Networks

i Distributed Data Mining for Sensor

Hillol Kargupta

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
Baltimore, MD 21250, USA

http://www.cs.umbc.edu/~hillol
hillol@cs.umbc.edu

&
AGNIK, LLC
Columbia, MD 21045
http://www.agnik.com
hillol@agnik.com

i Roadmap

Distributed Data Mining (DDM): An Overview

Sensor networks: An Overview
Architecture
Resource Constraints
Applications

DDM algorithms for Sensor Networks
= Local data stream mining on-board the sensor nodes
= Distributed analysis for collective problem solving

A case study: Mining Vehicle Sensor Networks
Future directions
Pointers to more advanced material and resources




i Data Mining

= Scalable analysis of data by paying
careful attention to issues in
= computing,
= communication,
= storage, and
=« human-computer interaction.

i Distributed Data Mining

= Mining data using distributed resources.

= Pays careful attention to the distributed resources of
data, computing, communication, and human factors
in order to use them in a near optimal fashion.

= Typical application environments:

Distributed computing nodes

Single or multiple sources of data, possibly privacy-sensitive
Distributed/mobile users

Wired or wireless networks




Data Mining in Distributed and Mobile
Environments

Mining Databases from distributed sites

= Earth Science, Astronomy, Counter-terrorism,
Bioinformatics

Monitoring Multiple time-critical data streams
= Monitoring vehicle data streams in real-time
= Onboard science

Mining sensor networks
= Limited bandwidth
= Limited power supply

Preserving privacy

= Security/Safety related
applications

i DDM Applications: Typical Characteristics

= Distributed computing environment

= Heterogeneous communication links
with bandwidth constraints

= Wireless networks
= Distributed data
= Continuous data streams

= Multi-party data, sometimes privacy
sensitive (difficult to centralize)




Network of Desktop Computers
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Network of desktop workstations

Ubiquitous Computing Devices

Laptops, palmtops, PDAs, cell
phones, smart cards, and
wearable computers

Courtsey: http://www.handspring.com and http.://www.casio.com, http://www.scmegastore.com/ 8
http://www.wearcam.org/computing.html/, http://java.sun.com/products/javacard/,




i Data Communication

= Case I: Participating nodes are
connected by high speed networks and
efficient redistribution of data is
possible.

= Case II: Nodes are connected by low
speed networks and data redistribution
is difficult to support.

i Stream Data Sources

u =) i) - -

Ty 7y 7

B Continuous stream of incoming data
W Storing all the historical data is difficult

m Each record is examined a very small number of times, often just once
W Limited memory for storing summary/pattern from the data
m Data observation in burst

W Real-time performance 10




i Privacy Sensitive Multi-Party Data

= Privacy-sensitive data

= Multi-party owned data stored at

different locations

= S0 collecting even part of the raw data

sets from different locations is not
acceptable unless privacy is protected

11

i Roadmap

Distributed Data Mining (DDM): An Overview

Sensor networks: An Overview
Architecture
Resource Constraints
Applications

DDM algorithms for Sensor Networks
Local data stream mining on-board the sensor nodes
Distributed analysis for collective problem solving

A case study: Mining Vehicle Sensor Networks
Future directions
Pointers to more advanced material and resources

12




i Sensor Networks

= Network of sensor and other supporting
nodes (Akyildiz et al., 2002)

= Nodes may carry out local computations and
transmit partially processed or raw data

= Nodes can also receive information from
other nodes and combine that with its local
information

13
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i Sensor Nodes: Some Examples
7 N
UC Berkeley: CTS Dust
e l‘%
\g ULA. Rockwell: WINS JPL: Sensor Webs /
Courtsey of A Programmable Routing Framework for Autonomic Sensor Networks by Yu He, Cauligi S. Raghavendra, Steven Berson, Robert Braden 14

Information Sciences Institute, University of Southern California.




* Communication Architecture

Sensor field Sensor nodes
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Some Design Issues

ault Tolerance: Sensor nodes are prone to failures
because of no battery power, physical damage, or other
interferences

Scalability: Most envisioned applications of sensor
networks are likely to use large number of nodes

Production Costs: Deployment of large number of sensor
nodes demand low cost

Operating Environment: Remote unattended deployment
Network Topology: How the nodes are deployed

Node Identification: Lack of global IP for the nodes
Hardware Constraints: Limited computing capabilities
Transmission Media: Radio connection

Power Consumption: Limited battery life

16




*Typical Components of a Sensor Node

Sensing
Unit

Processing
Unit

17

*Sensor Networks Protocol Stack

18




i Routing techniques

= Flooding: Each node receiving a data
packet repeats it by broadcasting.

= Gossiping: Send the incoming packets
to a randomly selected neighbor.
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i Sensor Networks: Applications

= Surveillance for defense and security
applications

= Habitat Monitoring

= Chemical waste monitoring

= Soil condition monitoring and irrigation
= Pollution monitoring

= Disaster management: Floods, forest
fires, earthquakes, tornadoes

20




Data Analysis Applications: Real-time
*Health Monitoring

= Smart shirts that collect many attributes in
real-time

= Health Monitoring for fire fighters for safety
evaluation

21

Tracking

‘ Data Analysis Applications: Target

Identifying and tracking an object

22




iSensor Networks: Resource Constraints

= Limited bandwidth connections.

