelection

Figure 1.3: Example illustrating operator granularity

background and use it. The case designer is not aware of this process.

The general idea of the MD-Compiler is to create a ’virtual view’ when-
ever possible and the case designer has not defined something else. It seems
that using virtual views create the least problems during re-creation with
changing attributes.

Using SQL-definitions instead of physical database view-objects results
in better performance on the database server during execution of hierarchical
views. Details are explained in section 2.1.

1.2 Operator granularity

As described in the M4-MetaModel of Deliverable 8&9, a manual prepro-
cessing operator is ”very elementary”. Compared to the power of the SQL-
engine, one preprocessing operator only needs very little functionality of
it, however several operators are necessary one after another. We want to
illustrate this circumstance on a small example.

Figure 1.3 shows two tables and a sql-statement, which should be mod-
eled with the M4-MetaModel. To do this, several preprocessing operators
are necessary.

e 1. RowSelection
CREATE VIEW V_01 (x.id, x_a, x_b, x_c) AS
SELECT x_id, x_a, x_b, x_.¢c FROM Table x WHERE x_a = 500;

e 2. MultiColumnFeatureConstruction (needs a relation)
SELECT x_a new_.a FROM V_01, Table.y WHERE x_id = y_id;

e 3. MultiColumnFeatureConstruction (needs a relation)
SELECT x_b new_ bFROM V_01, Table.y WHERE x_id = y_id;

e 4. MultiColumnFeatureConstruction (needs a relation)
SELECT y_m new.m FROM V_01, Table.y WHERE x_.id = y_id;

Mining Mart IST-1999-11993, Deliverable No. D7b 4

‘ Table_x ‘x_id ‘ x_a ‘ x_b ‘ X_C ‘ Table_y ‘ y_id ‘y_m ‘ y_n ‘

1. RowSelection

[vol [xid[xa[xb[xc]

‘ 2. MultiColumnFeatureConstruction

‘ v_o1 ‘x_id ‘ Xx_a ‘ x_b ‘ X_C ‘ new_a ‘

3. MultiColumnFeatureConstruction

:b1 ‘x_id ‘ Xx_a ‘ x_b ‘ X_C ‘ new_a ‘ new_b ‘

<

4. MultiColumnFeatureConstruction

[vol [xid[xa[xb][xc][new.a[newb [newm |

5. FeatureConstruction

ool

[vol [xid[xa[xb][xc][newa]|newb [new_m | new_new_b

l 6. FeatureSelection

[v_02 [new_a[new_m][new_new_b |

Figure 1.4: Operator-outputs for the example

e 5. FeatureConstruction
SELECT substr(new_b, 5, 30) new_new_b FROM V_01;

e (. FeatureSelection
CREATE VIEW V2 (new_a, new_new_b, new_m) AS
SELECT new_a, new_new_b, new_m FROM V_01;

Figure 1.4 shows as results the virtual columns and virtual views which
are generated by the different preprocessing operators. The greyed columns
are used as input parameter for one of the next operators. For example the
column ’new_b’ is used to create the new column 'new_new_b’ of operator
number 5.

Operator 1 creates a new virtual view 'V_01’, operator 2, 3, 4 and 5 create
a new virtual column 'new_a’, 'new_b’, 'new_m’ and 'new_new_b’. Operator
2 again creates a new virtual view ’V_02’. This example demonstrates that
6 elementary preprocessing operators and 2 view-definitions are necessary
to model the relative simple select-statement of figure 1.3.

The experience of Deliverable D6.2, including the prototype version of
the implemented compiler, have shown that in reality select-statements will
be much more complicated than the one of the example. Therefore opti-
mization is a very important topic when specifying the compiler. Section
2.1 gives details on the optimization part.

1.3 What is realized?

The MD-Compiler is realized with the programming language JAVA. Two
versions are available, one runs outside the database and connects via a
JDBC-ODBC-Bridge, one runs inside the database server with a PL/SQL-
wrapper around every java-class.

