edu.udo.cs.myGP
Class Model

java.lang.Object
  extended by edu.udo.cs.myGP.Model

public class Model
extends java.lang.Object

The learned model.

Version:
$Id: Model.java,v 1.6 2006/09/30 00:05:30 ingomierswa Exp $
Author:
Piotr Kasprzak, Ingo Mierswa

Field Summary
private  Jama.Matrix alpha
           
private  double[][] basisVectors
           
private  Jama.Matrix C
           
private  int d
           
private  int inputDim
           
private  Jama.Matrix k
          Other variables (can be derived from the variables above)
private  Kernel kernel
          Variables describing the GP (must be saved with the model)
private  Jama.Matrix Q
           
private  boolean regression
           
 
Constructor Summary
private Model()
          Constructors
  Model(Kernel kernel, double[][] basisVectors, Jama.Matrix alpha, Jama.Matrix C, Jama.Matrix Q, int d, boolean regression)
           
 
Method Summary
 double[] apply(double[][] inputVectors)
          Apply the model to all input vectors
 double applyToVector(double[] x_new)
          Apply the model to a (new) input vector x_t+1 in order to get a prediction, which - as a GP-marignal at x_t+1 - is a one-dimensional gaussian distribution with mean m and covariance sigma^2 (2.22, the parameterisation lemma).
 double[] getBasisVector(int i)
           
 double getBasisVectorValue(int i, int j)
           
 int getInputDim()
           
 int getNumberOfBasisVectors()
           
private static double[] readDoubleArray(java.io.ObjectInputStream in, int length)
          Read double[] from an input stream
private static Jama.Matrix readMatrix(java.io.ObjectInputStream in)
          Read a matrix from a stream
static Model readModel(java.io.ObjectInputStream in)
          Reads the model data from the input stream.
private  double scalarProduct(double[][] x, double[][] y, int d)
          Compute the (canonical) scalar product between x and y, using only the first d components of the vectors
private  void writeDoubleArray(java.io.ObjectOutputStream out, double[] array)
          Write double[] into an output stream
private  void writeMatrix(java.io.ObjectOutputStream out, Jama.Matrix matrix)
          Write a matrix to a stream
 void writeModel(java.io.ObjectOutputStream out)
          Writes the model data into the output stream.
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

kernel

private Kernel kernel
Variables describing the GP (must be saved with the model)


basisVectors

private double[][] basisVectors

C

private Jama.Matrix C

alpha

private Jama.Matrix alpha

Q

private Jama.Matrix Q

regression

private boolean regression

k

private Jama.Matrix k
Other variables (can be derived from the variables above)


d

private int d

inputDim

private int inputDim
Constructor Detail

Model

private Model()
Constructors


Model

public Model(Kernel kernel,
             double[][] basisVectors,
             Jama.Matrix alpha,
             Jama.Matrix C,
             Jama.Matrix Q,
             int d,
             boolean regression)
Method Detail

getNumberOfBasisVectors

public int getNumberOfBasisVectors()

getInputDim

public int getInputDim()

getBasisVector

public double[] getBasisVector(int i)

getBasisVectorValue

public double getBasisVectorValue(int i,
                                  int j)

scalarProduct

private double scalarProduct(double[][] x,
                             double[][] y,
                             int d)
Compute the (canonical) scalar product between x and y, using only the first d components of the vectors


applyToVector

public double applyToVector(double[] x_new)
Apply the model to a (new) input vector x_t+1 in order to get a prediction, which - as a GP-marignal at x_t+1 - is a one-dimensional gaussian distribution with mean m and covariance sigma^2 (2.22, the parameterisation lemma). Returns only the function value, the mapping to a classification must be done by the invoking method.


apply

public double[] apply(double[][] inputVectors)
               throws java.lang.Exception
Apply the model to all input vectors

Throws:
java.lang.Exception


readMatrix

private static Jama.Matrix readMatrix(java.io.ObjectInputStream in)
                               throws java.io.IOException
Read a matrix from a stream

Throws:
java.io.IOException


writeMatrix

private void writeMatrix(java.io.ObjectOutputStream out,
                         Jama.Matrix matrix)
                  throws java.io.IOException
Write a matrix to a stream

Throws:
java.io.IOException


readDoubleArray

private static double[] readDoubleArray(java.io.ObjectInputStream in,
                                        int length)
                                 throws java.io.IOException
Read double[] from an input stream

Throws:
java.io.IOException


writeDoubleArray

private void writeDoubleArray(java.io.ObjectOutputStream out,
                              double[] array)
                       throws java.io.IOException
Write double[] into an output stream

Throws:
java.io.IOException


readModel

public static Model readModel(java.io.ObjectInputStream in)
                       throws java.io.IOException
Reads the model data from the input stream.

Throws:
java.io.IOException


writeModel

public void writeModel(java.io.ObjectOutputStream out)
                throws java.io.IOException
Writes the model data into the output stream.

Throws:
java.io.IOException



Copyright © 2001-2006