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Abstract

Radial basis functions have now become a popular model for

classification and prediction tasks. Most algorithms for their design,

however, are basically iterative and lead to irreproducible results.

In this tutorial, we present an innovative new approach (Shin-Goel

algorithm) for the design and evaluation of the RBF model. It is based

on purely algebraic concepts and yields reproducible designs.

Use of this algorithm is demonstrated on some benchmark data sets,

and data mining applications in software engineering and cancer class

prediction are described.
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Classification and Prediction

• Classification and prediction encompass a wide range of tasks
of great practical significance in science and engineering,
ranging from speech recognition to classifying sky objects.
These are collectively called pattern recognition tasks.
Humans are good at some of these, such as speech recognition,
while machines are good at others, such as bar code reading.

• The discipline of building these machines is the domain of
pattern recognition.

• Traditionally, statistical methods have been used for such tasks
but recently neural nets are increasing employed since they can
handle very large problems, and are less restrictive than
statistical methods. Radial basis function is one such type of
neural network.

Radial Basis Function

• RBF model is currently very popular for pattern recognition

problems.

• RBF has nonlinear and linear components which can be treated

separately. Also, RBF possesses significant mathematical

properties of universal and best approximation. These features

make RBF models attractive for many applications.

• Range of fields in which RBF model has been employed is

very impressive and includes geophysics, signal processing,

meteorology, orthopedics, computational fluid dynamics, and

cancer classification.



Problem Definition

• The pattern recognition task is to construct a model that
captures an unknown input-output mapping on the basis of
limited evidence about its nature. The evidence is called the
training sample. We wish to construct the “best” model that is
as close as possible to the true but unknown mapping function.
This process is called training or modeling.

• The training process seeks model parameters that provide a
good fit to the training data and also provide good predictions
on future data.

Problem Definition (cont.)

• Formally, we are given data set

,

in which both inputs and their corresponding outputs are

made available and the outputs (yi) are continuous or discrete

values.

• Problem is to find a mapping function from the d-

dimensional input space to the 1-dimensional output space

based on the data.
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Modeling Issues

• The objective of training or modeling is to determine model
parameters so as to minimize the squared estimation error that
can be decomposed into bias squared and variance. However,
both cannot be simultaneously minimized. Therefore, we seek
parameter values that give the best compromise between small
bias and small variance.

• In practice, the bias squared and the variance cannot be
computed because the computation requires knowledge of the
true but unknown function. However, their trend can be
analyzed from the shapes of the training and validation error
curves.

Modeling Issues (cont.)

• Idealized relationship of these errors is shown below. Here we
see the conceptual relationship between the expected training
and validation errors, the so-called bias-variance dilemma.

Complexity



Modeling Issues (cont.)

• Here, training error decreases with increasing model
complexity; validation error decreases with model complexity
up to a certain point and then begins to increase.

• We seek a model that is neither too simple nor too complex. A
model that is too simple will suffer from underfitting because
it does not learn enough from the data and hence provides a
poor fit. On the other hand, a model that is too complicated
would learn details including noise and thus suffers from
overfitting. It cannot provide good generalization on unseen
data.

• In summary, we seek a model that is
– Not too simple: underfitting; not learn enough

– Not too complicated: overfitting; not generalize well

RBF Model Structure



Function Approximation

• Suppose D = {(xi, yi): xi ∈ Rd, yi ∈ R, i = 1, …, n} where the

underlying true but unknown function is f0.

• Then, for given D, how to find a “best” approximating

function f* for f0?

– Function approximation problem

• In practice, F, a certain class of functions, is assumed.

– Approximation problem is to find a best approximation for f0 from F.

– An approximating function f* is called a best approximation from

F = {f1, f2, …, fp} if f* satisfies the following condition:

||f* - f0|| ≤ ||fj – f0||, j = 1, …, p

RBF Model for Function Approximation

• Assume

– F is a class of RBF models

– f* ∈ F

• Why RBF?

– Mathematical properties

• Universal approximation property

• Best approximation property

– Fast learning ability due to separation of nonlinearity and linearity

during training phase (model development).



RBF Model

• Here

– φ(⋅) is a basis function

– wi : weight

– µi : center

– σi : width of basis function

– m : number of basis functions

• Choices of basis function
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RBF Interpolation:

Sine Example

SINE EXAMPLE

• Consider sine function (Bishop, 1995) and its interpolation

• Compute five values of h(x) at equal intervals of x in (0, 1),

add random noise from normal with mean = 0, variance = 0.25

• Interpolation problem: Determine Gaussian RBF f(xi) such that



SINE EXAMPLE (cont.)

• Construct interpolation matrix with five basis functions

centered at x’s (assume σ = 0.4) and compute G:

• In above, e.g., g2 is obtained as:

SINE EXAMPLE (cont.)



SINE EXAMPLE (cont.)

• The weights are computed from G and yi and we get

• Each term is a weighted basis function

SINE EXAMPLE (cont.)



SINE EXAMPLE (cont.)

Plots of true, observed and estimated values by RBF model

SINE EXAMPLE (cont.)



SINE EXAMPLE (cont.)

Brief Overview of RBF Design

Methods



Brief Overview of RBF Design

• Model Parameters P = (µµµµ, σσσσ, w, m) where

µµµµ = [µ1, µ2, …, µm]

σσσσ = [σ1, σ2, …, σm]

w = [w1, w2, …, wm]

• Design problem of RBF model

– How to determine P?

• Some design approaches

– Clustering

– Subset selection

– Regularization

Clustering

• Assume some value k, the number of basis functions is given

• Construct k clusters with randomly selected initial centers

• The parameters are taken to be

µj : jth cluster center

σj : average distance of each cluster to P-nearest clusters or

individual distances

wj : weight

• Because of randomness in training phase, the design suffers

from inconsistency



Subset Selection

• Assume some value of σ

µj : a subset of j input vectors that most contribute to

output variance

m : number of basis functions that provides output

variance enough to cover a prespecified threshold

value

wj : weight

Regularization

m : data size, i.e., number of input vectors

µj : input vectors (xi)

wj : least squares method with regularized term

• Regularization parameter (λ) controls the smoothness and the

degree of fit

• Computationally demanding



Algebraic Algorithm of Shin and Goel

Our Objective

• Derive a mathematical framework for design and evaluation of

RBF model

• Develop an objective and systematic design methodology

based on this mathematical framework



σ, δ, D

Interpolation matrix,

Singular value decomposition (SVD)

QR factorization with column

pivoting

Pseudo inverse

Step 1

Step 2

Step 3

Step 4

m

µµµµ

estimate output values

Four Step RBF Modeling Process of SG
Algorithm

SG algorithm is a learning or training algorithm to determine the values for the

number of basis functions (m), their centers (µµµµ), widths (σσσσ) and weights (w) to the

output layer on the basis of the data set

w

Design Methodology

• m = where

– G : Gaussian interpolation matrix

– s1 : first singular value of G

– δ : 100(1 - δ)% RC of G

• µ : a subset of input vectors

– Which provides a good compromise between structural stabilization

and residual minimization

– By QR factorization with column pivoting

• w : Φ+y

– Where Φ+ is pseudo-inverse of design matrix Φ
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RBF Model Structure

• For D = {(xi, yi): xi ∈ Rd, yi ∈ R}

– input layer: n × d input matrix

– hidden layer: n × m design matrix

– output layer: n × 1 output vector

• Φ is called design matrix

• For, φj(xi) = φ(||xi - µj|| / σj), i = 1, …, n, j = 1, …, m

– If m = n and µj = xj, j = 1, …, n then, Φ is called interpolation matrix

– If m << n, Design Matrix
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Basic Matrix Properties

• Subspace spanned by a matrix

– Given a matrix A = [a1 a2 … an] ∈ Rm×n, the set of all linear

combinations of these vectors builds the subspace A of Rn, i.e.,

A = span{a1, a2, …, an} = { }

– Subspace A is said to be spanned by the matrix A

• Dimension of subspace

– Let A be the subspace spanned by A. If ∃ independent basis vectors

b1, b2, .., bk ∈ A such that

A = span{b1, b2, .., bk}

– Then the dimension of the subspace A is k, i.e., dim(A) = k
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Basic Matrix Properties (cont.)

