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An Abundance of Data

e Supermarket scanners e Scientific experiments

e Credit card transactions e Sensors

e Call center records e Cameras

e ATM machines e |nteractions in social

e Web server logs networks

e Customer web site trails * Facebook, Myspace

e Podcasts * Twitter

e Blogs e Speech-to-text translation
e Closed caption * Email

*Print, film, optical, and magnetic storage: 5 Exabytes (EB) of
new information in 2002, doubled in the last three years
[How much Information 2003, UC Berkeley]




Driving Factors: A LARGE Hardware Revolution
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A sman Hardware Revolution

———— http://www.snm.ethz.ch/Projects/MicaZ
http://www.snm.ethz.ch/Projects/TmoteSky

http://lecs.cs.ucla.edu/Resources/testbed/testbed-overview.html

) http://www.snm.ethz.ch/Projects/Telos
e Moore's Law http://www.snm.ethz.ch/Projects/Mica2Dot

— In 1965, Intel Corp. cofounder Gordon Moore predicted that the density of
transistors in an integrated circuit would double every year.

— Later changed to reflect 18 months progress.
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Driving Factors: A smai Hardware Revolution

———— http://www.snm.ethz.ch/Projects/MicaZ
http://www.snm.ethz.ch/Projects/TmoteSky

http://lecs.cs.ucla.edu/Resources/testbed/testbed-overview.html

http://www.snm.ethz.ch/Projects/Telos

http://www.snm.ethz.ch/Projects/Mica2Dot

e Experts on ants estimate that there are 10%® to 10/ ants on
earth. In the year 1997, we produced one transistor per ant.
[Gordon Moore]

Cornell University




Driving Factors: Connectivity and Bandwidth

e Metcalf’s law (network usefulness increases squared
with the number of users)

e Gilder’s law (bandwidth doubles every 6 months)

Cornell University



Definition

Data mining is the exploration and analysis of large
qguantities of data in order to discover valid, novel,
potentially useful, and ultimately understandable
patterns in data.

Example pattern (Census Bureau Data):
If (relationship = husband), then (gender = male). 99.6%
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WHY?

WE HAVE A GIGANTIC
DATABASE FULL OF
CUSTOMER BEHAVIOR
INFORMATION.

EXCELLEMT. WE CAN
USE MON-LINEAR
MATH AND DATA
MINING TECHNOLOGY
TO OPTIMIZE CUR
RETAIL CHANMELSI

Y

IF THAT'S THE
SAME THING AS
SPAM, LJERE
HAVING A GOOD
MEETING HERE.

K000 United Featurs Symdicaie, Inc

wowwdilbert.com  scoitadama®ssl com

Pifrs|es

Copur-ight 2 2888 United Feature Syndicate, |ho.
Fedistribution in whole o in part prohibited
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Why? Three Examples

e Sensor networks
e B|G Science Data

e Photos and videos

Cornell University



A sman Hardware Revolution

———— http://www.snm.ethz.ch/Projects/MicaZ
http://www.snm.ethz.ch/Projects/TmoteSky

http://lecs.cs.ucla.edu/Resources/testbed/testbed-overview.html

http://www.snm.ethz.ch/Projects/Telos

http://www.snm.ethz.ch/Projects/Mica2Dot
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Flexible Decision Support

Traditional

Procedural addressing of
individual sensor nodes; user
specifies how task executes,
data is processed centrally.

Today

Complex declarative querying and
tasking. User isolated from
“how the network works”, in-
network distributed
processing.

| Update Map ||

Create Cluster |

| Show Clusters ||

Hide Clusters |

http://www.cs.cornell.edu/bigreddata/cougar/
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Time | Value
12 82
13 83

Querying: Model

Time | Value
13 82
15 84 |

Time | Value
13 82
15 83

Time | Value
13 82
15 83

Time | Value
14 79
15 83

Time | Value
13 80
16 83

f) Cornell University



Example Queries

e Snapshot queries:

— What is the concentration of chemical X in the northeast

guadrant?

