Yale 3.4 Class Documentation

Packages
edu.udo.cs.myGP This package contains classes necessary for GP (Gaussian Processes) calculation.
edu.udo.cs.myKLR The main package for Kernel Logistic Regression (KLR).
edu.udo.cs.myRVM This package contains classes necessary for Relevance Vector Machine (RVM) calculation.
edu.udo.cs.myRVM.Kernel This package contains kernel functions usable for the RVM.
edu.udo.cs.myRVM.Test Contains tests for some of the RVM classes.
edu.udo.cs.myRVM.Util Contains util classes for the Relevance Vector Machine package.
edu.udo.cs.mySVM.Examples The package for data handling of the Java version of the support vector machine mySVM.
edu.udo.cs.mySVM.Kernel The package for the kernel function provided by the Java version of the support vector machine mySVM.
edu.udo.cs.mySVM.Optimizer The package for the optimizer which is used by the Java version of the support vector machine mySVM.
edu.udo.cs.mySVM.SVM The main package for the Java version of the the regression and classification support vector machine mySVM.
edu.udo.cs.mySVM.Util The util package of the Java version of the support vector machine mySVM.
edu.udo.cs.yale The main packages of YALE.
edu.udo.cs.yale.datatable DataTables are the most important data container interface for YALE which are used for all statistics and plotting purposes.
edu.udo.cs.yale.doc The documentation generator of YALE.
edu.udo.cs.yale.example The example handling classes of YALE.
edu.udo.cs.yale.example.test Test classes for classes in the example package.
edu.udo.cs.yale.generator Provides feature generators.
edu.udo.cs.yale.gui Provides the main GUI classes.
edu.udo.cs.yale.gui.attributeeditor Provides the classes necessary for the Attribute Editor, i.e. the tool for creating attribute description files from data files.
edu.udo.cs.yale.gui.dialog This package contains all non-special dialogs of YALE.
edu.udo.cs.yale.gui.experimenteditor Contains all experiment editors but the operator tree (which has its own package).
edu.udo.cs.yale.gui.operatormenu Classes for the operator context menu (new operator, replace operator...).
edu.udo.cs.yale.gui.operatortree The operator tree is the main experiment editor for YALE.
edu.udo.cs.yale.gui.plotter This package contains all plotters which are able to create plots from a given DataTable.
edu.udo.cs.yale.gui.plotter.conditions Contains plotter conditions which are used to prevent the usage of a plotter for DataTables which does not fulfill the corresponding condition.
edu.udo.cs.yale.gui.plotter.mathplot This package contains DataTable plotter making use of the JMathPlot library.
edu.udo.cs.yale.gui.plotter.som Classes for a SOM (Self Organizing Map aka Kohonen Net) plotter.
edu.udo.cs.yale.gui.properties This package consists of all classes for property (parameter) editing, i.e.
edu.udo.cs.yale.gui.templates Provides classes for template and building block management and creation.
edu.udo.cs.yale.gui.viewer This package contain viewer classes for some standard data types like ExampleSets, DataTables etc.
edu.udo.cs.yale.gui.wizards This package contain wizard classes for configurating operators.
edu.udo.cs.yale.operator Provides YALE operators for machine learning and data pre-processing.
edu.udo.cs.yale.operator.condition Operator conditions are used to ensure that inner operators of an OperatorChain are correctly embedded.
edu.udo.cs.yale.operator.features Provides feature handling operators.
edu.udo.cs.yale.operator.features.aggregation Provides operators for automatic feature aggregation.
edu.udo.cs.yale.operator.features.construction Provides operators for automatic feature construction.
edu.udo.cs.yale.operator.features.selection Provides operators for automatic feature selection.
edu.udo.cs.yale.operator.features.transformation Provides operators for feature space transformations like PCA or ICA.
edu.udo.cs.yale.operator.features.weighting Operators to weight features or determine feature relevance.
edu.udo.cs.yale.operator.generator Provides YALE operators for data generation.
edu.udo.cs.yale.operator.io Operators to read data from files or write them into files.
edu.udo.cs.yale.operator.learner Provides learning operators.
edu.udo.cs.yale.operator.learner.igss Provides classes for learning operator Iterating Generic Sequential Sampling.
edu.udo.cs.yale.operator.learner.igss.hypothesis Provides the hypothesis classes for learning operator Iterating Generic Sequential Sampling.
edu.udo.cs.yale.operator.learner.igss.utility Provides utility function classes for learning operator Iterating Generic Sequential Sampling.
edu.udo.cs.yale.operator.learner.kernel Learning schemes which make use of kernel functions to transform the feature space, e.g. support vector machines.
edu.udo.cs.yale.operator.learner.kernel.evosvm Implementations of SVMs which makes use of general purpose optimization methods, e.g. evolutionary strategies or particle swarm optimization.
edu.udo.cs.yale.operator.learner.lazy Learning schemes which perform lazy learning.
edu.udo.cs.yale.operator.learner.meta Meta learning schemes which uses other learning operators to increase the performance.
edu.udo.cs.yale.operator.learner.meta.eaboost Classes used for a multi-objective evolutionary boosting based on BayBoostModels.
edu.udo.cs.yale.operator.learner.weka Operators which encapsulate the learning schemes provided by Weka.
edu.udo.cs.yale.operator.meta Provides YALE operators for experiment iteration, meta operators, and optimization.
edu.udo.cs.yale.operator.parameter This package contains classes for handling of operator parameters and specifiying parameter types.
edu.udo.cs.yale.operator.performance Provides performance evaluating operators and performance criteria.
edu.udo.cs.yale.operator.performance.test Test classes for the performance measures.
edu.udo.cs.yale.operator.postprocessing Operators for post processing, usually used for models.
edu.udo.cs.yale.operator.preprocessing Operators for preprocessing purposes.
edu.udo.cs.yale.operator.preprocessing.discretization Contains discretization operators which can be used to transform numerical into nominal attributes.
edu.udo.cs.yale.operator.preprocessing.filter Containing filter operators changing the input example set, e.g. by removing certain attributes or changing the data.
edu.udo.cs.yale.operator.preprocessing.normalization Preprocessing operators used for normalization.
edu.udo.cs.yale.operator.preprocessing.sampling Preprocessing operators used for sampling.
edu.udo.cs.yale.operator.validation Operators for estimation of the performance which can be achieved by learning schemes (and other predictive operators).
edu.udo.cs.yale.operator.validation.significance Statistical significance like ANOVA or t-tests.
edu.udo.cs.yale.operator.visualization The operators in this package might be useful for visualization purposes.
edu.udo.cs.yale.test Provides test classes.
edu.udo.cs.yale.tools Provides tools for YALE like parsers for the YALE input files.
edu.udo.cs.yale.tools.att Provides tools for parsing the attribute description file.
edu.udo.cs.yale.tools.jdbc Provides tools for database access via JDBC connections.
edu.udo.cs.yale.tools.log Provides tool classes for logging, especially for formatting the log messages.
edu.udo.cs.yale.tools.math Several tool classes for mathematical operations.
edu.udo.cs.yale.tools.math.optimization Optimization schemes which can be used by operators.
edu.udo.cs.yale.tools.math.optimization.ec.es Evolutionary Strategies Optimization for real valued optimization problems.
edu.udo.cs.yale.tools.math.optimization.ec.pso Particle Swarm Optimization for real valued optimization problems.
edu.udo.cs.yale.tools.math.som Provides class for SOM (Self Organizing Map, Kohonen Net) calculation.
edu.udo.cs.yale.tools.plugin Provides tools for YALE plugins.

 



Copyright © 2001-2006