• Rank of a matrix

– Let A ∈ Rm×n and A be the subspace spanned by the matrix A.Then,

rank of A is defined by the dimension of A, the subspace spanned by A.

In other words,

rank(A) = dim(A)

• Rank deficiency

– A matrix A ∈ Rm×n is rank-deficient if rank(A) < min{m, n}

– Implies that

• ∃ some redundancy among its column or row vectors

Characterization of Interpolation Matrix

• Let G = [g1, g2, …, gn] ∈ Rn×n be an interpolation matrix.
– Rank of G = dimension of its column space

– If column vectors are linearly independent,

• Rank(G) = number of column vectors

– If column vectors are linearly dependent,

• Rank(G) < number of column vectors

• Rank deficiency of G

– It becomes rank-deficient if rank(G) < n

– It happens

• When two basis function outputs are collinear to each other,

i.e., if two or more input vectors are very close to each other, then the
outputs of the basis functions centered at those input vectors would be
collinear



Characterization of Interpolation Matrix

(cont.)

– In such a situation, we do not need all the column vectors to represent

the subspace spanned by G

– Any one of those collinear vectors can be computed from other vectors

• In summary, if G is rank-deficient, it implies that

– the intrinsic dimensionality of G < number of columns (n)

– the subspace spanned by G can be described by a smaller number

(m < n) of independent column vectors

Rank Estimation Based on SVD

• The most popular rank estimation technique for dealing with

large matrices in practical applications is Singular Value

Decomposition (Golub, 1996)

– If G is a real n × n matrix, then ∃ orthogonal matrices

U ∈ [u1, u2, …, un] ∈ Rn×n, V ∈ [v1, v2, …, vn] ∈ Rn×n, such that

UTGV = diag(s1, s2, …, sn) = S ∈ Rn×n

where s1 ≥ s2 ≥ … ≥ sn ≥ 0

– si : ith singular value

– ui : ith left singular vector

– vi : ith right singular vector

– If we define r by s1 ≥ … ≥ sr ≥ sr+1 = … = sn = 0, then

rank(G) = r and �
=

=
r

i

T
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Rank Estimation Based on SVD (cont.)

• In practice, data tend to be noisy

– Interpolation matrix G generated from data is also noisy

– Thus, the computed singular values from G are noisy and real rank of G

should be estimated

• It is suggested to use effective rank(ε-rank) of G

• Effective rank rε = rank(G, ε), for ε > 0 such that

s1 ≥ s2 ≥ … ≥ ε ≥ … ≥ sn

• How to determine ε?

– We introduce RC (Representational Capability)

Representational Capability (RC)

• Definition : RC of Gm

– Let G be an interpolation matrix of size n × n, and SVD of G be given

as above. If m ≤ n and , then RC of Gm is given by:

• Properties of RC

– Corollary 1: Let SVD of G = diag(s1, s2, …, sn) and

Then, for m < n

– Corollary 2: Let r = rank(G) for G ∈ Rn×n. If m < r, RC(Gm) < 1.

Otherwise, RC(Gm) = 1
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Determination of m based on RC Criterion

• For an interpolation matrix G ∈Rn×n, the number of basis

functions which provides 100(1 - δ)% RC of G is given as
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SVD and m:

Sine Example



Singular Value Decomposition (SVD)

• SVD of the interpolation matrix produces three matrices, U, S,

and V (σ = 0.4)

Singular Value Decomposition (SVD)

(cont.)