SELECT AVG(R.sensor.concentration)
FROM Relation R

WHERE R.sensor.loc in (50,50,100,100)

— In which area is the concentration of chemical X higher than the

average concentration?

SELECT AVG(R.sensor.concentration)

FROM Relation R

GROUP BY R.area

HAVING AVG(R.sensor.concentration) >
(SELECT AVG(R.sensor.concentration)
FROM Relation R
GROUP BY R.area)

Cornell University



Example Queries (Contd.)

e Long-running queries

— Notify me over the next hour whenever the concentration of

chemical X in an area is higher than my security threshold.
SELECT R.sensor.area, AVG(R.sensor.concentration)

FROM Relation R

WHERE R.sensor.loc in rectangle

GROUP BY R.sensor.area

DURATION (now,now+3600)

e Archival queries
— Periodic data collection for offline analysis




Goals

e Declarative, high-level tasking
e User is shielded from network characteristics

— Changes in network conditions
— Changes in power availability
— Node movement

e System optimizes resources
— High-level optimization of multiple queries

— Trade accuracy versus resource usage versus timeliness of
query answer
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Challenges

Technical:

e Scale of the system
e (Constraints

— Power, communication, computation

e Constant change, uncertainty from sensor measurements
e Distribution and decentralization

Application:

e Traffic monitoring
e Health Care

e Care for the elderly

And of course the resulting data tsunami!




Three Examples

e Sensor networks
e B|G Science Data

e Photos and videos

Cornell University
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Pulsars

e Pulsars are rotating stars

e Of interest are
— Millisecond pulsars
- Com paCt binaries http://en.wikipedia.org/wiki/Pulsar

e Example:
— Hulse-Taylor binary

— Used to infer gravitational waves in support of Einstein’s
General Theory of Relativity

— Nobel price in physics in 1993




Pulsar Surveys

e Most demanding of the ALFA surveys
e ~ 100 MB/s to disk

e ~ 1 PB for entire survey (3-5 yr @ 6-10% duty cycle)
e Requires coarsely parallel processing of raw data in

discrete, local data chunks

e processing time ~ 50-200x data acquisition time on single processor
(Intel 2.5 GHz 512k cached with 1GB ram)

e depends on data set details, algorithms, code
e Distributed initial processing (Cornell + 5 sites)

e Requires meta-analysis of data products of the initial
analysis
— Database and data mining research problems
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Project Requirements

e Data
— 14 TB every 2 weeks
— Shipped on USB-2 disk drives
— Need to archive raw data 5+ years

— Need to make data products to the astronomy research
community

e Processing

— Extremely processor intensive

e Currently just exhaustive search over a large parameter space
(periodicity, dispersion, time)

— Find new pulsars --- and other interesting phenomena

e More information:
http://arecibo.tc.cornell.edu/hiarchive/




Three Examples

e Sensor networks
e B|G Science Data

e Photos and videos

Cornell University



The Need for Large-Scale Image Processing

Photos:
e 5 billion— Photos hosted by Flickr
e 3000+ — Photos uploaded per minute to Flickr.

e 130 million — At the above rate,
the number of photos uploaded per month

e 3+ billion — Photos uploaded per month to
Facebook.

Video: fl iCkr"‘

e 2 billion — The number of videos watched per day on YouTube. |, wickr.com

www.facebook.com

e 35— Hours of video uploaded to YouTube every minute.

e 186 — The number of online videos the average Internet user watches in a
month (USA).

e 2+ billion — The number of videos watched per month on Facebook.
e 20 million —Videos uploaded to Facebook per month.