Mining Mart IST-1999-11993, Deliverable No. D7b 5

1.1
CreateCompiler H
(main-function) CompilerControl

" <<abstract>>
Operator
A

DBFunctions

Figure 1.5: Simplified UML-class-model

1.3.1 Class model

The inheritance of the M4-MetaModel is adopted. So an abstract class
for ’Operator’ and 'ManualOperator’ exists. The 'ManualOperator’-class
defines the necessary process for every manual preprocessing operator. Ev-
ery concrete manual preprocessing operator is implemented as own class
which inherits from "ManualOperator’. Right now the operators "RowSelec-
tion’ and 'FeatureConstruction’ are implemented. For feature construction
a database function must exist which makes the actual data transformation.
Figure 1.5 shows the simplified UML-class-model.

The class ’CreateCompiler’ is only necessary when using the database-
outside running version of the MD-Compiler. This class makes the connec-
tion to the database.

The class ’CompilerControl’ checks, if the operator is of type manual,
creates an operator instance according to the operator name and then starts
the execution process.

The class 'DBFunctions’ handles all actions with the database, the class
"OtherFunctions’ generates all sql-statements.

1.3.2 Execution

To start the MD-Compiler for an operator, only the unique operator-id and
a manual-operator-flag are necessary (API-Call to start outside-database
running compiler : ”java CreateCompiler database-name user-name
password operator-id true-flag”) . According to the information read
from the database, the proper operator instance is created.

All parameters for an operator are loaded and stored as class attributes;
conceptual as well as implementational information. When generating the
sql-statement, all information is available within the class. No further load

Mining Mart IST-1999-11993, Deliverable No. D7b 6

from the database is necessary.

After the sql-statement is generated, a syntax check is done within the
database.

Last, the results, according to the output parameter of the operator,
need to be written into the M4-Relational Metadata-Schema. For an output-
BaseAttribute an insert in table COLUMN_T is necessary, for an output-
Concept one insert in table COLUMNSET_T and an insert in table COL-
UMN_T for every column of that column set are required. Also the references
to the conceptual level have to be set.

Chapter 2

Outlook for WP7+

2.1 Optimization

Optimization is THE central topic if the compiler shall run on real datasets
like data warehouses. The example of figure 1.3 have shown that many
elementary preprocessing operators are necessary to model a complex select-
statement. So the challenge for implementing the compiler is to transform
the preprocessing operators into optimized sql-code which results in good
database performance and execution time.

2.1.1 View Hierarchy

As explained before, the MD-Compiler normally generates views respectively
virtual views. Therefore applying several operators means creating a view
hierarchy.

Figure 2.1 shows such a view hierarchy. Imagine, Table x, Table_y and
Table_z are physical database tables which content real data to be mined,
e.g tables from a data warehouse. We call these base tables. All generated
views get data from these base tables (*vc_’ means in this picture virtual
column). We expect that for a complete preprocessing chain much more
than 6 views are necessary until the last view contents the mining data.

Discussions with experts from Oracle about the view hierarchy and per-
formance aspects got following result:

It should be much better to use sql-statements for view-definitions, so
called inline-views, instead of physical view-objects. Apparently the Oracle
optimizer is able to re-write sql-statements and optimize it when inline-views
are used. All inline-views only reference to the base tables, so the optimizer
can generate one complex sql-statement from it. For actual existing view
objects this is not possible.

How do the inline-view-definitions look like for the example of figure 2.17

e V01

Mining Mart IST-1999-11993, Deliverable No. D7b 8

Base Tables Table_x [Table_y | [Table_z]

RowSelection R ion Rc
Views / Virtual
Views, v_01 [vo2] [vos]
created by the
MD-Compiler MultiColumnFeatureConstruction

[vol [wi][w2]vw3]
FeatureSelection
V_04
MultiColumnFeatureConstruction

RowSelection

FeatureSelection

Figure 2.1: View Hierarchy

SELECT ... FROM Table_x

e V.02
SELECT ... FROM Table_y

e V_03
SELECT ... FROM Table_z

e V.04
SELECT ... FROM (SELECT ... FROM Table_x)

instead of
SELECT ... FROM V_01

e V.05
SELECT ... FROM (SELECT ... FROM (SELECT ... FROM Ta-
ble x))

instead of
SELECT ... FROM V_04

e V_06
SELECT ... FROM (SELECT ... FROM (SELECT ... FROM (SE-
LECT ... FROM Table x)))
instead of

SELECT ... FROM V_05

Unfortunately this concept is not tested on large data sets yet. So we
cannot proof that it is really faster than using physical view-objects. But
as far as we understood the Oracle optimizer it should gain database per-
formance.