• Effective rank of G is obtained for several σ values

330.00000.00050.020.514.471.00

430.00010.0040.080.864.050.70

540.00060.00670.401.433.100.40

550.260.520.941.441.850.20

551.01.01.01.01.00.05

(ε = 0.001)(ε = 0.01)s5s4s3s2s1

Effective Rank rεSingular ValuesWidth

(σ)



RC of the Matrix Gm

• Consider σ = 0.4; then for m = 1, 2, 3, 4, 5, the RC is

RC of the Matrix Gm (cont.)

• Determine m for RC ≥ 80% or δ ≤ 20%



RBF Center Selection Algorithm

Center Selection Algorithm

• Given an interpolation matrix and the number of designed

basis functions m, two questions are

– Which columns should be chosen as the column vectors of the design

matrix?

– What criteria should be used?

• We use compromise between

– Residual minimization for better approximation

– Structural stabilization for better generalization



Center Selection Algorithm (cont.)

1. Compute the SVD of G to obtain matrices U, S, and V.

2. Partition matrix V and apply the QR factorization with column

pivoting to [ ] and obtain a permutation matrix P as follows:TT

2111VV

Center Selection Algorithm (cont.)

3. Compute GP and obtain the design matrix Φ by

4. Compute and determine m centers as



Center Selection:

Sine Example

SG Center Selection Algorithm

Step 1: Compute the SVD of G and obtain matrices U, S, and V.

Step 2: Partition V as follows: (σ = 0.4)



SG Center Selection Algorithm (cont.)

This results in Q, R, and P.

SG Center Selection Algorithm (cont.)

Step 3: Compute GP.



SG Center Selection Algorithm (cont.)

Step 4: Compute XTP and determine m = 4 centers as the first

four elements in XTP.

Structural Stabilization

• Structural stabilization criterion is used for better

generalization property of the designed RBF model

• Five possible combinations and potential design matrices are

ΦI, ΦII, ΦIII, ΦIV, ΦV



Structural Stabilization

• Simulate additional 30 (x, y) data

• Compute 5 design matrices for ΦI, ΦII, ΦIII, ΦIV, ΦV

• Compute weights and compare

• Use euclidean distance

Residual Size



Benchmark Data Classification

Modeling

Benchmark Classification Problems

• Benchmark data for classifier learning are important for

evaluating or comparing algorithms for learning from

examples

• Consider two sets from Proben 1 database (Prechelt, 1994) in

the UCI repository of machine learning databases:

– Diabetes

– Soybean



Diabetes Data: 2 Classes

• Determine if diabetes of Pima Indians is positive or negative
based on description of personal data such as age, number of
times pregnant, etc.

• 8 inputs, 2 outputs, 768 examples and no missing values in this
data set

• The 768 example data is divided into 384 examples for
training, 192 for validation and 192 for test

• Three permutations of data to generate three data sets: diabetes
1, 2, 3

• Error measure

patientstotal

patientsclassifiedyincorrectl
errortionClassifica

#

#
=

Description of Diabetes Input and Output

Data

-1
1

No diabetes
Diabetes

19

Output (1)

21..81 → 0..1Age (years)18

0.078..2.42 → 0..1Diabetes pedigree function17

0..67.1 → 0..1Body mass index (weight in kg/(height in
m)^2)

16

0..846 → 0..12-hour serum insulin (mu U/ml)15

0..99 → 0..1Triceps skin fold thickness (mm)14

0..122 → 0..1Diastolic blood pressure (mm Hg)13

0..199 → 0..1Plasma glucose concentration after 2 hours
in an oral glucose tolerance test

12

0..17 → 0..1Number of times pregnant11

Values and EncodingAttribute Meaning
No. of
Attributes

Attribute
No.

