edu.udo.cs.yale.operator.learner
Class ConjunctiveRuleModel

java.lang.Object
  extended by edu.udo.cs.yale.operator.AbstractIOObject
      extended by edu.udo.cs.yale.operator.ResultObjectAdapter
          extended by edu.udo.cs.yale.operator.AbstractModel
              extended by edu.udo.cs.yale.operator.IOModel
                  extended by edu.udo.cs.yale.operator.learner.PredictionModel
                      extended by edu.udo.cs.yale.operator.learner.SimplePredictionModel
                          extended by edu.udo.cs.yale.operator.learner.ConjunctiveRuleModel
All Implemented Interfaces:
IOObject, Model, ResultObject, Saveable

public class ConjunctiveRuleModel
extends SimplePredictionModel

Each object of this class represents a conjunctive rule with boolean target and nominal attributes. It cannot be changed after construction. This simplifies applications that maintain counts separately. Each attribute may be tested at most once. For two rules it can be tested whether one subsumes the other. A method for refinement allows to create each rule just once. This model may be used to query for the prediction of a single example, as well as to predict complete ExampleSets.

Version:
$Id: ConjunctiveRuleModel.java,v 1.8 2006/04/12 18:04:24 ingomierswa Exp $
Author:
Martin Scholz

Nested Class Summary
private  class ConjunctiveRuleModel.Literal
          Helper class for maintaining attribute-value tests.
 
Field Summary
private  java.util.Vector<ConjunctiveRuleModel.Literal> myLiterals
           
private  int predictedLabel
           
 
Constructor Summary
ConjunctiveRuleModel(Attribute label, int predictedLabel)
          Constructor to create an empty rule that makes a default prediction
ConjunctiveRuleModel(Attribute label, int predictedLabel, int positives, int negatives)
          Constructor to create an empty rule that makes a default prediction
ConjunctiveRuleModel(ConjunctiveRuleModel ruleToExtend, Attribute attribute, double testValue)
          Constructor to create an empty rule that makes a default prediction
ConjunctiveRuleModel(ConjunctiveRuleModel ruleToClone, int predictedLabel)
          Constructor to clone a rule, but to change the head (prediction)
 
Method Summary
 boolean equals(java.lang.Object object)
          Two rules are equal, if they are both permutations of the same set of literals and predict the same label.
private  double flipLabel(double nonPredictedLabel)
          Works only for boolean labels and needs to be improved in case of changing Yale core classes.
 java.util.Collection<ConjunctiveRuleModel> getAllRefinedRules(ExampleSet exampleSet)
          A refinement method that - when applied sytematically during learning - generates all rules for nominal attributes and a boolean target exactly once.
 Attribute getAttributeOfLiteral(int literalNumber)
           
 int getConclusion()
           
protected  int getFirstUnusedAttribute(ExampleSet exampleSet)
          Helper method of getAllRefinedRules.
 int getPositionOfAttributeInRule(Attribute attribute)
           
 int getRuleLength()
           
 double getTestedValueAtLiteral(int literalNumber)
           
 boolean isRefinementOf(ConjunctiveRuleModel model)
           
 double predict(Example example)
          Applies the model to a single example and returns the predicted class value.
 void readPredictionModelData(java.io.ObjectInputStream in)
          not supported yet
 java.lang.String toString()
           
 void writePredictionModelData(java.io.ObjectOutputStream out)
          not supported yet
 
Methods inherited from class edu.udo.cs.yale.operator.learner.SimplePredictionModel
performPrediction
 
Methods inherited from class edu.udo.cs.yale.operator.learner.PredictionModel
apply, createPredictedLabel, getLabel, readData, removePredictedLabel, setLabel, writeData
 
Methods inherited from class edu.udo.cs.yale.operator.AbstractModel
getExtension, getFileDescription, readModel, readModel, save, setParameter, writeModel, writeModel
 
Methods inherited from class edu.udo.cs.yale.operator.ResultObjectAdapter
addAction, getActions, getName, getVisualisationComponent, toHTML, toResultString
 
Methods inherited from class edu.udo.cs.yale.operator.AbstractIOObject
copy, read, read, read, write, write
 
Methods inherited from class java.lang.Object
clone, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface edu.udo.cs.yale.operator.ResultObject
getActions, getName, getVisualisationComponent, toResultString
 
Methods inherited from interface edu.udo.cs.yale.operator.IOObject
copy, write, write
 

