edu.udo.cs.yale.example
Class Tools
java.lang.Object
edu.udo.cs.yale.example.Tools
public class Tools
- extends java.lang.Object
Provides some tools for calculation of certain measures and feature
generation.
- Version:
- $Id: Tools.java,v 2.32 2006/08/03 14:39:28 ingomierswa Exp $
- Author:
- Simon Fischer, Ingo Mierswa
Constructor Summary |
Tools()
|
Method Summary |
static Attribute[] |
createAttributeArray(ExampleSet exampleSet)
|
static void |
fillTableWithRandomValues(ExampleTable exampleTable,
RandomGenerator random)
After creation of a new MemoryExampleTable with given size all values are
Double.NaN. |
static double |
getAverageWeight(AttributeWeightedExampleSet exampleSet)
|
static double[] |
getInverseProbabilitiesFromWeights(Attribute[] attributes,
AttributeWeightedExampleSet exampleSet)
|
static double[] |
getProbabilitiesFromWeights(Attribute[] attributes,
AttributeWeightedExampleSet exampleSet)
|
static double[] |
getProbabilitiesFromWeights(Attribute[] attributes,
AttributeWeightedExampleSet exampleSet,
boolean inverse)
Calculates probabilities for attribute selection purposes based on the
given weight. |
static Attribute[] |
getRandomCompatibleAttributes(ExampleSet exampleSet,
FeatureGenerator generator,
int maxDepth,
java.lang.String[] functions,
java.util.Random random)
|
static Attribute[] |
getWeightedCompatibleAttributes(AttributeWeightedExampleSet exampleSet,
FeatureGenerator generator,
int maxDepth,
java.lang.String[] functions,
RandomGenerator random)
|
static Attribute |
selectAttribute(Attribute[] attributes,
double[] probs,
java.util.Random random)
|
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Tools
public Tools()
fillTableWithRandomValues
public static void fillTableWithRandomValues(ExampleTable exampleTable,
RandomGenerator random)
- After creation of a new MemoryExampleTable with given size all values are
Double.NaN. Use this method to fill the table with random values in the
range specified by minimum and maximum values of the attributes. Please
note that the attributes in the example table must already have proper
minimum and maximum values. This works only for numerical attribute.
Nominal attribute values will be set to 0.
createAttributeArray
public static Attribute[] createAttributeArray(ExampleSet exampleSet)
getRandomCompatibleAttributes
public static Attribute[] getRandomCompatibleAttributes(ExampleSet exampleSet,
FeatureGenerator generator,
int maxDepth,
java.lang.String[] functions,
java.util.Random random)
getWeightedCompatibleAttributes
public static Attribute[] getWeightedCompatibleAttributes(AttributeWeightedExampleSet exampleSet,
FeatureGenerator generator,
int maxDepth,
java.lang.String[] functions,
RandomGenerator random)
getAverageWeight
public static double getAverageWeight(AttributeWeightedExampleSet exampleSet)
getProbabilitiesFromWeights
public static double[] getProbabilitiesFromWeights(Attribute[] attributes,
AttributeWeightedExampleSet exampleSet)
getInverseProbabilitiesFromWeights
public static double[] getInverseProbabilitiesFromWeights(Attribute[] attributes,
AttributeWeightedExampleSet exampleSet)
getProbabilitiesFromWeights
public static double[] getProbabilitiesFromWeights(Attribute[] attributes,
AttributeWeightedExampleSet exampleSet,
boolean inverse)
- Calculates probabilities for attribute selection purposes based on the
given weight. Attributes whose weight is not defined in the weight vector
get a probability corresponding to the average weight. Inverse
probabilities can be calculated for cases where attributes with a high
weight should be selected with small probability.
selectAttribute
public static Attribute selectAttribute(Attribute[] attributes,
double[] probs,
java.util.Random random)
Copyright © 2001-2006