|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectedu.udo.cs.yale.operator.Operator
edu.udo.cs.yale.operator.learner.AbstractLearner
edu.udo.cs.yale.operator.learner.igss.IteratingGSS
public class IteratingGSS
This operator implements the IteratingGSS algorithmus presented in the diploma thesis 'Effiziente Entdeckung unabhaengiger Subgruppen in grossen Datenbanken' at the Department of Computer Science, University of Dortmund.
Field Summary | |
---|---|
private java.util.LinkedList<Hypothesis> |
bestList
Stores the k-best hypothesis. |
static java.lang.String[] |
CRITERION_TYPES
|
private double |
currentDelta
Remaining delta |
private double |
epsilon
Parameter epsilon of the GSS algorithm |
private double |
exampleFactor
Factor needed by example_criterion. |
static int |
FIRST_TYPE_INDEX
|
private boolean |
forceIterations
Always make all iterations? |
private IGSSResult |
gssResult
stores all results |
private int |
iterations
The number of iterations for the IGSS algorithm. |
private Attribute |
label
The label attribute |
private int |
large
Number of random experiments before a normal approximation is used. |
static int |
LAST_TYPE_INDEX
|
private int |
maxComplexity
Maximum hypothesis complexity |
private Result |
maxRest
Best of the hypothesis not among the k best |
int |
MIN_MODEL_NUMBER
minimal model number for example_criterion |
private double |
min_utility_pruning
Minimum utility used for pruning |
private double |
min_utility_useful
Minimum utility needed for a utility to be useful |
private Result |
minBest
Worst of the k best hypothesis |
private int |
minComplexity
Minimum hypothesis complexity |
private int |
numberOfSolutions
Parameter k of the GSS algorithm |
private RandomGenerator |
random
global random generator |
private Attribute[] |
regularAttributes
The regular atributes |
private boolean |
rejectionSampling
Use rejection sampling or weights directly. |
private boolean |
resetWeights
Reset weights after complexity increase? |
private Hypothesis |
seed
First hypothesis used to create all others. |
private int |
stepsize
Parameter stepsize of the IGSS algorithm |
private Utility |
theUtility
The utility function |
private double |
totalPositiveWeight
Total positive weight used by GSS |
private double |
totalWeight
Total weight used by GSS |
static int |
TYPE_BEST_UTILITY
|
static int |
TYPE_EXAMPLE
|
static int |
TYPE_UTILITY
|
static int |
TYPE_WORST_UTILITY
|
private boolean |
useBinomial
Indicates if Binomial should be used before increasing complexity. |
private int |
useful_criterion
the useful criterion for the IGSS algorithm |
private boolean |
useKBS
Indicates if kbs should be used. |
Constructor Summary | |
---|---|
IteratingGSS(OperatorDescription description)
Must pass the given object to the superclass. |
Method Summary | |
---|---|
IOObject[] |
apply()
Trains a model useing an ExampleSet from the input. |
java.util.LinkedList<Hypothesis> |
generate(java.util.LinkedList<Hypothesis> oldHypothesis)
Generates all successors of the hypothesis in the given list. |
java.lang.Class[] |
getOutputClasses()
Returns the classes that are guaranteed to be returned by apply() as additional output. |
java.util.List<ParameterType> |
getParameterTypes()
Returns a list of ParameterTypes describing the parameters of this operator. |
java.util.LinkedList<Result> |
gss(ExampleSet exampleSet,
java.util.LinkedList<Hypothesis> hypothesisList,
double delta,
double epsilon)
Returns the n best hypothesis with maximum error epsilon with confidence 1-delta. |
boolean |
isUseful(Result current,
java.util.LinkedList<Result> otherResults,
int criterion,
ExampleSet exampleSet,
int min_model_number)
Test if the model is useful according to the given criterion. |
Model |
learn(ExampleSet exampleSet)
Trains a model. |
static double |
log2(double arg)
Returns the logarithm to base 2 |
java.util.LinkedList<Hypothesis> |
prune(java.util.LinkedList<Hypothesis> hypoList,
