edu.udo.cs.yale.operator.learner
Class MultiCriterionDecisionStumps

java.lang.Object
  extended by edu.udo.cs.yale.operator.Operator
      extended by edu.udo.cs.yale.operator.learner.AbstractLearner
          extended by edu.udo.cs.yale.operator.learner.MultiCriterionDecisionStumps
All Implemented Interfaces:
ConfigurationListener, Learner

public class MultiCriterionDecisionStumps
extends AbstractLearner

A DecisionStump clone that allows to specify different utility functions. It is quick for nominal attributes, but does not yet apply pruning for continuos attributes. Currently it can only handle boolean class labels.

Version:
$Id: MultiCriterionDecisionStumps.java,v 1.6 2006/09/30 00:05:31 ingomierswa Exp $
Author:
Martin Scholz

Nested Class Summary
 class MultiCriterionDecisionStumps.DecisionStumpModel
           
private  class MultiCriterionDecisionStumps.ScoreNaNInfo
           
 
Field Summary
private static java.lang.String ACC
           
private  Model bestModel
           
private  double bestScore
           
private static java.lang.String CHI_SQUARE
           
private static java.lang.String ENTROPY
           
private static java.lang.String GINI
           
private  double globalN
           
private  double globalP
           
private  int posIndex
           
private static java.lang.String SQRT_PN
           
private static java.lang.String UTILITY_FUNCTION
           
private static java.lang.String[] UTILITY_FUNCTION_LIST
           
private  java.lang.String utilityFunction
           
 
Constructor Summary
MultiCriterionDecisionStumps(OperatorDescription description)
           
 
Method Summary
protected  double[] computePriors(ExampleSet exampleSet)
           
private  double entropyLog2(double p)
           
private  void evaluateNominalAttributes(ExampleSet exampleSet)
           
private  void evaluateNumericalAttributes(ExampleSet exampleSet)
           
protected  Model getBestModel()
           
 java.util.List<ParameterType> getParameterTypes()
          Adds the parameter function".
protected  double getScore(double[] counts, boolean predictPositives)
          Computes the score for the specified utility function, the provided counts and class.
private  MultiCriterionDecisionStumps.ScoreNaNInfo getScore(double[] counts, double[] countNaNs)
           
protected  void initHighscore()
           
 Model learn(ExampleSet exampleSet)
          Trains a model.
private  void setBestModel(MultiCriterionDecisionStumps.DecisionStumpModel model, double score)
           
 boolean supportsCapability(LearnerCapability lc)
          Checks for Learner capabilities.
 
Methods inherited from class edu.udo.cs.yale.operator.learner.AbstractLearner
apply, checkLearnerCapabilities, getEstimatedPerformance, getInputClasses, getInputDescription, getOptimizationPerformance, getOutputClasses, getWeights, shouldCalculateWeights, shouldDeliverOptimizationPerformance, shouldEstimatePerformance
 
Methods inherited from class edu.udo.cs.yale.operator.Operator
addError, addValue, addWarning, apply, checkDeprecations, checkIO, checkProperties, clearErrorList, cloneOperator, createExperimentTree, createExperimentTree, createFromXML, createMarkedExperimentTree, delete, experimentFinished, experimentStarts, getAddOnlyAdditionalOutput, getApplyCount, getDeliveredOutputClasses, getDeprecationInfo, getDesiredInputClasses, getErrorList, getExperiment, getInnerOperatorsXML, getInput, getInput, getInput, getIOContainerForInApplyLoopBreakpoint, getName, getNumberOfSteps, getOperatorClassName, getOperatorDescription, getParameter, getParameterAsBoolean, getParameterAsColor, getParameterAsDouble, getParameterAsFile, getParameterAsInt, getParameterAsString, getParameterList, getParameters, getParameterType, getParent, getStartTime, getStatus, getUserDescription, getValue, getValues, getXML, hasBreakpoint, hasBreakpoint, hasInput, inApplyLoop, isEnabled, isParameterSet, logMessage, performAdditionalChecks, register, remove, rename, resume, setBreakpoint, setEnabled, setExperiment, setInput, setListParameter, setOperatorParameters, setParameter, setParameters, setParent, setUserDescription, toString, writeXML
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface edu.udo.cs.yale.operator.learner.Learner
getName
 

Field Detail

ACC

private static final java.lang.String ACC
See Also:
Constant Field Values

ENTROPY

private static final java.lang.String ENTROPY
See Also:
Constant Field Values

SQRT_PN

private static final java.lang.String SQRT_PN
See Also:
Constant Field Values

GINI

private static final java.lang.String GINI
See Also:
Constant Field Values

CHI_SQUARE

private static final java.lang.String CHI_SQUARE
See Also:
Constant Field Values

UTILITY_FUNCTION_LIST

private static final java.lang.String[] UTILITY_FUNCTION_LIST

UTILITY_FUNCTION

private static final java.lang.String UTILITY_FUNCTION
See Also:
Constant Field Values

posIndex

private int posIndex

globalP

private double globalP

globalN

private double globalN

bestModel

private Model bestModel

bestScore

private double bestScore

utilityFunction

private java.lang.String utilityFunction
Constructor Detail

MultiCriterionDecisionStumps

public MultiCriterionDecisionStumps(OperatorDescription description)
Method Detail

supportsCapability

public boolean supportsCapability(LearnerCapability lc)
Description copied from interface: Learner
Checks for Learner capabilities. Should return true if the given capability is supported.


initHighscore

protected void initHighscore()

getBestModel

protected Model getBestModel()
Returns:
the best decision stump found

setBestModel

private void setBestModel(MultiCriterionDecisionStumps.DecisionStumpModel model,
                          double score)

learn

public Model learn(ExampleSet exampleSet)
            throws OperatorException
Description copied from interface: Learner
Trains a model. This method should be called by apply() and is implemented by subclasses.

Throws:
OperatorException


evaluateNumericalAttributes

private void evaluateNumericalAttributes(ExampleSet exampleSet)
                                  throws OperatorException
Throws:
OperatorException

evaluateNominalAttributes

private void evaluateNominalAttributes(ExampleSet exampleSet)
                                throws OperatorException
Throws:
OperatorException

getScore

private MultiCriterionDecisionStumps.ScoreNaNInfo getScore(double[] counts,
                                                           double[] countNaNs)
                                                    throws UndefinedParameterError
Throws:
UndefinedParameterError

getScore

protected double getScore(double[] counts,
                          boolean predictPositives)
Computes the score for the specified utility function, the provided counts and class.


entropyLog2

private double entropyLog2(double p)

computePriors

protected double[] computePriors(ExampleSet exampleSet)
Parameters:
exampleSet - the exampleSet to get the weighted priors for
Returns:
a double[2] object, first parameter is p, second is n.

getParameterTypes

public java.util.List<ParameterType> getParameterTypes()
Adds the parameter &utility function".

Overrides:
getParameterTypes in class Operator



Copyright © 2001-2006