|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectedu.udo.cs.yale.operator.learner.igss.utility.AbstractUtility
edu.udo.cs.yale.operator.learner.igss.utility.Linear
public class Linear
The utility function Linear.
Field Summary |
---|
Fields inherited from class edu.udo.cs.yale.operator.learner.igss.utility.AbstractUtility |
---|
large, priors |
Fields inherited from interface edu.udo.cs.yale.operator.learner.igss.utility.Utility |
---|
FIRST_TYPE_INDEX, LAST_TYPE_INDEX, TYPE_ACCURACY, TYPE_BINOMIAL, TYPE_LINEAR, TYPE_SQUARED, TYPE_WRACC, UTILITY_TYPES |
Constructor Summary | |
---|---|
Linear(double[] priors,
int large)
Constructs a new Linear with the given default probability. |
Method Summary | |
---|---|
double |
conf(double totalExampleWeight,
double delta)
Calculate confidence intervall without a specific rule. |
double |
conf(double totalExampleWeight,
double totalPositiveWeight,
Hypothesis hypo,
double delta)
Calculate confidence intervall for a specific rule. |
double |
confSmallM(double totalExampleWeight,
double delta)
Calculate confidence intervall without a specific rule for small m. |
double |
getUpperBound(double totalWeight,
double totalPositiveWeight,
Hypothesis hypo,
double delta)
Returns an upper bound for the utility of refinements for the given hypothesis. |
double |
utility(double totalWeight,
double totalPositiveWeight,
Hypothesis hypo)
Calculates the utility for the given number of examples,positive examples and hypothesis. |
private double |
variance(double p,
double totalExampleWeight)
Calculates the variance for a binomial distribution. |
Methods inherited from class edu.udo.cs.yale.operator.learner.igss.utility.AbstractUtility |
---|
calculateM, confidenceIntervall, confidenceIntervall, inverseNormal |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public Linear(double[] priors, int large)
Method Detail |
---|
public double utility(double totalWeight, double totalPositiveWeight, Hypothesis hypo)
public double conf(double totalExampleWeight, double delta)
conf
in class AbstractUtility
public double conf(double totalExampleWeight, double totalPositiveWeight, Hypothesis hypo, double delta)
conf
in class AbstractUtility
private double variance(double p, double totalExampleWeight)
public double confSmallM(double totalExampleWeight, double delta)
confSmallM
in class AbstractUtility
public double getUpperBound(double totalWeight, double totalPositiveWeight, Hypothesis hypo, double delta)
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |