edu.udo.cs.yale.operator.features.selection
Class GeneticAlgorithm
java.lang.Object
edu.udo.cs.yale.operator.Operator
edu.udo.cs.yale.operator.OperatorChain
edu.udo.cs.yale.operator.features.FeatureOperator
edu.udo.cs.yale.operator.features.selection.AbstractGeneticAlgorithm
edu.udo.cs.yale.operator.features.selection.GeneticAlgorithm
- All Implemented Interfaces:
- ConfigurationListener
public class GeneticAlgorithm
- extends AbstractGeneticAlgorithm
A genetic algorithm for feature selection (mutation=switch features on and
off, crossover=interchange used features). Selection is done by roulette
wheel. Genetic algorithms are general purpose optimization / search
algorithms that are suitable in case of no or little problem knowledge.
A genetic algorithm works as follows
- Generate an initial population consisting of
population_size
individuals. Each attribute is switched on
with probability p_initialize
- For all individuals in the population
- Perform mutation, i.e. set used attributes to unused with probability
p_mutation
and vice versa.
- Choose two individuals from the population and perform crossover with
probability
p_crossover
. The type of crossover can be
selected by crossover_type
.
- Perform selection, map all individuals to sections on a roulette wheel
whose size is proportional to the individual's fitness and draw
population_size
individuals at random according to their
probability.
- As long as the fitness improves, go to 2
If the example set contains value series attributes with blocknumbers, the
whole block will be switched on and off.
- Version:
- $Id: GeneticAlgorithm.java,v 1.4 2006/08/03 14:39:29 ingomierswa Exp $
- Author:
- Ingo Mierswa, Simon Fischer
Methods inherited from class edu.udo.cs.yale.operator.features.FeatureOperator |
apply, evaluate, evaluate, getCheckForMaximum, getInnerOperatorCondition, getInputClasses, getMaxNumberOfInnerOperators, getMinNumberOfInnerOperators, getNumberOfSteps, getOutputClasses, getRandom, setCheckForMaximum |
Methods inherited from class edu.udo.cs.yale.operator.OperatorChain |
addAddListener, addOperator, addOperator, checkDeprecations, checkIO, checkNumberOfInnerOperators, checkProperties, clearErrorList, clearStepCounter, cloneOperator, countStep, createExperimentTree, delete, experimentFinished, experimentStarts, getAllInnerOperators, getCurrentStep, getIndexOfOperator, getInnerOperatorForName, getInnerOperatorsXML, getNumberOfAllOperators, getNumberOfChildrensSteps, getNumberOfOperators, getOperator, getOperatorFromAll, getOperators, isEnabled, performAdditionalChecks, removeAddListener, removeOperator, setEnabled, setExperiment, shouldReturnInnerOutput |
Methods inherited from class edu.udo.cs.yale.operator.Operator |
addError, addValue, addWarning, apply, createExperimentTree, createFromXML, createMarkedExperimentTree, getAddOnlyAdditionalOutput, getApplyCount, getDeliveredOutputClasses, getDeprecationInfo, getDesiredInputClasses, getErrorList, getExperiment, getInput, getInput, getInput, getInputDescription, getIOContainerForInApplyLoopBreakpoint, getName, getOperatorClassName, getOperatorDescription, getParameter, getParameterAsBoolean, getParameterAsColor, getParameterAsDouble, getParameterAsFile, getParameterAsInt, getParameterAsString, getParameterList, getParameters, getParameterType, getParent, getStartTime, getStatus, getUserDescription, getValue, getValues, getXML, hasBreakpoint, hasBreakpoint, hasInput, inApplyLoop, isParameterSet, logMessage, register, remove, rename, resume, setBreakpoint, setInput, setListParameter, setOperatorParameters, setParameter, setParameters, setParent, setUserDescription, toString, writeXML |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
GeneticAlgorithm
public GeneticAlgorithm(OperatorDescription description)
createInitialPopulation
public Population createInitialPopulation(ExampleSet es)
throws UndefinedParameterError
- Sets up a population of given size and creates ExampleSets with randomly
selected attributes (the probability to be switched on is controlled by
pInitialize).
- Specified by:
createInitialPopulation
in class FeatureOperator
- Throws:
UndefinedParameterError
getMutationPopulationOperator
protected PopulationOperator getMutationPopulationOperator(ExampleSet eSet)
throws UndefinedParameterError
- Returns an operator that performs the mutation. Can be overridden by
subclasses.
- Specified by:
getMutationPopulationOperator
in class AbstractGeneticAlgorithm
- Throws:
UndefinedParameterError
getCrossoverPopulationOperator
protected PopulationOperator getCrossoverPopulationOperator(ExampleSet eSet)
throws UndefinedParameterError
- Returns an operator that performs crossover. Can be overridden by
subclasses.
- Specified by:
getCrossoverPopulationOperator
in class AbstractGeneticAlgorithm
- Throws:
UndefinedParameterError
getParameterTypes
public java.util.List<ParameterType> getParameterTypes()
- Description copied from class:
Operator
- Returns a list of ParameterTypes describing the parameters of
this operator. The default implementation returns an empty list if no
input objects can be retained and special parameters for those input
objects which can be prevented from being consumed.
- Overrides:
getParameterTypes
in class AbstractGeneticAlgorithm
Copyright © 2001-2006