= Limited computing power.

= Limited battery power.

= Limited storage.

= Security and power management.
= Privacy issues in some applications

23

$\leed for In-Network Processing of Data

= Central collection and processing of
data may not be scalable:
= Data transmission consumes lot of power
= Bandwidth is limited

= Monitoring applications often require fast
response time

= Data may be privacy-sensitive

24
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i Data Processing in a Sensor Network

= Local computing at a given node:

= Resource constrained data stream mining
and monitoring

= Distributed collaborative sharing and
processing of information:

= Resource constrained distributed data
mining

26




iLocaI Data Stream Mining Algorithms

= Query processing
= Computing statistical aggregates

= Representation construction techniques
= Principal component analysis
= Randomized projection techniques

= Mining algorithms

Regression

Decision trees

Bayesian algorithms

Support vector machine

Clustering

Ensemble-based approaches

- Bagging, Arching, Boosting

- Advanced meta-analysis: Decision tree aggregation using
Fourier analysis

27

i Why Stream Mining?

= Fixed distribution
= Take a decent size sample, analyze the data,
and that’s it.
= Most stream applications for sensor
networks are not like that
= Distribution changes.

= Detecting changes, modifying/replacing
models, identifying outliers are important.

28




Philosophy

iMOSt Stream Mining Algorithms: The

= Incrementally update representations if
needed.

= Incrementally update the models and
summary statistics.

= Look for outliers, if interested.
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iBasic Stream Computing Primitives

= Query processing primitives

= Gibbons, 2001

= Alon, Gibbons, Matias, Szegedy, 1999
= Quantile computation

=« Manku, Rajagopalan, Lindsay, 1998
= Sketch-based computation

= Alon, Gibbons, Matias, Szegedy, 1999.
= Counting problem

= Datar, Gionis, Indyk, Motwani, 2001

30




i An Example: Counting Problem

= Problem: Count the number of 1-s from a
moving window in a binary stream.

..... 100011101010001

= Need to account for the expiring bits. Naive
solution takes o(n) space.

= Can we come up with an approximate
solution in o(log n) space?

31

i An Approximate Solution

= Store the counting information among a
set of buckets of known counts.

= Time-stamp of a bucket = time stamp
of the most recent entry in the bucket.

= Track the buckets.

= When the time-stamp of a bucket
expires, through away the bucket.

= Error in oldest bucket only.

32




i Continued

= Exponential histograms: Buckets of
exponentially increasing size.

= Bucket sizes: 1, 2, 22,23, ....2",
= Need only O(log N) buckets.

= A bucket size can take at most log N
bits.
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i Correlation Matrix Computation

= Given data matrix X
= Naive computation: Compute X™X

= Compute in the frequency domain (take
Fourier transformation)

= StatStream (Zhu and Shasha, 2002)
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Resource Constrained Change
iDetection in the Correlation Matrix

Kargupta, Puttagunta, Klein, 2004

s Data stream

Efficiently detect changes in the correlation
matrix

Identify the region of the matrix that contain
significantly changed coefficients
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Divide-and-Conquer Search for Significant
iCorreIation Coefficients

A

= Impose a tree-structure:
= Leaf node: a unique correlation coefficient

= Root of a sub-tree: set of all coefficients corresponding to
the leaves in that sub-tree

36




Does a Sub-tree Contain Any
i Significant Coefficient?

Given a subset of attributes: {i,,i,,.....0, };

Is there any significantly correlated pair of attributes?

The j- throw of the data matrix X: x; =[x, X, ,....x; ]

Entries from the j- th row x; corresponding to attributes in G

[)c].’l.1 Xji ek ]

37

:LContinued

Consider a random vector o, =[0, ,,0, ,,.....0; ]

o, , € {—1,1} with uniform probability

Sj,p = Z leo-lp

[=1),iy,.... 0
_ T
S{il,iz,....ik},p - [Sl,pSZ,p te Sm,p]
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i The Test at Every Node

1 r 2 2
;Zvar(s{ilaizwjk}ﬁ) = Z Corr(xll’xfh)
p=l

lq

= Compute the left hand side at every
node and proceed only if it is greater
than a threshold.
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iDetecting No Changes

80000

60000 /
50000
30000 /
—=— New Algo # Adds

20000
/ New Algo # Mults
0 T I I I -r 1

0 100 200 300 400 500
Number of Features

—e— Naive # Adds/# mults | |

Number of Operations
EN
o
o
o
o

= Number of multiplications and additions performed by the
naive and the tree-based algorithms for correctly detecting no
significant changes in the correlation matrix.
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Detecting No Significant Changes

r Number of Number of Number of
Additions Multiplications Nodes
[ Y [ o [
2 875.6 564.7 10.4 7.7 5.2 3.8
4 722.4 468.2 34 2.6 1.8 1.3
6 1692.6 13769 | 6 6.2 3 3.1
8 1025 0 2 0 1
10 1281 0 2 0 1

= Number of multiplications and additions (with a scaIinP factor of
number-of-data-rows) performed by the tree-based algorithm.
Threshold value is 0.6. Should be scaled by a factor equal to the
number of data rows used for computing the correlation matrix

= Naive approach requires 2016 x humber-of-data-rows additions and
multiplications
41

Incremental Representation
Construction Techniques

= Incremental PCA

= Incremental randomized projection

42




Incremental PCA for Signal
Processing Applications

PCA is often needed for signal processing

Example: Filtering, direction of audio signal
arrival

Covariance matrix is additive.