[} Cornell University



The Power of a Data-Rich Environment

e Current System:
150,000 photos take
1 day on 500 cores

e Goal : Billions in days

Pictures courtesy of Noah Snavely
http://www.cs.cornell.edu/~snavely/




Statue of Liberty

7834 images registered (322 in skeletal set)

S

Picture courtesy of Noah Snavely Cornell University
http://www.cs.cornell.edu/~snavely/ s




Summary: Why

Sensor networks
BIG Science Data
Photos and videos

Many others:

— Cloud

— Multi-core

— Handheld devices

Cornell University



Talk Outline

Introduction
Techniques for data stream processing
Data privacy
Conclusions
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HOW

YOU TWO WILL BE MY
TELEMARKETERS. HERE'S
A LLIST OF KNOWN
IDIOTS TO CALL,

\

= B

S AhvmS  E-mail: SCOTTADAMSBAOL.COM

TLL GO FIRST, BOB.
LET'S SEE... L

DIAL THE NUMBER.
AMD WAIT FOR AN

IDIOT 7O
& AMNSWER ...
. f )

T

',ll'-:.'-|-l:|7 @ IRET United Fenture Syndioato, Ing

C'MON,
YOU LOSER.,
FICK UP

THE PHOMNE.

Copuright

2 1997 United Feature Syndicate, lnc.

Fedistribution in whole or in part prohibited
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— Stream summaries
— Complex event processing
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Processing Network Data Streams

e Data-stream processing arises naturally in Network Management
— Data tuples arrive continuously from different parts of the network

— Archival storage is often off-site (expensive access)
— Queries can only look at the tuples once, in the fixed order of arrival and with limited available

memory
Gateway node
Data-Stream Join Query:
| S ——
M|easur'emen’rs SELECT COUNT(®)
Alarms R1 R2 FROM R1 R2, R3
WHERE R1.A=R2.B=R3.C

W
Network

Minos N. Garofalakis, Johannes Gehrke, Rajeev Rastogi: Querying and mining data streams: you on
SIGMOD Conference 2002: 635

| Cornell University
ggerone look a tutorial.



Data Stream Processing Model

e Approximate query answers often suffice (e.g.,
trend/pattern analyses):

— High-level analysis, then (expensive) retrieval and deep analysis
of relevant data

Approach:
— Build small synopses of the data streams online
— Use synopses to provide (good-quality) approximate answers




Data Stream Processing Model

e Requirements for stream synopses

— Single pass: Each tuple is examined at most once, in fixed (arrival) order

— Bounded storage: Log or poly-log in data stream size

— Real-time: Per-record processing time (to maintain synopsis) must be low

Data Streams

(in memory)

Stream Synopses

\ 4

Stream
Processing
Engine

(Approximate)
Answer

—

N/

Cornell University



Sketches

Summary structure which can be constructed in one pass
Incrementally maintainable
Provable performance guaratnees

Example: AMS sketches [N. Alon, Y. Matias and M.
Szegedy, The space complexity of approximating the
frequency moments, STOC 1996]




Estimating Self-join Sizes

e Example scenario

— StreamR:abacca
— Compute: SJ(R)

R
e SJ(R) = COUNT(R X[, R) = 2, f(i)2 . _

— SJ(R)=2, f(i)2=32+12+22=14 | f(i)
a 3

b 1

C 2

® Any deterministic algorithm to
approximate SJ(R) needs at least
Q(|Dom(A)|) memory [AMS96]




AMS Sketches

e Main features
— Randomized technique

— Summarize information in the stream with a single number =
atomic sketch




Estimating Self-Join Size

e Method for estimating SJ(R):

— Select a family of independent {+1,-1} random variables
e {€:i=1..|dom(A)|} with P[£,=+1]=P[E=-1]= %
e E[E]=0

— Compute atomic sketch:  X=X;_poma fli) &
e StreemR:abacca

* X=&a+ab+§a+ac+§c+§a

— Claim: X? approximates SJ(R)

Cornell University



AMS Sketches: Analysis

— Compute: X=2. (i) &
Want:  SJ(R)=2 f(i)?

