Preuss/etal/2010a: Towards Intelligent Team Composition and Maneuvering in Real-Time Strategy Games

Bibtype Article
Bibkey Preuss/etal/2010a
Author Preuss, Mike and Beume, Nicola and Danielsiek, Holger and Hein, Tobias and Naujoks, Boris and Piatkowski, Nico and Stüer, Raphael and Thom, Andreas and Wessing, Simon
Ls8autor Piatkowski, Nico
Title Towards Intelligent Team Composition and Maneuvering in Real-Time Strategy Games
Journal IEEE Transactions on Computational Intelligence and AI in Games
Volume 2
Number 2
Pages 82-98
Abstract Players of real-time strategy (RTS) games are often annoyed by the inability of the game AI to select and move teams of units in a natural way. Units travel and battle separately, resulting in huge losses and the AI looking unintelligent, as can the choice of units sent to counteract the opponents. Players are affected as well as computer commanded factions because they cannot micromanage all team related issues. We suggest improving AI behavior by combining well-known computational intelligence techniques applied in an original way. Team composition for battling spatially distributed opponent groups is supported by a learning self-organizing map (SOM) that relies on an evolutionary algorithm (EA) to adapt it to the game. Different abilities of unit types are thus employed in a near-optimal way, reminiscent of human ad hoc decisions. Team movement is greatly enhanced by flocking and influence map-based path finding, leading to a more natural behavior by preserving individual motion types. The team decision to either attack or avoid a group of enemy units is easily parametrizable, incorporating team characteristics from fearful to daredevil. We demonstrate that these two approaches work well separately, but also that they go together naturally, thereby leading to an improved and flexible group behavior.
Month April
Year 2010
Url http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5443495

  • Privacy Policy
  • Imprint