Incrementally update the covariance matrix
and perform eigen-analysis.

43

Covariance Computation from a
Data Stream

= Data stream environment where data blocks
XXy, oo X

= X.iS an mxxn data matrix observed at time 't’
= Covariance is additive.
C

t—1
ij
_ =l
= Cov, , + — )

Zt:mj 2m

J=1 J=1

m,

C, is the covariance matrix constructed from the data set received at time t a4




Useful Bounds from Matrix
i Perturbation Theory

= (Ay,Vv1) (A, V,): Most significant eigenvalue and
the corresponding eigenvector of Cov,and
Cov,,; .
A=Cov, —Cov, |
411A1l,
S—~21Al,

|4 — A IKA211ALL

v, —v, Il,<

Frobenius normllAll.= (D) A))"
P
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A Sampler of Other Stream
Mining Algorithms

= Some more techniques

Decision trees from data streams
SVM-based classifier learning from streams
Bayesian networks from streams
Clustering data streams

= Ensembles

= Originally proposed for high-end applications
not resource constrained sensor nodes

46




i Decision Tree from Streams

» A decision tree builds a classification tree from a labeled data-set.
* Nodes correspond to features and links correspond to feature values.

» Leaf nodes correspond to class labels

47

i Hoeffding Tree

(Domingos and Hulten, 2000)
Based on Hoeffding or additive Chernoff bound

With probability 1-6 the true mean of random
variable x is at least E[x]-e where E[x] is the mean of
n samples and

. B2 In(1/90)
2n

B is the range of x

48




i Tree Construction from Stream

= Initialize the tree with the root node.

= For each record in the stream:

= Traverse the tree and find the appropriate leaf
node, L.

= Compute the information gain, IG(X)), for every
attribute X;, based on the subset of the data that
includes the observed new record.

= If IG(X;) - IG(X;) > ¢ then split L using attribute X

49

Learning

i On-line Support Vector Machine (SVM)

= Syed, Liu and Sung, 1999

= Learn support vectors from one data block at a time

= Add them to the new data set and learn support
vectors from that

= Approximate approach

= Cauwenberghs and Poggio, 2001

= An " "exact on-line” method to construct SVM
considering one point at a time

= Retain Kuhn-Tucker conditions on all previously seen
data and " " adiabatically” add new data points to the
solution

50




i Bayesian Networks

= (Kinouchi and Caticha, 1992; Winther and Solla,
1998; Andrieu, Freitas and Doucet, 2000)

= On-line Bayesian learning

= Updates posterior probability as new
observations come in

51

i Incremental Clustering

= Many works on incremental clustering

= CF-tree-based approach BIRCH
(Zhang,Ramakrishnan, Livny, 1997)

= Fuzzy incremental clustering (Joshi, and
Krishnapuram, 1998)

= DSCAN-based approach for a metric space (Ester,
1998)

= Stream clustering algorithms: A Critical
Perspective (Keogh, Lim, 2003)

52




i K-Medians from Streams

= Find k centers in a stream S so as to
minimize the sum of distances from data
points in S to their closest cluster centers.

= Example (k=1)

)

cost = Zjd(p,j) is minimum 53

:_L Continued

= For each successive set of records G,
find O(k) centers in G, .

= Assign each point in G; to its closest
center.

= Let G’ be the centers for G;...G,...G,, .

= Each center is weighted by the number
of points assigned to it.

= Cluster G’ to find k centers.

54




i Ensemble-Based Approach: Boosting

= Freund and Schapire, 1995
= Highly accurate ensemble of weak classifiers
= Learn a classifier

= Change the " "focus” (distribution) of the learner on
the data subset that is hard to predict

= Generate a new model for this subset and continue
this process until a weighted aggregation of the
classifiers provide high accuracy

55

Bagging, Arching, Stacking, and
i Littlestone’s Algorithm

Bagging (Breiman, 1996)
= Generate multiple models from subsets of data chosen
uniformly with replacement
= Average the outputs of the models

Arching (Breiman, 1996)

Stacking (Wolpert, 1992)

The Weighted Majority Algorithm (Littlestone and
Warmuth, 1990)

56




i Boosting-Based Stream Mining

= Fan, Stolfo, and Zhang, 1998

= Learn multiple models from different
incoming blocks using the Boosting
framework

= Create an ensemble based on the
boosting weights

57

i Ensembles and Data Mining

= Better Accuracy with ensemble of
models

= But, ensembles are hard to decipher

= On-line learning sees data incrementally
and that may create multiple models
that can be functionally represented by
a single model

58




Using Fourier Analysis

i Aggregation of Multiple Decision Trees

Represent the symbols by integer numbers.
X, (large =0, small = 1)

X, (red =0, blue =1)

X, (high=0,low =1)

Class (+=1,-=0)

Decision tree can be viewed as a function
59

i Function Representation

m Any function can be written in the decomposed and

distributed form using a set of basis functions f(x) = > ,.; W,
Wi (X)
m Where,
— Jis an indexed set
— w, is the k-th coefficient, w, = X, f(X) v (x)
— Wy, (x) is the k-th basis function.

m Fourier basis is particularly useful for decision trees:
For example, in binary representation:

Y (X) = (-1)k-x

60




i)iscrete Fourier Spectrum of a Decision Tree

*Very sparse representation; polynomial number of
non-zero coefficients. If k is the depth then all
coefficients involving more than k features are zero.