- X2 = I f(i)2 &2 + =, f(I)f(j) &E,
= X f(i)? + 2, F0)F(j) &G

— E[X?] = &, 1(i)? + Z,; f(i)f(j) E[EE]]
=SJ(R)+0




Atomic Sketch Computation

Crucial point:

&, values need not be fully independent Pairwise
independence suffices

=¢,'s can be generated efficiently from small seeds
[ABI86]

—¢ vector is not stored. Required elements generated on
the fly from seed of size O(log|Dom(A)|)

Cornell University



Example

Stream R: a
seed
PRNG:
S

1-1

X=0




Example

Stream R: a

seed

PRNG: a
I




Example

Stream R: a b

seed

PRNG: a
I
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PRNG: a
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Example

Stream R: a b a
seed

PRNG:
S
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Example

Stream R: a b a c c
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PRNG:
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Example

Stream R: a b a c c a
seed
PRNG:
S




Example

Stream R: a b acc a
seed
PRNG:
S
> X=-4

e

Estimator Z=16 ~ SJ(R)=14




Boosting

e Boosting: (¢,0) guarantees

Using O(Var[Z] log (1/0) / (¢? E?[Z])) i.i.d. copies of Z,
the computed estimate Z* approximates E[Z] within
(€,0)

— P(|Z*-E[Z]|> E[Z]) < &

seed

Si

X




Boosting

e Boosting: (¢,0) guarantees

Using O(Var[Z] log (1/0) / (¢? E?[Z])) i.i.d. copies of Z,
the computed estimate Z* approximates E[Z] within
(€,0)

— P(|Z*-E[Z]|> E[Z]) < &

_________________________________________________________

seed, seed, seed,, | !
T Z W :

Si Si .. S | i “sketch”
X, X, X, |

_________________________________________________________

® Need &/’s to be 4-wise independent to ge

QW variance

A
S
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Performance: An Example
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From: Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, Rajeev Rastogi:

rocessing complex aggregate queries over data streams. SIGMOD Conference 2002: 61-72




Example: Two-Dimensional Join
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From: Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, Rajeev Rastogi:
rocessing complex aggregate queries over data streams. SIGMOD Conference 2002: 61-72
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Standard Pub/Sub

e Publishers generate data - :
— Events, publications mb Topic

e Subscribers describe u-
interests in publications

— Queries’ subscriptions Source: JMS tutorial

e Asynchronous communication
— Decoupling of publishers and subscribers

e Example: Tibco, Twitter

ou \ave ssage. |
® (f | Mssag whl pjso! cem- ‘
meet cha today at cool grindz. Hope
!r Gt Mh gh’ e&d d fo
oy

The Power of Now®

http://www.apple.com/downloads/dashboard/email messaging/facebookalert.html, www.tibco.com, www. fW|tter com




Limitation of Standard Pub/Sub

e Scalable implementations have very simple
query languages

— Simple predicates, comparing message attributes to
constants

— E.g., topic="politics’ AND author="J. Doe’

e Many monitoring applications need sequence
patterns

http://www.ccs.neu.edu/home/amislove/twittermood/, www.jodange.com




Examples

e Stock monitoring

— Notify me when the price of IBM is above $83, and the first
MSFT price afterwards is below $27.

— Notify me when the price of any stock increases monotonically
for 230 min.




Examples

e RSS feed monitoring

— Once CNN.com posts an article on Technology, send me the
first post referencing (i.e., containing a link to) this article from
the blogs to which | subscribe




Examples

e System event log monitoring

— In the past 60 seconds, has the number of failed logins (security
logs) increased by more than 57 (break-in attempt)

— Have there been any failed connections in the past 15 minutes?
If yes, is the rate increasing?




Solutions?
Traditional pub/sub

— Scalable, but not expressive enough

Database Management System (DBMS)
— Static datasets, one-shot queries

Data Stream Management Systems (DSMS)
— Limited MQO work

Active databases (triggers), event processing systems

— None had all desired features: expressiveness, precise formal
semantics, system implementation with scalability in event rate
and number of queries




The Main Goal of Cayuga

e Language
— Expressiveness

e Filter, project, aggregate, join (correlate) events from
multiple streams

— Precise, formal semantics
e Fully composable operators with formal semantics

e System
— Scalability in event rate and number of queries

http://www.cs.cornell.edu/bigreddata/cayuga/ \ Cornell University




Cayuga Stream Algebra

e Compositional: operators produce new streams from
existing ones

e Translation to generalized Nondeterministic Finite
Automata

— Edge transitions on input events
— Automaton instances carry relevant data from matched events




