|
Literature
Signature | Author(s) | year | Title |
---|
Bernstein/etal/2002a | Abraham Bernstein and Shawndra Hill and Foster Provost | 2002 | An Intelligent Assistant for the Knowledge Discovery Process | Ohsuga/etal/2001a | Ohsuga, S. and Zhong, N. and Liu, C. | 2001 | Dynamically Organizing KDD Processes. | Schoelkopf/etal/2000a | Sch\"olkopf, Bernhard and Smola, Alex J. and Williamson, Robert C. and Bartlett, Peter L. | 2000 | New Support Vector Algorithms | Wrobel/etal/2000a | Wrobel, S. and Morik, K. and Joachims, T. | 2000 | Maschinelles Lernen und Data Mining | Goerz/etal/2000a | Görz, G. and Schneeberger, J. and Rollinger, C. | 2000 | Handbuch der künstlichen Intelligenz | Joachims/99a | Joachims, Thorsten | 1999 | Making large-Scale SVM Learning Practical | Shapire/99a | Robert E. Shapire | 1999 | Theoretical Views of Boosting and Applications | Zhang/99a | Wei Zhang | 1999 | A Region-Based Approach to Discovering Temporal Structures in Data | Mueller/etal/99a | | 1999 | Neural Information Processing Systems | ICML/99a | | 1999 | International Conference on Machine Learning | Carbonara/Sleeman/99a | Carbonara, L. and Sleeman, Derek H. | 1999 | Effective and Efficient Knowledge Base Refinement | Joachims/99c | Thorsten Joachims | 1999 | Transductive Inference for Text Classification using Support Vector Machines | Bennett/99a | K. Bennett | 1999 | Combining Support Vector and Mathematical Programming Methods for Classification | Joachims/98a | Joachims, Thorsten | 1998 | Text Categorization with Support Vector Machines: Learning with Many Relevant Features | Burges/98a | C. Burges | 1998 | A Tutorial on Support Vector Machines for Pattern Recognition | Vapnik/98a | V. Vapnik | 1998 | Statistical Learning Theory | Brazdil/98a | Pavel Brazdil | 1998 | Data Transformation and Model Selection by Experimentation and Meta-Learning | Engels/etal/97a | Robert Engels and Guido Lindner and Rudi Studer | 1997 | A Guided Tour through the Data Mining Jungle | Ras/Skowron/97a | | 1997 | Foundations of Intelligent Systems | Mitchell/97b | Mitchell, Tom M. | 1997 | Machine Learning | Zhong/etal/97a | N. Zhong and C. Liu and S. Ohsuga | 1997 | A Way of Increasing both Autonomy and Versatility of a KDD System | Karalic/Bratko/97a | Karalic, A. and Bratko, I. | 1997 | First Order Regression | Aha/97a | | 1997 | Lazy Learning | Torgo/Gama/96a | Torgo, L. and Gama, J. | 1996 | Regression by Classification | Quinlan/96a | J.R. Quinlan | 1996 | Learning First-Order Definitions of Functions | > Show next 25 entries (25 ... ) |
|
|