*Higher order coefficients are exponentially smaller
compared to the low order coefficients (Kushlewitz
and Mansour, 1990).

*Can be approximated by the coefficients with
significant magnitude.

61

iAggregation of Multiple Decision Trees

TR

F10 =Zw) ¥ (X)  F2(x) = Zw, ; (X) F3(x) = Zw; y; (x)

T

F2(x) = al*F1(x) + a2*F2(x) + a3*F3(x)

AN

m Weighted average of decision trees through Fourier
analysis

62




Orthogonal Decision Trees for
i Resource Constrained Applications

= Kargupta, Dutta, 2004

= Represent the trees in an ensemble using
Fourier bases

s Perform PCA of the ensemble

= Eigenvectors represent a Fourier spectra of a
decision tree

= Construct a tree from each eigenvector

= These trees are functionally orthogonal to
each other and constitute a redundancy-free
ensemble.

63

:-‘ An Ensemble of Decision Trees

64




the Ensemble

iAn Orthogonal Tree Generated from

Attribute 15

Attribute 10

Attribute 19

65
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Different Types of DDM Environments

= Homogeneous Sites: Sites observing a common
set of features (Stolfo, et al., 1997, Yike, et
al.1998)

= Heterogeneous Sites: Sites observing different
feature sets

67

Homogeneous Data Sites

Account Number Amount Location History Earning
11992346 99.84 Seattle  Good High
12999333 29.33 Seattle  Good High
45633341 34.89 Portland  Okay Low
55567999 980 Spokane Good Low

Account Number Amount Location History  Earning
87992364 20 Chicago  Good Low
67845921 447 Urbana Good Low
85621341 19.78  Chicago Okay High
95345998 800 Peoria  bad High

Different sites observe same features for different events

68




Heterogeneous Sites

State Movie Rating Revenue
WA Hyper Space 6M

ID  Once Upon a Time M

BC The King and the Liar M

CA The Shepard

City State Size  Awg. earning Teen pop.
Lewiston ID  Small Low 5K
Spokane WA Medium Medium 30K
Seaitle WA Large High 250K
Portland OR Large High 200K
Vancouver BC  Medium Medium 199K

Different sites observing different feature sets
69

Quick Detection of Patterns Using
DDM Algorithms

= Distributed Query Processing
= Distributed data pre-processing
= DDM Algorithms

= Distributed association rule learning

= Collective decision tree learning

= Collective PCA and PCA-based clustering

» Distributed hierarchical clustering

= Other distributed clustering algorithms

= Collective Bayesian network learning

= Collective multi-variate regression

= Distributed support vector machine learning
= Distributed construction ensemble models

« Ensemble-based aggregation
70




l racking

iComparing Observations for Target

= Given two sequences observed at two
different sensor nodes

= Compute the similarity between these
sequences

= Inner product computation

= Related to Euclidean distance, Hamming
distance, Correlation coefficient and many
other computing problems

71

Distributed Randomized Inner Product
Computation

+

Node 1 Node2 = Node 1 computes Z,,

= Zy=Al.);+..+An.J,

Bl
Al B2

*‘f - = J e {+1,-1} with
An ' uniform probability

= Nodee 2 calculates Z,,
= Zy=B1.J;+..+Bn.J,

= Compute z,,.z,, for a
few times and take the
average

72




ﬂ(elative Error vs. Communication Cost

14

041

# iterations

73

Network

iRandom Sampling from a Sensor

= How to efficiently collect a random
sample of data from a sensor network?

= Naive approach:

= Contact every node and collect a random
sample

= Complexity of the order of the network-size
= Needs more efficient techniques
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i More Efficient Sampling Algorithms

= Spatial sampling based on the
distribution of the sensor nodes

= Several algorithms exist:
= Bash, Byers, and Considine, 2004
=« Manku, Rajagopalan, and Lindsay, 1998
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Distributed Majority Vote
iComputation in a Peer-to-Peer Mode

= Distributed Majority Voting Algorithm
(Gifford, 1979; Thomas, 1979; Wolff, Schuster, 2003)

= Node u send the following message to node v: (countw,
sumy)

= count: Number of bits the message reports
= sum<: Number of those bits that are equal to 1.

= For every neighbor v the node u records the last message it
received from and sent to v.

= SU: The local bit
= EY: The set of edges colliding with u

76




pdating and Propagating Information

= Node u calculates the following:

A =s"+ Z sum"™ —/l(c” + Zcount”‘}

(v,u)eE" (v,u)eE"
A" = sum" + sum™ — ﬂ,(cmmt”v + count”‘)

= Update  when:

= SU changes, a message is received, EY changes

= Update  when:

= A message is sent to or received from v

77

i Continued

= Input the Edge set, local bit su and the
majority ratio.