Approach: Compose Queries Through
Operators

e Relational operators (on non-temporal attributes)
— Selection oQ
— Projection WX
— Renaming pf
— Union U
e Together these give standard pub/sub

C (6./) O

Automaton for p ¢ o 0g(S)

Cornell University



Example Query Q1

e Q1: Find me all RSS items published by Google News

SELECT * FROM
FILTER {feed_url="http://news.google.com/’Hwebfeeds)
PUBLISH google news_items

feed_url="http://news.google.com/’
webfeeds

google news_items

[} Cornell University



Sequence Operator

* Sequence operator S;;, S,

e After an event from S, is detected, match the first event
from S, that satisfies the condition




Sequence Operator (Contd.)

e Sequencing is a weak join on timestamps
— Can join an event with one later in future...
— Or with the immediate successor

e Can be useful for queries about causal relationships

Automaton for pr o0 09, (€150, 5)

(—0,.NULL)

&' —O—m
'%( 6,76,.1)




Example Query Q2

e Q2:Find me all news items that are published by some site, followed by
an item from Google referring to it within 1 day.

SELECT S2.summary, S1.item_url FROM
webfeeds
NEXT {contains(S2.item url,S1.item_url)=1 AND DUR<1 DAY}
google news_items
PUBLISH reffed_by google news

I(contains(S2.item url,S1.item_url)=1
AND DUR<1 DAY)

contains(S2.item url,S1.item_url)=1
AND DUR<1 DAY

webfeeds google _news_items

reffed_by google news

fa;
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Example Query Q3

e Q3: Notify me when the word iPod has been
mentioned by at least 10 articles in the last 1 day

SELECT * FROM
FILTER {cnt >= 10}(
(SELECT *, 1 AS cnt FROM FILTER{contains(summary,'iPod’)=1}{webfeeds))
FOLD {, S.cnt<10 AND DUR<1 DAY, S.cnt+1 AS cnt}
(SELECT * FROM FILTER {contains(summary,'iPod')=1}{webfeeds))

)
PUBLISH ipod_popularity

S
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Automata for Q3

I(contains(summary,'iPod’)=1)

contains(summary,'iPod')=1
AND S.cnt<10 AND DUR<1 DAY,
S.cnt+1 AS cnt

contains(summary,'iPod')=1,
1 AS cnt

webfeeds

webfeeds

contains(summary,'iPod')=1
AND S.cnt<10 AND DUR<1 DAY,
S.cnt+1 AS cnt

cnt>=10

tmp

ipod_popularity

:__ Cornell University




Other Techniques

We saw: Selection, sequencing,
iteration

Algebra:

— Aggregation

— Re-subscription
Implementation:

— Automata merging for similar queries
— Automatic indexing

Extensions:

— XML streams

— Distribution




Sample Performance

100000

10000

1000

100

Filter, Cayuga

10 Filter, No State Merging
Filter, No FR-Index - -
Filter, No Instance Index s

1 Filter, NoO MQO

10000 15000 20000 25000 30000 35000 40000
Number of Subscriptions

Throughput (events / second)

More information: http://www.cs.cornell.edu/bigreddata/cayuga/
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Data Collection Agencies Publish Sensitive
Information to Facilitate Research.

Publish information that:

e Discloses as much statistical information as possible.

* Preserves the privacy of the individuals contributing the data.

Patient 1 Patient 2
) )

Patient 3 Patient N

rn s

Publish

Hospltal

properties of
{ry, ry, ..., ry}

J

Johannes Gehrke, Daniel Kifer, Ashwin Machanavajjhala:
Privacy in data publishing. ICDE 2010: 1213

i’ Cornell University




[0]s 4

Estimated User Data Generated
Per Day:

e 8-10 GB public content

e ~4 TB* private content
=" Emails
= [nstant messages
= Tags/Page Views/Annotations
= Browsing and Shopping histories
= Social Networks ...

Cornell University



Improving Web Experience by Exploiting
User Generated Content

Example 1: Social Advertising

* Nikon ‘

e HP
* Nike

Generate ads based on shopping
histories of “friends” in the
social network.

\ * Armani

e Gucci
* Prada

%

Betty

[

S
>
& fi

I}

) Cornell University




Improving Web Experience by Exploiting
User Generated Content

Example 2:

User Targeted Recommend papers to Johannes
Subscriptions based on the papers read by Andrew

(and his collaborators/peers).

Johannies




Valuable Information Can be Learned by Sharing

Personal Data.

Patient 1 Patient 2 Patient 3

Data Publishing

') ") o

Patient N

Hospital

Publish
properties of

s I}

Subscriptions

Social Advertising User Targeted
Hﬂm * Armani
*INikon o * Gucci
ol * Prada
* Nike




What about Privacy?

“... Last week AOL did another stupid thing ...
... but, at least it was in the name of science...”

Alternet, August 2006

Cornell University



AOL Data Release ...

AOL “anonymously” released a list of 21 million web search

gueries.

UserlDs were replaced by random numbers ...

a6bwin2a3
a6bwin2a3
a6bwin2a3
a6bwin2a3
DXef£12969
DX&2£12569
DhY 65234
DhY 65234
DAY 65234
DhY 65234
86bwin2a3
86bwinaa3

Uefa cup

Uefa champions league
Champions league
Champions league final
exchangeability

Proof of deFinitti’s theorem
Zombie games
Warcraft

Beatles anthology
Ubuntu breeze
Grammy nominees
Amy Winehouse rehab

~

S
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A Face Is Exposed for AOL Searcher No. 4417749
[New York Times, August 9, 2006]

No. 4417749 conducted hundreds of searches over a three-
month period on topics ranging from “numb fingers” to “60
single men” to “dog that urinates on everything.”

And search by search, click by click, the identity of AOL user No.
4417749 became easier to discern. There are queries for
“landscapers in Lilburn, Ga,” several people with the last
name Arnold and “homes sold in shadow lake subdivision
gwinnett county georgia.”

It did not take much investigating to follow that data trail to
Thelma Arnold, a 62-year-old widow who lives in Lilburn, Ga.,
frequently researches her friends’ medical ailments and loves
her three dogs. “Those are my searches,” she said, after a
reporter read part of the list to her.




A Face Is Exposed for AOL Searcher No. 4417749
[New York Times, August 9, 2006]

Ms. Arnold says she loves online research,
but the disclosure of her searches has left
her disillusioned. “We all have a right to
privacy,” she said. “Nobody should have
found this all out.”

[In response, she plans to drop her AOL
subscription.]




What is Privacy?

e “The claim of individuals, groups, or institutions to
determine for themselves when, how and to what extent

information about them is communicated to others”
Westin, Privacy and Freedom, 1967

e But we need quantifiable notions of privacy ...




What is Privacy?

... hothing about an individual should be learnable from
the database that cannot be learned without access to
the database ...

T. Dalenius, 1977

Cornell University



The Setup

4 I
Server
H
\_ J
Customer 1 Customer 2 Customer 3
Iy Iy Is
1 1 1

Customer N

Cornell University



Model I: Untrusted Data Collector

Find aggregate
properties of

{ry, ry -, I

Company

~

E
)

// |-

Customer 1

5

Customer 2

Customer 3

p)
&=
?

I3
&=
) §

Customer N

5 m—




Minimal Information Sharing

e |deally, we want an algorithm that discloses only the
query result, and only to the requesting party. (In
practice, we need some extra disclosure.)

e How do we design algorithms that compute queries
while preserving data privacy?

e How do we measure privacy (this extra disclosure)?