Field Detail

predictedLabel

private final int predictedLabel

myLiterals

private final java.util.Vector<ConjunctiveRuleModel.Literal> myLiterals
Constructor Detail

ConjunctiveRuleModel

public ConjunctiveRuleModel(Attribute label,
                            int predictedLabel)
Constructor to create an empty rule that makes a default prediction

Parameters:
label - the label attribute of the exampleSet
predictedLabel - specifies the head of the rule, i.e. which label to predict


ConjunctiveRuleModel

public ConjunctiveRuleModel(Attribute label,
                            int predictedLabel,
                            int positives,
                            int negatives)
Constructor to create an empty rule that makes a default prediction

Parameters:
label - the label attribute of the exampleSet
predictedLabel - specifies the head of the rule, i.e. which label to predict


ConjunctiveRuleModel

public ConjunctiveRuleModel(ConjunctiveRuleModel ruleToClone,
                            int predictedLabel)
Constructor to clone a rule, but to change the head (prediction)


ConjunctiveRuleModel

public ConjunctiveRuleModel(ConjunctiveRuleModel ruleToExtend,
                            Attribute attribute,
                            double testValue)
                     throws OperatorException
Constructor to create an empty rule that makes a default prediction

Throws:
OperatorException

Method Detail

readPredictionModelData

public void readPredictionModelData(java.io.ObjectInputStream in)
                             throws java.io.IOException
not supported yet

Specified by:
readPredictionModelData in class PredictionModel
Throws:
java.io.IOException


writePredictionModelData

public void writePredictionModelData(java.io.ObjectOutputStream out)
                              throws java.io.IOException
not supported yet

Specified by:
writePredictionModelData in class PredictionModel
Throws:
java.io.IOException


toString

public java.lang.String toString()
Overrides:
toString in class PredictionModel
Returns:
a String representation of this rule model.

flipLabel

private double flipLabel(double nonPredictedLabel)
Works only for boolean labels and needs to be improved in case of changing Yale core classes.


predict

public double predict(Example example)
               throws OperatorException
Description copied from class: SimplePredictionModel
Applies the model to a single example and returns the predicted class value.

Specified by:
predict in class SimplePredictionModel
Throws:
OperatorException


getRuleLength

public int getRuleLength()
Returns:
the number of literals

getConclusion

public int getConclusion()
Returns:
the label this rule predicts

getAttributeOfLiteral

public Attribute getAttributeOfLiteral(int literalNumber)
Parameters:
literalNumber - the number of the literal in the rule
Returns:
the attribute tested in the specified literal

getTestedValueAtLiteral

public double getTestedValueAtLiteral(int literalNumber)
Parameters:
literalNumber - the number of the literal in the rule
Returns:
the value an attribute needs to have in order to pass the test of the specified literal

getPositionOfAttributeInRule

public int getPositionOfAttributeInRule(Attribute attribute)
Parameters:
attribute - to look for in the conjunctive rule
Returns:
the position (which is unique) of the attribute in the (ordered) conjunctive rule, or -1, if the attribute has not been found

isRefinementOf

public boolean isRefinementOf(ConjunctiveRuleModel model)
Parameters:
model - another ConjuctiveRuleModel
Returns:
true, if this rule is a refinement of the specified rule, or if both rules are equal. A rule refines another one, if it conatains all of its lietrals and predicts the same label.

equals

public boolean equals(java.lang.Object object)
Two rules are equal, if they are both permutations of the same set of literals and predict the same label.

Overrides:
equals in class AbstractModel


getFirstUnusedAttribute

protected int getFirstUnusedAttribute(ExampleSet exampleSet)
Helper method of getAllRefinedRules. Iterates through the Attributes of an ExampleSet and compares them to those part of the rule.

Parameters:
exampleSet -
Returns:
the index of the first attribute of the exampleSet that is not used in the rule, and for which no later Attribute is found in the rule, either.


getAllRefinedRules

public java.util.Collection<ConjunctiveRuleModel> getAllRefinedRules(ExampleSet exampleSet)
                                                              throws OperatorException
A refinement method that - when applied sytematically during learning - generates all rules for nominal attributes and a boolean target exactly once. The top-down refinement is compatible with pruning, as long as scores decrerase monotonically in support in the typical sense known from subgroup discovery. Attributes are added in the same order in which they occur in the provided exampleSet.

Parameters:
exampleSet - used to identify attributes and their values for refinement
Returns:
all refined ConjunctiveRuleModel objects
Throws:
OperatorException



Copyright © 2001-2006