= At any given time the algorithm outputs
1ifA"20

= Each node performs the protocol
independently.
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i Continued

On changes in sY, EY or receiving a message:

Foreach (v,u)e E*

If count”™ + count™ =0and A" >0 or count™ + count™ >0 and

either A <Qand A" > A" or A” >20and A" < A"

Set sum"™ = s" + Z sum"™ and count” =c" + Zcountw

(W,u)i(V,M)GEM (W,M)?&(V,M)GEM

Send {sum™, count™ } over vu to v
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i P2P Association Rule Learning

= (Wolff, Schuster, 2003)

= Based on the P2P majority voting
algorithm

80




i Distributed Association Rule Learning

Cheung, et al., 1996.

Compute locally large itemsets.

= Communicate information regarding the
locally large itemsets.

Generate the globally large itemsets.

81

Distributed k-Means Clustering from
iHomogeneous Data Nodes

@)
- o o
o Oce O o

= Local gateways are used as distributed
clustering nodes

82




:_L A Hypothetical Algorithm

= Compute centroids at each node

= Share the centroids with every other
node in the network

= Update the centroids
= Reassign the cluster members

= Repeat the above steps until
convergence

83

:_L Observations

= Exact algorithm that offers results same as
the centralized version

= Assumes that the nodes are synchronous

= May work in a hierarchical network
topology where local gateways work in
tandem with the global base station

84




Asynchronous Peer-to-Peer Mode

i Distributed Clustering for

(@)
e
V' o ©
@) @)

@)

° @)

= More decentralized peer-to-peer
communication

85

i Algorithm Sketch

= Compute the local centroids

= Receive centroids from a subset of nodes:
= Only from neighbors in a deterministic manner
= Only from neighbors in a randomized manner

= From a randomly chosen subset of nodes in the network

that are not necessarily the neighbors
= Update the centroids

Reassign cluster members in a probabilistic
manner with some quantified confidence

Repeat the process

86




Observations

= Perfectly synchronous scenario gives
exact result

= Asynchronous local computation may
introduce error:
= Cluster assignment error
= Sampling error

= Need for probabilistic assignment of

cluster members in a decision theoretic
framework

= Hoeffding, Chernoff bounds, Talil
distribution statistics
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Heterogeneous Data Sites

i Collective Data Analysis from

= Unsupervised techniques:

= Collective Principal Component Analysis (Kargupta, Huang,
Sivakumar, Park, and Wang, 2000)

» Distributed Clustering (Johnson and Kargupta, 1999, Johnson and

Kargupta, 2000)

= Collective Bayesian Learning (Chen, Sivakumar, Kargupta, 2003)

= Supervised techniques:

= Collective Learning of decision trees (Kargupta, Park, Hershberger,

and Johnson, 1999).

» Statistical Modeling Techniques: Collective Multivariate regression

using wavelets (Hershberger and Kargupta,2000)
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i Principal Component Analysis (PCA)

= A statistical technique to construct a = " concise”
description of data using the dominant eigen
vectors of the covariance matrix.

= Very useful for high dimensional data analysis,
e.g. text mining.

= Well understood techniques for PCA: Work only
when the data are centrally stored.

89

iThe Collective PCA (CPCA)

= Perform local PCA at each site; select
dominant eigen vectors, and project the data
on them.

= Send a sample of the projected data to the
central site and the eigen vectors.

= Combine the projected data from all the sites.

= Perform PCA on this global data set, identify
the dominant eigen vectors, and transform
them back to the original space.
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$ Bounding the Error

= Error introduced by neglecting the
insignificant eigen vectors

= Error Introduced by the sampling of
projected data

= Perturbation analysis

91

* PCA-Based Clustering

1 PCA

Projﬁ] Data

@ Clustering

©
® . <= | Clusters
O 92




Clustering

s Assumes existence of a distance metric.

= Requires computation of distances in between
data points

= Finding the global distance between a pair of
points requires computing the projection of
portions of a data row along the global
principal directions.

= How to do that in a distributed environment? o

Justification

i A Solution with Theoretical

The data set distributed among s sites X = [X;, X,, ....... X.]-

The eigen vectors, V = [V, V,, ....... V.] 'where V,isan n,x p
matrix; n,is the number of features at the i-th site and p is the
number of selected eigen vectors.

LetU =[U, U,, ....... U] "be an n, x (n-p) matrix
corresponding to the neglected eigen vectors.
Consider two data rows:

X = [Xqy, Xy ceeenes XJ]and'y = [Yq, Yo ceeeens AR
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i Partial Projection is Good Enough

= Projection of z using all eigen vectors,
z[VU]=[2z w;] +[2, W,]

where z,= 2z, V;, and w, = w, U,

= The Euclidean distance between x and y:
Ix-yll2=11z[1>=12 12+ [| Wy |12 + |12, [12+ [] W, |2

= [lz[I*-Cll 2, 15+ 112z 112) = [ wy |2+ || W, |2
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iObservation

= The global distance between any two
data points can be accurately
approximated by adding the local
distances.
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iollective PCA-Based Distributed Clustering

Let C be a given centralized clustering algorithm.

= Perform PCA followed by application of C at every
site.

= Select a set of " " representative” points from each
local cluster and send them to the central site.

= Perform global PCA and broadcast the eigen vectors.