Cornell University



Model ll: Trusted Data Collector

{ry, ry -, I

Publish properties of

Government

Customer 1
Iy
1

Customer 2
Iy
1

Customer 3
Is
1

Customer N

'n




Disclosure Limitations

e |deally, we want a solution that discloses as much
statistical information as possible while preserving
privacy of the individuals who contributed data.

e How do we design algorithms that allow the “largest” set
of queries that can be disclosed while preserving data
privacy?

e How do we measure disclosure?

Cornell University



Untrusted Data Collector
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The Model (Contd.)
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Problem

How to randomize the data such that
e We can build a good data mining model (utility)

— Very simple model: Frequent itemsets (commonly occurring
preferences)

e While preserving privacy at the record level (privacy)

— What does privacy mean?




Motivation: A Social Survey

e Measures opinions, attitudes, behavior
e Problem: Questions of a sensitive nature

— Examples: sexuality, incriminating questions, embarrassing
guestions, threatening questions, controversial issues, etc.

— The “non-cooperative” group leads to errors in surveys and
inaccurate data

— Even though privacy is guaranteed, skepticism prevails




The Model

Randomization

operator
= R (x)
E———
X y
Original (private) data Randomized data

Assumptions: Described by a random
e Described by a random variable X. variable Y = R (X).

e Each individual client is independent.




The Randomized Response Model

[Stanley Warner; JASA 1965]

e Respondents are given:
1. A source of randomness (a biased coin)
2. Astatement: | am a member of the XYZ party.

e The procedure:
—  Flip the coin, associate Head with Yes, Tail with No

— Answer YES if coin gives correct answer, answer NO
otherwise




Randomized Response (Contd.)

e The procedure:

— Flip the coin, associate
Head with Yes, Yes No

Tail with No

— Answer YES if coin gives ~ Head (Yes) YES | NO

correct answer,

Answer NO otherwise Tail (No) NO YES




Another View: Two Questions

e Respondents are given:
1. A coin

2. Two logically opposite statements:
e S1:1am a member of the XYZ party.
e S2:1am not a member of the XYZ party.

e The procedure:
— Flip the coin
— Answer either statement S1 or S2.




Randomized Response (Contd.)

e Version1

— Flip the coin, associate
Head with Yes, Tail with
No

— Answer YES if coin gives
correct answer, answer
NO otherwise

Yes No
Head (Yes) VES NO
Tail (No) NO YES

e \Version 2

— Two logically opposite
statements

— Answers either statement

S1 or S2.
Yes No
Head (S1) VES NO
Tail (S2) | YES
__ Cornell Uniy

rersity




Analysis

nt = the true probability of property S in the population.
p = the probability that the coin says YES.

Y.= 1if the i*" respondent says ‘yes’.
0 if the it" respondent reports ‘no’.

e P(Y=1)=mp + (1-m)(1-p) = Pygs ves Mo
o P(YFO) = (1-T[)p + T[(l-p) = Pno Head YES | NO
Tail NO | YES




Analysis (Contd.)

Assume a sample with n records
— nlsay YES, (n-n1) say NO
Likelihood of this sample:

— L= pyes" ppot™™
(Note: L is a function of i, p, n, n1)

— This gives a maximum likelihood estimate for it
"t = (p-1)/(2p-1) + n1/n(2p-1)

Easy to show:

— E(rthat) =

— Var(rthat) = m(1-mt)]/n + [1/[16(p-0.5)%]-0.25]/n

Variance = Sampling + Coin Flips

of

But what type of “privacy guarantees” does randomized

response provide?

Cornell University
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Randomized Response Revisited

Return to our recommendation service. A “randomized
response”-style algorithm:

Given a set of preferences:
e Keep (preference) item with 20% probability,
e Replace with a new random item with 80% probability.

Cornell University



Example: {a, b, c}

10 M transactions of size 10 with 10 K items:

1%
have
{a, b, c}

94%
have one or zero
items of {a, b, c}




Example: {a, b, c}

10 M transactions of size 10 with 10 K items:

1% 94%
have have one or zero
{a, b, c} items of {a, b, c}

After randomization: How many have {a, b, c} ?




Example: {a, b, c}

10 M transactions of size 10 with 10 K items:

1% 94%
have have one or zero
{a, b, c} items of {a, b, c}
at most
e (.23 © (0.22¢ 8¢ (0.8/10,000
(0.2 (9¢0.8/10,000)2
0.008% less than 0.00002%
800 ts. 2 transactions

After randomization: How many have {a, b, c} ?

Cornell University



Example: {a, b, c}

10 M transactions of size 10 with 10 K items:

1% 94%
have have one or zero
{a, b, c} items of {a, b, c}

at most
¢ (0.23 e 0.22¢ 8¢ (0.8/10,000
e (0.2 (9¢0.8/10,000)?

less than 0.00002%
2 transactions
0.2%

After randomization: How many have {a, b, c} ?

Cornell University



Example: {a, b, c}

A-priori, we only know with 1% probability that {a, b, c}
occurs in the original transaction

Given {a, b, c} in the randomized transaction, we have
about 98% certainty that {a, b, c} occurred in the original
transaction.

This is called a privacy breach.

The example randomization preserves privacy “on
average,” but not “in the worst case.”

Cornell University



o.-to-f3 Privacy Breach

Let P (x) be any property of client’s private data;
Let O0<a <P <1 betwo probability thresholds.

X

0% 100%

Example:
P (x) = “transaction x contains {a, b, c}”
a=1% and B =50%




o.-to-f3 Privacy Breach

Let P (x) be any property of client’s private data;
Let O <a <P <1 betwo probability thresholds.

/C (ient A
X = X
Z 4

/SERVER

Prob [P (X)] £ «

0% ||

100%

\Z

=/
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o.-to-f3 Privacy Breach

Let P (x) be any property of client’s private data;
Let O <a <P <1 betwo probability thresholds.

y = R(X)

/C (ient A
X = X
Z 4

/SERVER

Prob [P (X)] £ «

0% |1

100%

Prob[P (X)|Y=Vy] > B

=/
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o.-to-f3 Privacy Breach

Let P (x) be any property of client’s private data;
Let O <a <P <1 betwo probability thresholds.

¢ Client N /SERVER \
y = R(X) > Prob [P (X)] £ «
X = X ) 0% [ | 100%
Prob [P (X)|Y =y] > B

& >/ \Z 4

Disclosure of y causes an a-to- privacy breach w.r.t.
property P (x).




o.-to-f3 Privacy Breach
Checking for a-to-3 privacy breaches:
® There are exponentially many properties P (x) ;

® We have to know the data distribution in advance in
order to check whether

Prob [P (X)] < o and Prob [P(X) | Y=y] =

Is there a simple property of randomization operator R
that limits privacy breaches?
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Amplification Condition
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Amplification Condition
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Amplification Condition
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Amplification: Summary

e An a-to-[3 privacy breach w.r.t. property P(x) occurs
when
— Prob [P istrue] £ o
— Prob [P istrue | Y=y] > .

e Amplification methodology limits privacy breaches by
just looking at transitional probabilities of randomization.

— Does not use data distribution; only check:

max max p[xl — y]
wxe v plx, > y]

IN

/4

Alexandre V. Evfimievski, Johannes Gehrke, Ramakrishnan Srikant:
Limiting privacy breaches in privacy preserving data mining. PODS 2003: 211-222




Privacy: The Floodgates are Open

e Formal notions of privacy: L-Diversity, t-closeness,
differential privacy, zero-knowledge privacy

e Attacks: DeFinetti attack, re-identification attacks in

graphs [Netflix]

e Applications: Privacy in social networks, location privacy
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Summary

e Motivation: Large data

— Many modalities

— Many applications

— Resource constraints are everywhere!
e Techniques:

— Sketches

— Automata-based complex event processing

e Data privacy as an emerging concern




CS and the Knowledge Economy

e Data and its connection |
to the real world imagine
motivate students to ‘program

study computer science

e Programmers are
creative!




== Questions?

johannes@cs.cornell.edu

http://www.cs.cornell.edu/johannes
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