|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectedu.udo.cs.myGP.Model
public class Model
The learned model.
Field Summary | |
---|---|
private Jama.Matrix |
alpha
|
private double[][] |
basisVectors
|
private Jama.Matrix |
C
|
private int |
d
|
private int |
inputDim
|
private Jama.Matrix |
k
Other variables (can be derived from the variables above) |
private Kernel |
kernel
Variables describing the GP (must be saved with the model) |
private Jama.Matrix |
Q
|
private boolean |
regression
|
Constructor Summary | |
---|---|
private |
Model()
Constructors |
|
Model(Kernel kernel,
double[][] basisVectors,
Jama.Matrix alpha,
Jama.Matrix C,
Jama.Matrix Q,
int d,
boolean regression)
|
Method Summary | |
---|---|
double[] |
apply(double[][] inputVectors)
Apply the model to all input vectors |
double |
applyToVector(double[] x_new)
Apply the model to a (new) input vector x_t+1 in order to get a prediction, which - as a GP-marignal at x_t+1 - is a one-dimensional gaussian distribution with mean m and covariance sigma^2 (2.22, the parameterisation lemma). |
double[] |
getBasisVector(int i)
|
double |
getBasisVectorValue(int i,
int j)
|
int |
getInputDim()
|
int |
getNumberOfBasisVectors()
|
private static double[] |
readDoubleArray(java.io.ObjectInputStream in,
int length)
Read double[] from an input stream |
private static Jama.Matrix |
readMatrix(java.io.ObjectInputStream in)
Read a matrix from a stream |
static Model |
readModel(java.io.ObjectInputStream in)
Reads the model data from the input stream. |
private double |
scalarProduct(double[][] x,
double[][] y,
int d)
Compute the (canonical) scalar product between x and y, using only the first d components of the vectors |
private void |
writeDoubleArray(java.io.ObjectOutputStream out,
double[] array)
Write double[] into an output stream |
private void |
writeMatrix(java.io.ObjectOutputStream out,
Jama.Matrix matrix)
Write a matrix to a stream |
void |
writeModel(java.io.ObjectOutputStream out)
Writes the model data into the output stream. |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
private Kernel kernel
private double[][] basisVectors
private Jama.Matrix C
private Jama.Matrix alpha
private Jama.Matrix Q
private boolean regression
private Jama.Matrix k
private int d
private int inputDim
Constructor Detail |
---|
private Model()
public Model(Kernel kernel, double[][] basisVectors, Jama.Matrix alpha, Jama.Matrix C, Jama.Matrix Q, int d, boolean regression)
Method Detail |
---|
public int getNumberOfBasisVectors()
public int getInputDim()
public double[] getBasisVector(int i)
public double getBasisVectorValue(int i, int j)
private double scalarProduct(double[][] x, double[][] y, int d)
public double applyToVector(double[] x_new)
public double[] apply(double[][] inputVectors) throws java.lang.Exception
java.lang.Exception
private static Jama.Matrix readMatrix(java.io.ObjectInputStream in) throws java.io.IOException
java.io.IOException
private void writeMatrix(java.io.ObjectOutputStream out, Jama.Matrix matrix) throws java.io.IOException
java.io.IOException
private static double[] readDoubleArray(java.io.ObjectInputStream in, int length) throws java.io.IOException
java.io.IOException
private void writeDoubleArray(java.io.ObjectOutputStream out, double[] array) throws java.io.IOException
java.io.IOException
public static Model readModel(java.io.ObjectInputStream in) throws java.io.IOException
java.io.IOException
public void writeModel(java.io.ObjectOutputStream out) throws java.io.IOException
java.io.IOException
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |