|
Literature
Signature | Author(s) | year | Title |
---|
Schoelkopf/etal/2000a | Sch\"olkopf, Bernhard and Smola, Alex J. and Williamson, Robert C. and Bartlett, Peter L. | 2000 | New Support Vector Algorithms | Press/92a | Press, W. H. | 1992 | Numerical Recipes in C | Nadaraya/64a | Nadaraya, E. A. | 1964 | On estimating regression | Parzen/62a | Parzen, E. | 1962 | On estimation of a probability density function and mode | Engels/96a | Engels, Robert | 1996 | Planning Tasks for Knowledge Discovery in Databases; Performing Task--Oriented User--Guidance | Friedman/Stuetzle/81a | Friedman, Jerome H. and Stuetzle, W. | 1981 | Projection pursuit regression | Shavlik/etal/90a | Shavlik, J. W. and Noordewier, N. O. and Towell, G. G. | 1990 | Refinement of approximate domain theories by knowledge-based neural networks | Torgo/Gama/96a | Torgo, L. and Gama, J. | 1996 | Regression by Classification | Rosenblatt/56a | Rosenblatt, M. | 1956 | Remarks on some nonparametric estimates of a density function | Weiss/Indurkhya/93a | Sholom M. Weiss and Nitin Indurkhya | 1993 | Rule--Based Regression | Weiss/Indurkhya/95a | Weiss, S. and Indurkhya, N. | 1995 | Rule-based Machine Learning Methods for Functional Prediction | Watson/64a | Watson, G. S. | 1964 | Smooth Regression Analysis | Loader/Cleveland/95b | Loader, C. and Cleveland, W. | 1995 | Smoothing by Local Regression: Principles and Methods (with discussion) | Vapnik/98a | V. Vapnik | 1998 | Statistical Learning Theory | Joachims/98a | Joachims, Thorsten | 1998 | Text Categorization with Support Vector Machines: Learning with Many Relevant Features | Vapnik/95a | Vladimir N. Vapnik | 1995 | The Nature of Statistical Learning Theory | Shapire/99a | Robert E. Shapire | 1999 | Theoretical Views of Boosting and Applications | Joachims/99c | Thorsten Joachims | 1999 | Transductive Inference for Text Classification using Support Vector Machines |
|
|