Inputs (8)



RBF Models for Diabetes 1

30.7331.2525.261.35H

28.1328.1325.781.26G

30.2130.2126.041.17F

25.5221.8823.441.08E

25.5221.8822.920.98D

23.4421.3522.660.89C

22.9221.8821.880.79B

24.4823.4420.320.612A

TestValidationTraining

Classification Error (CE), %
σmModel

δ = 0.01

Plots of Training and Validation Errors for

Diabetes 1 (δ = 0.01)



Observations

• As model σ decreases (bottom to top)

– Model complexity (m) increases

– Training CE decreases

– Validation CE decreases and then increases

– Test CE decreases and then increases

• CE behavior as theoretically expected

• Choose model B with minimum validation CE

• Test CE is 23.44%

• Different models for other δ values

• Best model for each data set is given next

RBF Classification Models for Diabetes 1,

Diabetes 2 and Diabetes 3

Diabetes 1, 2, and 3
- Test error varies considerably

- Average about 24.7%

21.8824.4818.491.0150.001diabetes3

28.1320.3118.230.5250.005diabetes2

23.9620.8322.661.2100.001diabetes1

TestValidationTraining

Classification Error (CE), %σmδProblem



Comparison with Prechelt Results [1994]

• Linear Network (LN)
– No hidden nodes, direct input-output connection

– The error values are based on 10 runs

• Multilayer Network (MN)

– Sigmoidal hidden nodes

– 12 different topologies

– “Best” test error reported

Diabetes Test CE for LN, MN and SG-RBF

−23.01SG (model B)

diabetes3

−24.48/24.46/24.20LN/MN/SG

1.9123.06MN

0.3522.92LN

Average

−25.52SG (model C)

2.5025.91MN

0.6124.69LN

diabetes2

−23.96SG (model C)

3.5324.57MN

0.5625.83LN

diabetes1

StddevMean

Test CE %
AlgorithmProblem

Compared to Prechelt, almost as good as best reported

RBF-SG results are fixed; no randomness



Soybean Disease Classification: 19 Classes

• Inputs (35): Description of bean, plant, plant history, etc

• Output: One of 19 disease types

• 683 examples: 342 training, 171 validation, 170 test

• Three permutations to generate Soybean 1, 2, 3

• σ: 1.1(0.2)2.5

• δ: 0.001, 0.005, 0.01

Description of One Soybean Data Point
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rot-raphytophtho88

36

norm

3534

absent

33

normabsent

3231

absentnorm

30

dna

29

dna

28

absent

27

none

26

absent

25

absent

24

absent

23

blk-brown-dk

22

soil-below

2120

yesabnorm

19

absent

1817

absent

16

absent

15

dnadna

1413

absentabnorm

12

abnorm

11

100%-90

10

none

9

minor

8

areas-low

76

yr-lst-same

5432

?

1

0001000000000000000

0001000000000001000000000000010000010000100001001

000000000.500.500110100001000.3333330105.00010

yesnormnormnormalIt−

Data description

Attribute number Data value



RBF Models for Soybean1 (δ = 0.01)

σ

The 683 example data set is divided into 342 examples for training set,

171 for validation set and 170 for test set

The minimum validation CE equals 4.68% for two models C and D. Since, we
generally prefer a simpler model, i.e., a model which smaller m,
we choose model D

Plots of CE Training and Validation

Errors for Sobean1 (δ = 0.01)

Training error decreases from models H to A as m increases. The validation error,

however, decreases up to a point and then begins to increase.



Soybean CE for LN, MN and SG-RBF

−4.12SG (model E)

soybean3

−6.90/7.39/5.49LN/MN/SG

1.167.27MN

0.197.00LN

Average

−4.71SG (model G)

0.875.84MN

0.254.24LN

soybean2

−7.65SG (model F)

0.809.06MN

0.519.47LN

soybean1

stddevmean

Test CE %
AlgorithmProblem

The SG-RBF classifiers have smaller errors for soybean1 and soyben3.