= Apply C at each site on the projection of the data and
send the cluster-descriptions to the central site.

= Combine the clusters in a linearly decomposable
fashion.
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i Random Projection-Based Approach

= Random projection for distributed inner
product computation

= Can be used for computing the
covariance matrix needed for
performing PCA
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i Distributed PCA

Relative error: (PCA) Eigenvalues

rel err (%)
3
s

0
0.10% 0.25% 0.50% 1% 2% 5% 7% 10%

——1isteig = 2ndeig

= Average relative error (%) in estimating the top-2
eigenvalues. The mean is computed over 5
independent runs.
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i Continued..

Angular difference: (PCA) Eigen

80
= 60\
© 40 A
o o\
S 20— -
Y P e,

0
0.100.250.50 1% 2% 5% 7% 10%
n (o/o)

o 1steig —®=  2ndeig

= Mean difference in angle (in degrees) between the actual and the
estimated top-2 eigenvectors. The value of n (in percentage) reflects
the communication cost for the corresponding accuracy. The mean is
computed over 5 runs.
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i Observations

= Useful random projection-based
technique for distributed computation

s Often more efficient than Collective PCA
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iDistributed Hierarchical Clustering

= Distributed SLINK and other hierarchical
clustering algorithms

= Heterogeneous Case: (Johnson, Kargupta,
1999)

= Homogeneous Case: (Samatova, et al.,
2001)
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iAggIomerative Hierarchical Clustering

= Transforms a set of points into a dendrogram

= Uses some metric of dissimilarity or distance (e.q.,
Euclidean distance)

» Points form the leaves of the tree

= Internal nodes represent partitions of the data
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iSingIe Link Clustering

= Initialize each individual point as a single
cluster.

s Determine the shortest distance between two
clusters, and merge these clusters.

= Continue to merge the least dissimilar clusters
until all points are contained in a single cluster.

= SLINK algorithm (Sibson, 1973) O(r#)time and
A(n) space. on




iCommunication Issues

= Cost to transmit the entire dataset is O{mn) where
nis the number of rows and m the number of
features.

= However, if we transmit locally generated models
to a facilitator site, the transmission costs are
A n|S)), where | 9] is the number of sites.

= Need to assimilate the locally generated
dendrograms.
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Bounding The Distances In The
i Dendrogram

= Not enough information in the dendrograms to
determine the exact distance between two
points.

= Lower and an upper bound on the distance
between any two given points can be
computed from the dendograms.

= Bounds for estimating the global distance and
hence aggregation of the local dendograms.
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i)ther Distributed Clustering Algorithms

= Distributed clustering algorithms
= Parthasarathy and Ogihara, 2000
= Dhilon and Modha, 1999
= McClean et al., 2000
= Sayal and Scheuermann, 2000
« Forman and Bin Zhang, 2000
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iCoIIective Bayesian Network Learning

s Compute local BN using local dataset

m At each site, identify observations that are
likely to be evidence of cross terms. Transmit
part of these samples to central site

s Compute a non-local BN using these samples

m  Combine local BN and non-local BN to get the
collective BN
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i Data Filtering

= After local learning, we have a local BN
at each site.

= Compute the likelihood of samples in
local sites (under the local BN model)

= Samples with relatively low likelihood
do not fit well with local model --- likely
to be evidence of cross links.
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i Data Filtering

Low likelihood samples in site A
Low likelihood samples in site B

y

Intersection

Dataset transmitted to central site
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i Example: ASIA model

" Structure: Network topology
 Parameter: Conditional
Probabilities
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i Data Filtering: Intuition

= Consider ASIA model

P(V)=P(A,8)=P(A|IB)P(B)=P(AInb(A))P(B)
P(A|nb( 1)) = P(A)P(T | A)P(X | EYP(E|T,L)P(D| E, B)

Similarly,
P(V)=P(A,8)=P(B| A)P(A) = P(B|nb(B))P(A)
P(B|nb(B))=P(S)P(BIS)P(L|S)P(E|T,L)P(D|E,B)
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i Data Filtering: Intuition

= If both P(_7) and P(8) are small for a
given row, then both P(4|nb( 7)) and
P(B|nb(B)) are expected to be large.

= Terms common to both P(1|nb( 7)) and
P(B|nb(B)) are precisely the cross
terms.
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Distributed BN learning for
data streams

= Learn an initial collective BN using first
dataset

= At step K
= Update local BN
= Update threshold (for low-likelihood) in local site
= Transmit selected data to central site
= Update parameters of cross term

= Combine local and cross terms to get a updated
collective BN

s K=K+1, repeat step 2 for new data
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ecision Tree Induction From Vertically
Partitioned Distributed Data

Site1

\‘
o @
o e
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Decision Trees

i Heterogeneous DDM and

= Distributed Randomized Inner Product (DRIP)
computation (Giannella, Liu, Olsen, Kargupta,
2004)

= Computing information gain using DRIP.

= Information gain computation can be posed as
an inner product computation problem.
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[Information Gain Computation and DRIP
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Experimental Results

Performance of Distributed vs. Centralized for DNA and COIL Data Sets
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i Distributed Multivariate Regression

Take wavelet transformation of the data

Communicate a small fraction of the significant data
Perform regression on the wavelet coefficients
Original regression coefficients remain invariant under

wavelet transformation.
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Order Statistics and Model
i Aggregation

= Order statistics offers a robust way to
combine multiple models (Tummer and
Ghosh, 2000) in an ordinal manner.

