edu.udo.cs.yale.operator.learner.igss.utility
Class Linear

java.lang.Object
  extended by edu.udo.cs.yale.operator.learner.igss.utility.AbstractUtility
      extended by edu.udo.cs.yale.operator.learner.igss.utility.Linear
All Implemented Interfaces:
Utility

public class Linear
extends AbstractUtility

The utility function Linear.

Version:
$Id: Linear.java,v 1.1 2006/10/02 16:07:49 ingomierswa Exp $
Author:
Dirk Dach

Field Summary
 
Fields inherited from class edu.udo.cs.yale.operator.learner.igss.utility.AbstractUtility
large, priors
 
Fields inherited from interface edu.udo.cs.yale.operator.learner.igss.utility.Utility
FIRST_TYPE_INDEX, LAST_TYPE_INDEX, TYPE_ACCURACY, TYPE_BINOMIAL, TYPE_LINEAR, TYPE_SQUARED, TYPE_WRACC, UTILITY_TYPES
 
Constructor Summary
Linear(double[] priors, int large)
          Constructs a new Linear with the given default probability.
 
Method Summary
 double conf(double totalExampleWeight, double delta)
          Calculate confidence intervall without a specific rule.
 double conf(double totalExampleWeight, double totalPositiveWeight, Hypothesis hypo, double delta)
          Calculate confidence intervall for a specific rule.
 double confSmallM(double totalExampleWeight, double delta)
          Calculate confidence intervall without a specific rule for small m.
 double getUpperBound(double totalWeight, double totalPositiveWeight, Hypothesis hypo, double delta)
          Returns an upper bound for the utility of refinements for the given hypothesis.
 double utility(double totalWeight, double totalPositiveWeight, Hypothesis hypo)
          Calculates the utility for the given number of examples,positive examples and hypothesis.
private  double variance(double p, double totalExampleWeight)
          Calculates the variance for a binomial distribution.
 
Methods inherited from class edu.udo.cs.yale.operator.learner.igss.utility.AbstractUtility
calculateM, confidenceIntervall, confidenceIntervall, inverseNormal
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Constructor Detail

Linear

public Linear(double[] priors,
              int large)
Constructs a new Linear with the given default probability.

Method Detail

utility

public double utility(double totalWeight,
                      double totalPositiveWeight,
                      Hypothesis hypo)
Calculates the utility for the given number of examples,positive examples and hypothesis.


conf

public double conf(double totalExampleWeight,
                   double delta)
Calculate confidence intervall without a specific rule.

Specified by:
conf in class AbstractUtility


conf

public double conf(double totalExampleWeight,
                   double totalPositiveWeight,
                   Hypothesis hypo,
                   double delta)
Calculate confidence intervall for a specific rule.

Specified by:
conf in class AbstractUtility


variance

private double variance(double p,
                        double totalExampleWeight)
Calculates the variance for a binomial distribution.


confSmallM

public double confSmallM(double totalExampleWeight,
                         double delta)
Calculate confidence intervall without a specific rule for small m.

Specified by:
confSmallM in class AbstractUtility


getUpperBound

public double getUpperBound(double totalWeight,
                            double totalPositiveWeight,
                            Hypothesis hypo,
                            double delta)
Returns an upper bound for the utility of refinements for the given hypothesis.



Copyright © 2001-2006