double minUtility,
double totalWeight,
double totalPositiveWeight,
double delta_p)
Prunes the given list of hypothesis. |
ContingencyMatrix |
reweight(ExampleSet exampleSet,
Model model,
boolean normalize)
Reweights the examples according to knowledge based sampling. |
boolean |
supportsCapability(LearnerCapability lc)
Checks for Learner capabilities. |
private void |
updateLists(java.util.LinkedList<Hypothesis> hypothesisList,
int n,
double totalExampleWeight,
double totalPositiveWeight,
double delta_h_m)
Updates bestList,bestRest and minBest |
Methods inherited from class edu.udo.cs.yale.operator.learner.AbstractLearner |
---|
checkLearnerCapabilities, getEstimatedPerformance, getInputClasses, getInputDescription, getOptimizationPerformance, getWeights, shouldCalculateWeights, shouldDeliverOptimizationPerformance, shouldEstimatePerformance |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Methods inherited from interface edu.udo.cs.yale.operator.learner.Learner |
---|
getName |
Field Detail |
---|
public static final java.lang.String[] CRITERION_TYPES
public static final int FIRST_TYPE_INDEX
public static final int TYPE_WORST_UTILITY
public static final int TYPE_UTILITY
public static final int TYPE_BEST_UTILITY
public static final int TYPE_EXAMPLE
public static final int LAST_TYPE_INDEX
private IGSSResult gssResult
private Attribute[] regularAttributes
private Attribute label
private Utility theUtility
private RandomGenerator random
private Hypothesis seed
private double totalWeight
private double totalPositiveWeight
private java.util.LinkedList<Hypothesis> bestList
private Result minBest
private Result maxRest
private int numberOfSolutions
private double currentDelta
private double epsilon
private int stepsize
private int maxComplexity
private int minComplexity
private double min_utility_pruning
private double min_utility_useful
private boolean useKBS
private boolean useBinomial
private int useful_criterion
private boolean forceIterations
private boolean resetWeights
private double exampleFactor
public int MIN_MODEL_NUMBER
private boolean rejectionSampling
private int large
private int iterations
Constructor Detail |
---|
public IteratingGSS(OperatorDescription description)
Method Detail |
---|
private void updateLists(java.util.LinkedList<Hypothesis> hypothesisList, int n, double totalExampleWeight, double totalPositiveWeight, double delta_h_m)
public java.util.LinkedList<Result> gss(ExampleSet exampleSet, java.util.LinkedList<Hypothesis> hypothesisList, double delta, double epsilon) throws OperatorException
OperatorException
public ContingencyMatrix reweight(ExampleSet exampleSet, Model model, boolean normalize) throws OperatorException
OperatorException
public IOObject[] apply() throws OperatorException
AbstractLearner
apply
in class AbstractLearner
OperatorException
public Model learn(ExampleSet exampleSet) throws OperatorException
Learner
OperatorException
public boolean isUseful(Result current, java.util.LinkedList<Result> otherResults, int criterion, ExampleSet exampleSet, int min_model_number)
public java.util.LinkedList<Hypothesis> prune(java.util.LinkedList<Hypothesis> hypoList, double minUtility, double totalWeight, double totalPositiveWeight, double delta_p)
public java.util.LinkedList<Hypothesis> generate(java.util.LinkedList<Hypothesis> oldHypothesis)
public static double log2(double arg)
public boolean supportsCapability(LearnerCapability lc)
Learner
public java.lang.Class[] getOutputClasses()
Operator
Operator.getInputDescription(Class)
and can be changed by
overwriting this method. Objects which are not consumed must not be
defined as additional output in this method. May be null or an empy array
(no additional output is produced).
getOutputClasses
in class AbstractLearner
public java.util.List<ParameterType> getParameterTypes()
Operator
getParameterTypes
in class Operator
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |