Both statistics and machine learning share the goal of analysing data to find regularities and predict future events. This project explores three forms of synergy arising between machine learning and statistics. Their effectiveness is analysed on selected problems.
This project aims to combine methods and
experience from statistics and machine learning
to build systems for analysing the large
datasets common in todays applications. To be
able to integrate and combine different methods,
their theoretical charaterization as well as
practical experience with such multi-strategy
systems are crucial. The goal is to cross the
border between the two disciplines and develop
new methods more powerful than those in each
field alone.
Klinkenberg/Rueping/2003a | Klinkenberg, Ralf and Rüping, Stefan (2003). Concept Drift and the Importance of Examples. In Text Mining -- Theoretical Aspects and Applications, pages 55-77. Physica-Verlag. |
Morik/etal/2002a | Morik, Katharina and Joachims, Thorsten and Imhoff, Michael and Brockhausen, Peter and Rüping, Stefan (2002). Integrating Kernel Methods into a Knowledge-based Approach to Evidence-based Medicine, chapter Integrating Kernel Methods into a Knowledge-based Approach to Evidence-based Medicine, pages 71-99. Physica-Verlag. [.ps] [.pdf] |
Rueping/2001b | Rüping, Stefan (2001). Incremental Learning with Support Vector Machines. In Cercone, Nick and Lin, T.Y. and Wu, Xindong, editor(s), Proceedings of the 2001 IEEE International Conference on Data Mining, pages 641--642. . |
Sondhauss/Weihs/2001a | Sondhauss, Ursula and Weihs, Claus (2001). Incorporating background knowledge for better prediction of cycle phases. Technical report, Universität Dortmund. |
Joachims/00a | Joachims, Thorsten (2000). Estimating the Generalization Performance of a SVM Efficiently. In Langley, Pat, editor(s), Proceedings of the International Conference on Machine Learning, pages 431--438. Morgan Kaufman. [.ps.gz] [.pdf] |
Klinkenberg/Joachims/2000a | Klinkenberg, Ralf and Joachims, Thorsten (2000). Detecting Concept Drift with Support Vector Machines. In Langley, Pat, editor(s), Proceedings of the Seventeenth International Conference on Machine Learning (ICML), pages 487--494. Morgan Kaufmann. [.ps.gz] [.pdf] |
Arminger/Goetz/99a | Arminger, Gerhard and Götz, Norman (1999). Asymmetric Loss Functions for Evaluating the Quality of Forecasts in Time Series for Goods Management Systems. Technical report, Universität Dortmund. |
Arminger/Schneider/99a | Arminger, Gerhard and Schneider, Carsten (1999). Frequent Problems of Model Specification and Forecasting of Time Series in Goods Management Systems. Technical report, Universität Dortmund. |
Brockhausen/99a | Peter Brockhausen (1999). Learning First Order Rules in Intensive Care Monitoring. In ILP--99 Late-Breaking Papers, pages 22--27. . Session held at the Ninth International Workshop On Inductive Logic Programming (ILP--99). [.ps.gz] [.pdf] |
Brockhausen/99b | Peter Brockhausen (1999). Learning First--Order Rules in Intensive Care Monitoring. In Petra Perner, editor(s), Maschinelles Lernen, FGML 99 in series IBal Report, pages 1--7. Institut für Bildverarbeitung und angewandte Informatik. |
Joachims/99a | Joachims, Thorsten (1999). Making large-Scale SVM Learning Practical. In Advances in Kernel Methods - Support Vector Learning, chapter 11. MIT Press. [.ps.gz] [.pdf] |
Joachims/99c | Thorsten Joachims (1999). Transductive Inference for Text Classification using Support Vector Machines. In International Conference on Machine Learning (ICML). . [.ps.gz] [.pdf] |
Joachims/99e | T. Joachims (1999). Estimating the Generalization Performance of a SVM Efficiently. Technical report, Universität Dortmund, LS VIII. [.ps.gz] |
Joachims/etal/99a | T. Joachims and A. McCallum and M. Sahami and M. Craven, editor(s) (1999). Machine Learning for Information Filtering in series IJCAI Workshop. AAAI Press. |
Morik/etal/99a | Katharina Morik and Peter Brockhausen and Thorsten Joachims (1999). Combining statistical learning with a knowledge-based approach -- A case study in intensive care monitoring. In Proc. 16th Int'l Conf. on Machine Learning (ICML-99). . [.ps.gz] [.pdf] |
Scheffer/Joachims/99a | Tobias Scheffer and Thorsten Joachims (1999). Expected Error Analysis for Model Selection. In International Conference on Machine Learning (ICML). . |
Brockhausen/Morik/98a | Peter Brockhausen and Katharina Morik (1998). Wissensentdeckung in relationalen Datenbanken: Eine Herausforderung für das maschinelle Lernen. In Data Mining, theoretische Aspekte und Anwendungen, pages 193--211. Physica Verlag. [.ps.gz] [.pdf] |
Joachims/98a | Joachims, Thorsten (1998). Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In Claire N\'edellec and C\'eline Rouveirol, editor(s), Proceedings of the European Conference on Machine Learning, pages 137 -- 142. Springer. [.ps.gz] [.pdf] |
Joachims/98c | Thorsten Joachims (1998). Making large-Scale SVM Learning Practical. Technical report, Universität Dortmund, LS VIII-Report. [.ps.gz] [.pdf] |
Sahami/etal/98a | M. Sahami and M. Craven and T. Joachims and A. McCallum, editor(s) (1998). Learning for Text Categorization WS-98-05 in series ICML/AAAI Workshop. AAAI Press. |
Scheffer/Joachims/98a | Tobias Scheffer and Thorsten Joachims (1998). Estimating the expected error of empirical minimizers for model selection. Technical report, TU-Berlin. [.ps] |
Imhoff/etal/97a | Michael Imhoff and Markus Bauer and Ursula Gather and D. Löhlein (1997). Time Series Analysis in Intensive Care Medicine. Applied Cardiopulmonary Pathophysiology, 6 pages 203 -- 281. |
Joachims/97b | T. Joachims (1997). Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Technical report, Universität Dortmund, LS VIII-Report. [.ps.gz] [.pdf] |
Joachims/97d | T. Joachims (1997). Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Technical report, Universität Dortmund, Fachbereich Informatik. [.ps.gz] |
Morik/97c | Katharina Morik (1997). Knowledge Discovery in Databases -- An Inductive Logic Programming Approach. In Foundations of Computer Science -- Theory, Cognition, Applications, pages 429--436. Springer. [.ps.gz] [.pdf] |
Morik/Brockhausen/97a | Morik, Katharina and Brockhausen, Peter (1997). A Multistrategy Approach to Relational Knowledge Discovery in Databases. Machine Learning Journal, 27 (3):287--312. |
Morik/etal/97a | Katharina Morik, Iris Pigeot, Ursula Robers (1997). The Use of Inductive Logic Programming for the Development of the Statistical Software Tool CORA. In Workshop Logische Programmierung. . |
Wiechers/97a | F. Wiechers (1997). Verwaltung grosser Datenmengen für die effiziente Anwendung des Apriori-Algorithmus zur Wissensentdeckung in Datenbanken. Master's thesis, Universität Dortmund, Lehrstuhl 8. [.ps.gz] [.pdf] |
Morik/Brockhausen/96a | Morik, Katharina and Brockhausen, Peter (1996). A Multistrategy Approach to Relational Knowledge Discovery in Databases. In Michalski, Ryszard S. and Wnek, Janusz, editor(s), Proceedings of the Third International Workshop on Multistrategy Learning (MSL-96), pages 17--27. AAAI Press. [.ps.gz] |