Overall better average error and no randomness

Data Mining and

Knowledge Discovery



Knowledge Discovery: Software

Engineering

• KDD is the nontrivial process of identifying valid, novel,

potentially useful and ultimately understandable patterns in

data

• KDD includes data mining as a critical phase of the KDD

process; activity of extracting patterns by employing a specific

algorithm

• Currently KDD is used for, e.g., text mining, sky surveys,

customer relations managements, etc

• We discuss knowledge discovery about criticality evaluation

of software modules

KDD Process

• KDD refers to all activities from data collection to use of the

discovered knowledge

• Typical steps in KDD

– Learning the application domain: prior knowledge; study objectives

– Creating dataset: identification of relevant variables or factors

– Data cleaning and preprocessing: removal of wrong data and outliers,

consistency checking, methods for dealing with missing data fields, and

preprocessing

– Data reduction and projection: finding useful features for data

representation, data reduction and appropriate transformations

– Choosing data mining function: decisions about modeling goal such as

classification or prediction



KDD Process (cont.)

– Choosing data mining algorithms: algorithm selection for the task

chosen in the previous step

– Data mining: actual activity of searching for patterns of interest such as

classification rules, regression or neural network modeling as well as

validation and accuracy assessment

– Interpretation and use of discovered knowledge: presentation of

discovered knowledge; and taking specific steps consistent with the

goals of knowledge discovery

KDD Goals: SE

• Software development is very much like an industrial
production process consisting of several overlapping activities,
formalized as life-cycle models

• Aim of collecting software data is to perform knowledge
discovery activities to seek useful information

• Some typical questions of interest to software engineers and
managers are

– What features (metrics) are indicators of high quality systems

– What metrics should be tracked to assess system readiness

– What patterns of metrics indicate potentially high defect modules

– What metrics can be related to software maturity during development

• Hundreds of such questions are of interest in SE



List of Metrics from NASA Metrics

Database

Total Number of Operandsx22

Total Number of Operatorsx21

Number of Unique Operandsx20

Number of Unique Operatorsx19

Number of Input/Output Parametersx18

Number of Format Statementsx17

Number of Assignment Statementsx16

Number of Decisionsx15

Number of Comment Linesx14

Size of Component in Number of Program Linesx13

Total Statementsx12

Input/Output Statementsx11

Function Calls to This Componentx10

Function Calls from This Componentx9

Faultsx7

Module level

product metrics

# of faults

Coding metrics

x13,x14,x15

Design metrics

x9,x10,x18

KDD Process for Software Modules

• Application domain: Early identification of critical modules which are

subjected to additional testing, etc. to improve system quality

• Database: NASA metrics DB; 14 metrics; many projects; select 796

modules

• Transformation: Normalize metrics to (0, 1); class is +1 if number of

faults exceeds five; -1 otherwise; ten permutation with (398 training; 199

validation ; 199 test)

• Function: RBF classifiers

• Data Mining: Classification modeling for design; coding; fourteen

metrics

• Interpretation: Compare accuracy; determine relative adequacy of

different sets of metrics



Classification: Design Metrics

27.124.623.1410

24.128.624.479

24.128.624.458

24.626.622.637

24.625.124.176

28.127.621.645

22.626.624.974

26.121.125.643

24.623.625.262

21.629.227.141

TestValidationTrainingmPermutation

Classification Error (%)

Design Metrics (cont.)



Test Error Results

{22.55, 26.15}{22.89, 25.81}2.5424.35Fourteen Metrics

{21.40, 25.80}{20.89, 25.11}3.6323.00Coding Metrics

{23.60, 26.40}{23.81, 26.05}1.9724.95Design Metrics

95 %90 %SDAverageMetrics

Confidence Bounds and Width

Confidence bound:

( ){ }102;9 TEofSDtTEAvg α±

Summary of Data Mining Results

• Predictive error on test data about 23%

• Very good for software engineering data where low accuracy
is common; errors can be as high 60% or more

• Classification errors are similar for design metrics, coding
metrics, all (14) metrics

• However, design metrics are available in early development
phases and are preferred for developing classification models

