edu.udo.cs.yale.operator.features.selection
Class GeneticAlgorithm

java.lang.Object
  extended by edu.udo.cs.yale.operator.Operator
      extended by edu.udo.cs.yale.operator.OperatorChain
          extended by edu.udo.cs.yale.operator.features.FeatureOperator
              extended by edu.udo.cs.yale.operator.features.selection.AbstractGeneticAlgorithm
                  extended by edu.udo.cs.yale.operator.features.selection.GeneticAlgorithm
All Implemented Interfaces:
ConfigurationListener

public class GeneticAlgorithm
extends AbstractGeneticAlgorithm

A genetic algorithm for feature selection (mutation=switch features on and off, crossover=interchange used features). Selection is done by roulette wheel. Genetic algorithms are general purpose optimization / search algorithms that are suitable in case of no or little problem knowledge.
A genetic algorithm works as follows

  1. Generate an initial population consisting of population_size individuals. Each attribute is switched on with probability p_initialize
  2. For all individuals in the population
  3. Perform selection, map all individuals to sections on a roulette wheel whose size is proportional to the individual's fitness and draw population_size individuals at random according to their probability.
  4. As long as the fitness improves, go to 2
If the example set contains value series attributes with blocknumbers, the whole block will be switched on and off.

Version:
$Id: GeneticAlgorithm.java,v 1.4 2006/08/03 14:39:29 ingomierswa Exp $
Author:
Ingo Mierswa, Simon Fischer

Field Summary
 
Fields inherited from class edu.udo.cs.yale.operator.features.selection.AbstractGeneticAlgorithm
BOLTZMANN_SELECTION, CUT_SELECTION, NON_DOMINATED_SORTING_SELECTION, RANK_SELECTION, ROULETTE_WHEEL, SELECTION_SCHEMES, STOCHASTIC_UNIVERSAL, TOURNAMENT_SELECTION, UNIFORM_SELECTION
 
Constructor Summary
GeneticAlgorithm(OperatorDescription description)
           
 
Method Summary
 Population createInitialPopulation(ExampleSet es)
          Sets up a population of given size and creates ExampleSets with randomly selected attributes (the probability to be switched on is controlled by pInitialize).
protected  PopulationOperator getCrossoverPopulationOperator(ExampleSet eSet)
          Returns an operator that performs crossover.
protected  PopulationOperator getMutationPopulationOperator(ExampleSet eSet)
          Returns an operator that performs the mutation.
 java.util.List<ParameterType> getParameterTypes()
          Returns a list of ParameterTypes describing the parameters of this operator.
 
Methods inherited from class edu.udo.cs.yale.operator.features.selection.AbstractGeneticAlgorithm
getPostEvaluationPopulationOperators, getPostProcessingPopulationOperators, getPreEvaluationPopulationOperators, getPreProcessingPopulationOperators, solutionGoodEnough
 
Methods inherited from class edu.udo.cs.yale.operator.features.FeatureOperator
apply, evaluate, evaluate, getCheckForMaximum, getInnerOperatorCondition, getInputClasses, getMaxNumberOfInnerOperators, getMinNumberOfInnerOperators, getNumberOfSteps, getOutputClasses, getRandom, setCheckForMaximum
 
Methods inherited from class edu.udo.cs.yale.operator.OperatorChain
addAddListener, addOperator, addOperator, checkDeprecations, checkIO, checkNumberOfInnerOperators, checkProperties, clearErrorList, clearStepCounter, cloneOperator, countStep, createExperimentTree, delete, experimentFinished, experimentStarts, getAllInnerOperators, getCurrentStep, getIndexOfOperator, getInnerOperatorForName, getInnerOperatorsXML, getNumberOfAllOperators, getNumberOfChildrensSteps, getNumberOfOperators, getOperator, getOperatorFromAll, getOperators, isEnabled, performAdditionalChecks, removeAddListener, removeOperator, setEnabled, setExperiment, shouldReturnInnerOutput
 
Methods inherited from class edu.udo.cs.yale.operator.Operator
addError, addValue, addWarning, apply, createExperimentTree, createFromXML, createMarkedExperimentTree, getAddOnlyAdditionalOutput, getApplyCount, getDeliveredOutputClasses, getDeprecationInfo, getDesiredInputClasses, getErrorList, getExperiment, getInput, getInput, getInput, getInputDescription, getIOContainerForInApplyLoopBreakpoint, getName, getOperatorClassName, getOperatorDescription, getParameter, getParameterAsBoolean, getParameterAsColor, getParameterAsDouble, getParameterAsFile, getParameterAsInt, getParameterAsString, getParameterList, getParameters, getParameterType, getParent, getStartTime, getStatus, getUserDescription, getValue, getValues, getXML, hasBreakpoint, hasBreakpoint, hasInput, inApplyLoop, isParameterSet, logMessage, register, remove, rename, resume, setBreakpoint, setInput, setListParameter, setOperatorParameters, setParameter, setParameters, setParent, setUserDescription, toString, writeXML
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Constructor Detail

GeneticAlgorithm

public GeneticAlgorithm(OperatorDescription description)
Method Detail

createInitialPopulation

public Population createInitialPopulation(ExampleSet es)
                                   throws UndefinedParameterError
Sets up a population of given size and creates ExampleSets with randomly selected attributes (the probability to be switched on is controlled by pInitialize).

Specified by:
createInitialPopulation in class FeatureOperator
Throws:
UndefinedParameterError


getMutationPopulationOperator

protected PopulationOperator getMutationPopulationOperator(ExampleSet eSet)
                                                    throws UndefinedParameterError
Returns an operator that performs the mutation. Can be overridden by subclasses.

Specified by:
getMutationPopulationOperator in class AbstractGeneticAlgorithm
Throws:
UndefinedParameterError


getCrossoverPopulationOperator

protected PopulationOperator getCrossoverPopulationOperator(ExampleSet eSet)
                                                     throws UndefinedParameterError
Returns an operator that performs crossover. Can be overridden by subclasses.

Specified by:
getCrossoverPopulationOperator in class AbstractGeneticAlgorithm
Throws:
UndefinedParameterError


getParameterTypes

public java.util.List<ParameterType> getParameterTypes()
Description copied from class: Operator
Returns a list of ParameterTypes describing the parameters of this operator. The default implementation returns an empty list if no input objects can be retained and special parameters for those input objects which can be prevented from being consumed.

Overrides:
getParameterTypes in class AbstractGeneticAlgorithm



Copyright © 2001-2006