= It works better when the models have high
variances.

= Particularly suitable for heterogeneous model
aggregation.
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i Active Mining

= Databases change frequently. Fast awareness
about the changes is important in a DDM
environment.

= Active mining (Parthasarahy et al., 2000)
proposes several techniques to generate
summary statistics at local sites.

= Summary statistics can be exchanged among
the sites in order to gain understanding
about incoming data.
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Privacy Sensitive Distributed Data
iMining

= Privacy-sensitive data.

= Multi-party ownership of data stored at
different locations.

= S0 collecting even part of the raw data
sets from different locations is not
acceptable.
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i Data Transformation-Based Approach

y = 4 y = 4
Local Data Site Local Data Site

New Representation of

New Representation of the
the raw data

raw data
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i Perturbation-based Transformations

= Random additive noise (Aggrwal and
Srikant, 2000; Kargupta et al, 2003)

= Random multiplicative noise (Liu,
Kargupta, 2004)

= Random swapping (Estivill-Castro,
Brankovic, 1999).

124




Approach

i Secured Multi-Party Computation (SMC)

= Algorithms that allow different participating
nodes to compute different aggregates that
can be combined to mine the data without
sharing the raw data.

= Examples:
= Inner product computation
= Association rule learning
= Clustering
= Decision tree learning
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iIIIustration: Inner Product Computation

= The privacy-management server generates two random
vectors R, and R,of size n, and letr, +, =< R, R, >, where
(or r,) is a randomly generated number. Then the server
sends (R,.7,)to A, and (R,.r,) to B.

= Site A sends %, =x, +R,to site B, and B sends %, =x,+R,
to site A.

= Site B generates a random number v,, computes
(2,x,)+(r, —v,), and then sends the result to A.

= Site A computes  ((%.x,)+(rb—v,))~ (R, &)+, =(x,%,)—v, =v,

= Sites A and B send Vv, and V, respectively to the node that
needs the inner product and the inner product is v,+V,
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i Roadmap

Distributed Data Mining (DDM): An Overview

Sensor networks: An Overview
« Architecture
=«  Resource Constraints
= Applications

DDM algorithms for Sensor Networks
=« Local data stream mining on-board the sensor nodes
= Distributed analysis for collective problem solving

A case study: Mining Vehicle Sensor Networks
Future directions
Pointers to more advanced material and resources
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MineFleet: A Vehicle Data Stream
Management and Mining Software System

= On-board Module:

= Continuous data streams from
the vehicle data bus

= Onboard data stream mining

= Communicates with a remote
control station

= Privacy management

= Central control station:

= Data Management

= Data mining

= Communicates with the on-board
modules over wireless networks

® Privacy management
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Vehicle Data Stream Management
and Mining

= Supports:
= Real-time vehicle health monitoring

= Real-time privacy-sensitive vehicle/driver behavior
characterization and monitoring

= Fleet monitoring

= Modalities of data analysis
= Control station-based
= On-board

= Important Characteristics
= Resource constrained computation
= Distributed computation

= Privacy sensitive 129

Architecture of MineFleet
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i Onboard Vehicle Data Streams

Engine Data Electrical System Data Transmission System Data Fuel System Data

T~ | |

Vehicle data bus (based on standards like J1708, J1850, CAN, and others)
]
v

Embedded on-board A

system that continuously Vehicle location

~ | mines, updates local and GIS data
model, finds anomalous
behavior, responds to

queries, and triggers
actions.
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& Continuous Data Streams

= Depends on the type of vehicle
= Hundreds of attributes

= Approximately one tuple per every few
(e.g. 4) seconds.

= Continuous-valued attributes
= Fault-codes are Boolean
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| On-Board Hardware Modules (Academic Version)

= MineFleet - Main Menu

Vehicle Driver

Onboard Mining Control Center Mining {Local Mining) Fleet Analtice Report Tools Help

=

HEAETENEY
Fleet Summary ||

Select a vehicle from the list below

#d |5

Make Model ‘Year License Current Driver IP Type Data Recieved -
offline [Honda Accord 2001 |EWR309 Unknown - Car Apr 25 03:45:03 EST -
offline |Missan 3502 2003 |Jmuo18 Unknown - Car Feb 03 13:24:36 EST
online |Acura Integra 1896 |TT2BMY Unknowen 127.0.0.1 Car Feb 03 13:24:36 EST

[
r-Additional Information
Document Mo.: M Engine No.: 123454321 | onBoard Control |
Owner: John Fogery Date Acquired: 01132004
Fuel Type: Regular Last Maintenance Date: |01/05/2004 | Maintenance History |
VIN: 4DC2388TS001877 Next Maintenance Date: |02/10/2004 | Driver History |
~\Warning Messages
Message Yehicle Timestamp
‘@ | The current data falls outside of the accepted operating regimes TT2BMY Thu Feb 1914:02:51 EST 2004 |«
‘@ | The current data falls outside of the accepted operating regimes TTIBMY Thu Feb 19 14:02:62 EST 2004
‘@ |The current data falls outside of the accepted operating regimes TT2EMY Thu Feb 19 14:02:53 EST 2004
‘% | The current data falls outside of the accepted operating regimes TT2EMY Thu Feb 19 14:02:54 EST 2004
@ [The current data falls outside ofthe accepted operating regimes TT2EMY Thu Feb 19 14:02:55 EST 2004
‘@ | The current data falls outside of the accepted operating regimes TT2EMY Thu Feb 19 14:02:55 EST 2004 |v