Mining Mart IST-1999-11993, Deliverable No. D7b 9

CREATE VIEW

V_01

\(attrib_a, attrib_b, attrib_c) ‘ Information from Table COLUMN_T, col_name
AS
SELECT
x_id, x_a, x_b Inline-View

FROM Table_x;

Figure 2.2: View and inline-view

2.1.2 Physical database views

In section 1.1.2 we stated that the MD-Compiler generates virtual views
which are inline-views and additionally creates physical view-objects on the
database. This seems redundant. But inline-views do not carry all neces-
sary information for reading one specific column of a view. Missing is the
reference from a BaseAttribute to a Column, which is necessary when:

e the case designer wants to see data contents of one specific BaseAt-
tribute

e statistics are calculated

Inline-views exist only as definitions for all columns of a view. The
assignment of one specific column-name to the select-part of the view, which
is the inline-view, is done in the create-view-statement. Figure 2.2 explains
this circumstance.

The inline-view is only the select-statement to load all data. The ref-
erence to a specific column is given by the order of the view-column-name
and the select-column-name, e.g. attrib_a gets data from the select of x_id,
attrib_b from the select of x_a and so on. Attrib_a is the specified column-
name from the M4-Relational Metadata-Schema. So only through a physical
view-object data contents for a specific column can be loaded.

2.1.3 Materialized views

Materialized views exist since version Oracle 8i. In Mining Mart we want
to use them to gain additional database performance.

The main functionality of materialized views is like former snapshots.
They store data physically in the database with an automatic refresh modus.
The big advantage is, that the Oracle optimizer recognize the existence of a
materialized view in the background and uses it when it is advantageous for
executing a special sql-statement. Nowhere in the sql-statement the name
of the materialized view has to be defined.

In general it is most efficient to read data directly from a physical
database table. But the disadvantages of physical database tables within

Mining Mart IST-1999-11993, Deliverable No. D7b 10

Table_y
V 01 V.02 V 03

{ Materjalized_View_1]

V_07

Figure 2.3: Materialized View

Mining Mart we have already explained. So materialized views seem to
be a good solution. They store data on an intermediate level but do not
appear in the M4-Relational Metadata-Schema. They are totally in the
background and so it’s no big problem if columns are changing. Figure 2.3
shows an example. The view-definition and inline-view-definition for V_04
stay unchanged. But when selecting data from V_04 the Oracle optimizer
recognizes automatically that it can use the Materialized _View_1 instead of
Table_x and Table_y, which should result in better execution time.

The MD-Compiler should generate materialized views, also in the back-
ground. Unsolved is the question of the best time and best data content
for creating materialized views as well as some functionality for deleting old
materialized views.

2.2 Executing a complete preprocessing chain

Our idea is that before a complete preprocessing chain is executed, it should
be recompiled completely. That means every view and inline-view should
be re-generated to ensure data actuality.

Learning operators are also allowed as preprocessing operators. Often
they cannot handle large data sets so they should be started with a data
sample, which could be automatically created by the MD-Compiler.

The learning operator itself must write it’s results as metadata into the
M4-Relational Metadata-Schema. So after executing a learning operator the
MD-Compiler must be able to generate a corresponding manual operator
using these results. The corresponding manual operator is necessary for
handling the complete large data set.

When the case user starts executing a preprocessing chain, no further
interaction should be necessary, except an error occurs.

Mining Mart IST-1999-11993, Deliverable No. D7b 11

It’s not clear yet which part of the Mining Mart system has the control
over this process.

2.3 Open questions

e Optimization
The already implemented part of the MD-Compiler is not tested on
large data sets yet. Also all ideas described in section 2.1 are not
tested in reality. So we don’t know how easy it can be implemented
and if it really brings the expected performance.

e Embedding learning operators
It’s not totally clear how a learning operator can be embedded in the
process of automatically executing a complete preprocessing chain as
well as how and which metadata have to be written back as results
into the M4-Relational Metadata-Schema so that the MD-Compiler is
able to generate a manual preprocessing operator for that.

At the 9th/10th of July, 2001 an internal Mining Mart workshop will
take place. These open questions will be discussed there with all project
partners and maybe we can find already a solution.