• Knowledge discovered

– good classification accuracy

– can use design metrics for criticality evaluation of software modules

• What next

– KDD on other projects using RBF



Empirical Data Modeling in

Software Engineering Project Effort

Prediction

Software Effort Modeling

• Accurate estimation of soft project effort is one of the most

important empirical modeling tasks in software engineering as

indicated by the large number of models developed over the

past twenty years

• Most of the popularly used models employ a regression type

equation relating effort and size, which is then calibrated for

local environment

• We use NASA data to develop RBF models for effort (Y)

based on Developed Lines (DL) and Methodology (ME)

• DL is KLOC; ME is composite score; Y is Man-months



NASA Software Project Data

RBF Based on DL

• Simple problem; for illustration

• Our goal is to seek a parsimonious model which provides a
good fit and exhibits good generalization capability

• Modeling steps

– Select δ = 1%, 2%, and 0.1% and a range of σ values

– For each σ, determine the value of m which satisfies δ

– Determine parameters µµµµ and w according to the SG algorithm

– Compute training error for the data on 18 projects

– Use LOOCV technique to compute generalization error

– Select the model which has minimum generalization error and small
training error

– Repeat above for each δ and select the most appropriate model



Two Error Measures

• MMRE =

• PRED(25) = Percentage of predictions falling within 25% of

the actual known values

�
=
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YY

n 1

ˆ
1

RBF Designs and Performance Measure for

(DL-Y) Models (δ = 1%)



A Graphical Depiction of MMRE Measures

for Candidate Models

RBF Models for (DL-Y) Data



Estimation Model

where

Plot of the Fitted RBF Estimation Model

and Actual Effort as a Function of DL



Models for DL and ME

Plot of the Fitted RBF Estimation Model
and Actual Effort as a Function DL and

ME



Plot of the Fitted RBF Estimation Model
and Actual Effort as a Function DL and

ME (cont.)

KDD: Microarray Data Analysis



OUTLINE

1. Microarray Data and Analysis Goals

2. Background

3. Classification Modeling and Results

4. Sensitivity Analyses

5. Remarks

MICROARRAY DATA AND ANALYSIS

GOALS

Data*

• A matrix of gene expression values Xn×d

• Cancer class vector y=1(ALL),y=0 (AML), Yn×d

• Training set n=38, Test set n=34

• Two data sets with number of genes d=7129 and d=50

* Golub et al. Molecular Classification of Cancer: Class Discovery and Class

Prediction by Gene Expression Monitoring. Science, 286:531-537, 1999.



MICROARRAY DATA AND ANALYSIS

GOALS (cont.)

Classification Goal

• Develop classification models to predict leukemia class (ALL
or AML) based on training set

• Use Radial Basis Function (RBF) model and employ recently
developed Shin-Goel (SG) design algorithm

Model selection

• Choose the model that achieves the best balance between
fitting and model complexity

• Use tradeoffs between classification errors on training and test
sets as model selection criterion

BACKGROUND

• Advances in microarray technology are producing very large
datasets that require proper analytical techniques to understand
the complexities of gene functions. To address this issue,
presentations at CAMDA2000 conference* discussed analyses
of the same data sets using different approaches

• Golub et al’s dataset (one of two at CAMDA) involves
classification into acute lymphoblastic (ALL) or acute myeloid
(AML) leukemia based on 7129 attributes that correspond to
human gene expression levels

* Critical Assessment of Microarray Data; for papers see Lin, S. M. and Johnson, K. E (Editors),

Methods of Microarray Data Analysis, Kluwer, 2002



BACKGROUND (cont.)