! Trajectory Tracing and Monitoring
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Identifying Typical Operating Regimes

= Drive around and generate typical operating
regimes using a PCA-based approach

= Project normal operating data in low
dimensional space using principal component
analysis

= Identify clusters in the projected data as safe
regimes

= Represent these safe regimes using polygons
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Distributed Vehicle Stream
B Mining Demo
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B P2P Clustering Demo
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i Roadmap

Distributed Data Mining (DDM): An Overview

Sensor networks: An Overview
= Architecture
=«  Resource Constraints
= Applications

DDM algorithms for Sensor Networks
= Local data stream mining on-board the sensor nodes
= Distributed analysis for collective problem solving

A case study: Mining Vehicle Sensor Networks
Future directions
Pointers to more advanced material and resources
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i Future Research Directions

= Algorithmic Issues:

= Peer-to-Peer DDM algorithms for homogeneous and
heterogeneous data

= Privacy-preserving DDM for analyzing distributed
privacy-sensitive data

= DDM and data stream mining for embedded and
ubiquitous environments.

= Designing resource constrained algorithms that are
fundamentally designed to handle (a) limited
bandwidth, (b) limited computing and storage
capabilities, (c) limited battery power, and (d) specific
network-communication protocols

141

i Future Research Directions

= Systems Issues:

= Developing light-weight DDM application
development environments for ubiquitous
applications

« Integration with multi-agent systems
= Making DDM environments Grid-enabled

= Integration of DDM systems with
distributed data stream management
modules
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i Future Research Directions

= Human-Computer Interaction Issues:

= Collaborative interaction with sensor-
networks and DDM applications

= Alternate human-computer interfaces for
distributed DDM programs that allow non-
intrusive pervasive interactions

= Privacy and social impact from integration
of the DDM technology with daily life.
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:_L Roadmap

Distributed Data Mining (DDM): An Overview

Sensor networks: An Overview
Architecture
Resource Constraints
Applications

DDM algorithms for Sensor Networks
= Local data stream mining on-board the sensor nodes
= Distributed analysis for collective problem solving

A case study: Mining Vehicle Sensor Networks
Future directions
Pointers to more advanced material and resources
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i Resources

Bibliography:

= DDM Bibliography: http://www.cs.umbc.edu/~hillol/DDMBIB/

Books
= H. Kargupta, A. Joshi, K. Sivakumar, Y. Yesha. Data Mining: Next Generation Challenges and Future
Directions.

= H. Kargupta and P. Chan (eds). Advances in Distributed and Parallel Knowledge Discovery, MIT Press, 2000.

= M. J. Zaki and C.-T. Ho (eds). Large-Scale Parallel Data Mining. LNAI State-of-the-Art Survey, Volume 1759,
Springer-Verlag, 2000.

Workshops

Ubiquitous Data Mining Workshop:

= PKDD Workshop on Ubiquitous Data Mining for Mobile and Distributed Environments, 2001.
http://www.cs.umbc.edu/~hillol/pkdd2001/udm.html

Distributed Data Mining Workshops:

= SIAM Data Mining Conference Workshop on High Performance, Pervasive, and Data Stream Mining (2001,
2002, 2003, 2004)

= ACM SIGKDD Workshop on Distributed Data Mining, 2000.
http://www.eecs.wsu.edu/~hillol/DKD/dpkd2000.html

= ACM SIGKDD Workshop on Distributed Data Mining, 1998.
http://www.eecs.wsu.edu/~hillol/DDMWS/papers.html 145

Resources (contd.)

Journal Special Issues

= Special Issue on Distributed and Mobile Data Mining, IEEE Transactions on Systems, Man, and Cybernetics,
Part B, November, 2004.

= Special Issue on Knowledge Discovery from Distributed Information Sources Journal of Information Sciences

= Special section on Distributed and Parallel Knowledge Discovery, (Knowledge and Information Systems),
2000.

Survey Atrticles

= H. Kargupta and K. Sivakumar. Existential Pleasures of Distributed Data Mining. In Data Mining: Next
Generation Challenges and Future Directions. MIT/AAAI Press, 2004.

= B. Park and H. Kargupta. Distributed Data Mining: Algorithms, Systems, and Applications. To be published in
the Data Mining Handbook. Editor: Nong Ye, 2002.

= Distributed and Parallel Knowledge Discovery. Hillol Kargupta and Philip Chan. Advances in Distributed and
Parallel Knowledge Discovery, xv--xxvi, MIT/AAAI Press, 2000.

= Distributed Data Mining: Scaling Up and Beyond. Provost, F. Advances in Distributed and Parallel Knowledge
Discovery, 3--27, AAAI/MIT Press, 2000.
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i References for DDM Papers

= Please see the DDM bibliography at:
http://www.cs.umbc.edu/~hillol/DDMBIB/
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