Packages |
edu.udo.cs.myGP |
This package contains classes necessary for GP (Gaussian Processes) calculation. |
edu.udo.cs.myKLR |
The main package for Kernel Logistic Regression (KLR). |
edu.udo.cs.myRVM |
This package contains classes necessary for Relevance Vector Machine (RVM) calculation. |
edu.udo.cs.myRVM.Kernel |
This package contains kernel functions usable for the RVM. |
edu.udo.cs.myRVM.Test |
Contains tests for some of the RVM classes. |
edu.udo.cs.myRVM.Util |
Contains util classes for the Relevance Vector Machine package. |
edu.udo.cs.mySVM.Examples |
The package for data handling of the Java version of the support vector machine mySVM. |
edu.udo.cs.mySVM.Kernel |
The package for the kernel function provided by the Java version of the support vector machine mySVM. |
edu.udo.cs.mySVM.Optimizer |
The package for the optimizer which is used by the Java version of the support vector machine mySVM. |
edu.udo.cs.mySVM.SVM |
The main package for the Java version of the the regression and classification support vector machine mySVM. |
edu.udo.cs.mySVM.Util |
The util package of the Java version of the support vector machine mySVM. |
edu.udo.cs.yale |
The main packages of YALE. |
edu.udo.cs.yale.datatable |
DataTables are the most important data container interface for YALE which
are used for all statistics and plotting purposes. |
edu.udo.cs.yale.doc |
The documentation generator of YALE. |
edu.udo.cs.yale.example |
The example handling classes of YALE. |
edu.udo.cs.yale.example.test |
Test classes for classes in the example package. |
edu.udo.cs.yale.generator |
Provides feature generators. |
edu.udo.cs.yale.gui |
Provides the main GUI classes. |
edu.udo.cs.yale.gui.attributeeditor |
Provides the classes necessary for the Attribute Editor, i.e. the tool for creating attribute description files from data files. |
edu.udo.cs.yale.gui.dialog |
This package contains all non-special dialogs of YALE. |
edu.udo.cs.yale.gui.experimenteditor |
Contains all experiment editors but the operator tree (which has its own package). |
edu.udo.cs.yale.gui.operatormenu |
Classes for the operator context menu (new operator, replace operator...). |
edu.udo.cs.yale.gui.operatortree |
The operator tree is the main experiment editor for YALE. |
edu.udo.cs.yale.gui.plotter |
This package contains all plotters which are able to create plots from a given DataTable. |
edu.udo.cs.yale.gui.plotter.conditions |
Contains plotter conditions which are used to prevent the usage of a plotter for DataTables which does not fulfill the corresponding condition. |
edu.udo.cs.yale.gui.plotter.mathplot |
This package contains DataTable plotter making use of the JMathPlot library. |
edu.udo.cs.yale.gui.plotter.som |
Classes for a SOM (Self Organizing Map aka Kohonen Net) plotter. |
edu.udo.cs.yale.gui.properties |
This package consists of all classes for property (parameter) editing, i.e. |
edu.udo.cs.yale.gui.templates |
Provides classes for template and building block management and creation. |
edu.udo.cs.yale.gui.viewer |
This package contain viewer classes for some standard data types like ExampleSets, DataTables etc. |
edu.udo.cs.yale.gui.wizards |
This package contain wizard classes for configurating operators. |
edu.udo.cs.yale.operator |
Provides YALE operators for machine learning and data pre-processing. |
edu.udo.cs.yale.operator.condition |
Operator conditions are used to ensure that inner operators of an OperatorChain are correctly embedded. |
edu.udo.cs.yale.operator.features |
Provides feature handling operators. |
edu.udo.cs.yale.operator.features.aggregation |
Provides operators for automatic feature aggregation. |
edu.udo.cs.yale.operator.features.construction |
Provides operators for automatic feature construction. |
edu.udo.cs.yale.operator.features.selection |
Provides operators for automatic feature selection. |
edu.udo.cs.yale.operator.features.transformation |
Provides operators for feature space transformations like PCA or ICA. |
edu.udo.cs.yale.operator.features.weighting |
Operators to weight features or determine feature relevance. |
edu.udo.cs.yale.operator.generator |
Provides YALE operators for data generation. |
edu.udo.cs.yale.operator.io |
Operators to read data from files or write them into files. |
edu.udo.cs.yale.operator.learner |
Provides learning operators. |
edu.udo.cs.yale.operator.learner.igss |
Provides classes for learning operator Iterating Generic Sequential Sampling. |
edu.udo.cs.yale.operator.learner.igss.hypothesis |
Provides the hypothesis classes for learning operator Iterating Generic Sequential Sampling. |
edu.udo.cs.yale.operator.learner.igss.utility |
Provides utility function classes for learning operator Iterating Generic Sequential Sampling. |
edu.udo.cs.yale.operator.learner.kernel |
Learning schemes which make use of kernel functions to transform the feature space, e.g. support vector machines. |
edu.udo.cs.yale.operator.learner.kernel.evosvm |
Implementations of SVMs which makes use of general purpose optimization
methods, e.g. evolutionary strategies or particle swarm optimization. |
edu.udo.cs.yale.operator.learner.lazy |
Learning schemes which perform lazy learning. |
edu.udo.cs.yale.operator.learner.meta |
Meta learning schemes which uses other learning operators to increase the performance. |
edu.udo.cs.yale.operator.learner.meta.eaboost |
Classes used for a multi-objective evolutionary boosting based on BayBoostModels. |
edu.udo.cs.yale.operator.learner.weka |
Operators which encapsulate the learning schemes provided by Weka. |
edu.udo.cs.yale.operator.meta |
Provides YALE operators for experiment iteration, meta operators, and
optimization. |
edu.udo.cs.yale.operator.parameter |
This package contains classes for handling of operator parameters and specifiying parameter types. |
edu.udo.cs.yale.operator.performance |
Provides performance evaluating operators and performance criteria. |
edu.udo.cs.yale.operator.performance.test |
Test classes for the performance measures. |
edu.udo.cs.yale.operator.postprocessing |
Operators for post processing, usually used for models. |
edu.udo.cs.yale.operator.preprocessing |
Operators for preprocessing purposes. |
edu.udo.cs.yale.operator.preprocessing.discretization |
Contains discretization operators which can be used to transform numerical into nominal attributes. |
edu.udo.cs.yale.operator.preprocessing.filter |
Containing filter operators changing the input example set, e.g. by removing certain attributes or changing the data. |
edu.udo.cs.yale.operator.preprocessing.normalization |
Preprocessing operators used for normalization. |
edu.udo.cs.yale.operator.preprocessing.sampling |
Preprocessing operators used for sampling. |
edu.udo.cs.yale.operator.validation |
Operators for estimation of the performance which can be achieved by learning schemes (and other predictive operators). |
edu.udo.cs.yale.operator.validation.significance |
Statistical significance like ANOVA or t-tests. |
edu.udo.cs.yale.operator.visualization |
The operators in this package might be useful for visualization purposes. |
edu.udo.cs.yale.test |
Provides test classes. |
edu.udo.cs.yale.tools |
Provides tools for YALE like parsers for the YALE input files. |
edu.udo.cs.yale.tools.att |
Provides tools for parsing the attribute description file. |
edu.udo.cs.yale.tools.jdbc |
Provides tools for database access via JDBC connections. |
edu.udo.cs.yale.tools.log |
Provides tool classes for logging, especially for formatting the log messages. |
edu.udo.cs.yale.tools.math |
Several tool classes for mathematical operations. |
edu.udo.cs.yale.tools.math.optimization |
Optimization schemes which can be used by operators. |
edu.udo.cs.yale.tools.math.optimization.ec.es |
Evolutionary Strategies Optimization for real valued optimization problems. |
edu.udo.cs.yale.tools.math.optimization.ec.pso |
Particle Swarm Optimization for real valued optimization problems. |
edu.udo.cs.yale.tools.math.som |
Provides class for SOM (Self Organizing Map, Kohonen Net) calculation. |
edu.udo.cs.yale.tools.plugin |
Provides tools for YALE plugins. |