• In this study, we formulate the classification problem as a two

step process. First we construct a radial basis function model

using a recent algorithm of Shin and Goel**. Then model

performance is evaluated on test set classification

** Shin, M, Goel. A. L. Empirical Data Modeling in Software Engineering Using Radial Basis

Functions. IEEE Transactions on Software Engineering, 26:567-576, 2000

Shin, M, Goel, A. L. Radial Basis Function Model Development and Analysis Using the SG

Algorithm (Revised), Technical Report, Department of Electrical Engineering and Computer

Science, Syracuse University, Syracuse, NY, 2002

CLASSIFICATION MODELING

• Data of Golub et al* consists of 38 training samples (27 ALL,

11 AML) and 34 test samples (20 ALL, 14 AML). Each

sample corresponds to 7129 genes. They also selected 50 most

informative genes and used both sets for classification studies

• We develop several RBF classification models using the SG

algorithm and study their performance on training and test data

sets

• Classifier with best compromise between training and test

errors is selected

Golub et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene

Expression Monitoring. Science, 286:531-537, 1999.



CLASSIFICATION MODELING (cont.)

Summary of Results

• For specified RC and σ, SG algorithm first computes

minimum m and then the centers and weights

• We use RC = 99% and 99.5%

• 7129 gene set: σ = 20(2)32,

50 gene set: σ = 2(0.4)4

• Table 1 lists the “Best” RBF models

Classification models and Their

Performance

2.94

2.94

0

0

33

33

38

38

3.2

3.2

6

13

99.0%

99.5%

50 genes

14.71

14.71

0

0

29

29

38

38

26

30

29

35

99.0%

99.5%

7129

genes

testtrainingtesttraining

Classification

error %

Correct

ClassificationσmRCData Set



SENSITIVITY ANALYSES

(7129 Gene Data)

RC=99%; σ=20(2)32

• SG algorithm computes minimum m (no. of basis functions)
that satisfies RC

• Table 2 and Figure 4, show models and their performance on
training and test sets

• “Best” model is D: m=29, σ=26

• Correctly classifies 38/38 training samples; only 29/34 test
samples

• Models A and B represent underfitting, F and G overfitting;
Figure 1 shows underfit-overfit realization

Classification results

(7129 Genes, RC=99%)

(38 training, 34 test samples)

17.65028383822F

14.71029383424E

17.65028383820G

14.71029382926D

17.652.6328372128C

20.592.6327371530B

26.475.2625361232A

testtrainingtesttraining

Classification error %Correct classification

mσModel



Classification Errors

(7129 genes; RC=99%)

SENSITIVITY ANALYSES (cont.)

(50 Gene Data)

• Table 3 and Figure 5 show several RBF models and their

performance on 50 gene training and test data

• Model C (m=6, σ=3.2) seems to be the best one with 38/38

correct classification on training data and 33/34 on test data

• Model A represents underfit and models D, E and F seem to be

unnecessarily complex, with no gain in classification accuracy



Classification Results

(50 Genes RC=99%)

(38 Training, 34 Test Sets)

2.9403338132.4E

2.9403338182.0F

2.940333892.8D

2.940333863.2C

5.882.63323753.6B

8.822.63313744.0A

testtrainingtesttraining

Classification error (%)Correct classificationBasis

Functions (m)σModel

Classification Errors (50 genes; RC = 99%)



REMARKS

• This study used Gaussian RBF model and the SG algorithm
for the cancer classification problem of Golub et. al. Here we
present some remarks about our methodology and future plans

• RBF models have been used for classification in a broad range
of applications, from astronomy to medical diagnosis and from
stock market to signal processing.

• Current algorithms, however, tend to produce inconsistent
results due to their ad-hoc nature

• The SG algorithm produces consistent results, has strong
mathematical underpinnings, primarily involves matrix
computations and no search or optimization. It can be almost
totally automated.

Summary

In this tutorial, we discussed the following issues

• Problems of classification and prediction; and the modeling

considerations involved

• Structure of the RBF model and some design approaches

• Detailed coverage of the new (Shin-Goel) SG algebraic

algorithm with illustrative examples

• Classification modeling using the SG algorithm for two

benchmark data sets

• KDD and DM issues using RBF/SG in software engineering

and cancer class prediction
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