edu.udo.cs.yale.operator.learner.kernel
Class AbstractMySVMLearner

java.lang.Object
  extended by edu.udo.cs.yale.operator.Operator
      extended by edu.udo.cs.yale.operator.learner.AbstractLearner
          extended by edu.udo.cs.yale.operator.learner.kernel.AbstractMySVMLearner
All Implemented Interfaces:
ConfigurationListener, Learner
Direct Known Subclasses:
JMySVMLearner, MyKLRLearner

public abstract class AbstractMySVMLearner
extends AbstractLearner

This is the abstract superclass for the support vector machine / KLR implementations of Stefan Rüping.

Version:
$Id: AbstractMySVMLearner.java,v 1.15 2006/03/27 13:22:01 ingomierswa Exp $
Author:
Ingo Mierswa
Keywords:
SVM

Field Summary
private  Kernel kernel
          The SVM kernel.
static int KERNEL_DOT
          Indicates a linear kernel.
static int KERNEL_EPANECHNIKOV
          Indicates a epanechnikov kernel.
static int KERNEL_GAUSSIAN_COMBINATION
          Indicates a gaussian combination kernel.
static int KERNEL_MULTIQUADRIC
          Indicates a multiquadric kernel.
static int KERNEL_NEURAL
          Indicates a neural net kernel.
static int KERNEL_POLYNOMIAL
          Indicates a polynomial kernel.
static int KERNEL_RADIAL
          Indicates a rbf kernel.
static java.lang.String[] KERNEL_TYPES
          The kernels which can be used from Yale for the mySVM / myKLR.
private  SVMInterface svm
          The SVM which is used for learning.
private  ExampleSet svmExamples
          The SVM example set.
 
Constructor Summary
AbstractMySVMLearner(OperatorDescription description)
           
 
Method Summary
static Kernel createKernel(int kernelType)
          Creates a new kernel of the given type.
abstract  SVMInterface createSVM(Attribute label, Kernel kernel, ExampleSet svmExamples, ExampleSet yaleExamples)
          Creates a new SVM according to the given label.
abstract  AbstractMySVMModel createSVMModel(Attribute label, ExampleSet svmExamples, Kernel kernel, int kernelType)
          Creates a new SVM model from the given data.
private  double getFitness(double[] alphas, double[] ys, Kernel kernel)
           
protected  Kernel getKernel()
          Returns the kernel of this SVM.
 PerformanceVector getOptimizationPerformance()
          Returns the optimization performance of the best result.
 java.util.List<ParameterType> getParameterTypes()
          Returns a list of ParameterTypes describing the parameters of this operator.
protected  SVMInterface getSVM()
          Returns the used SVM.
 AttributeWeights getWeights(ExampleSet exampleSet)
          Returns the weights for all features.
 Model learn(ExampleSet exampleSet)
          Trains a model.
 boolean shouldCalculateWeights()
          Returns true if the user has specified that weights should be calculated.
 boolean shouldDeliverOptimizationPerformance()
          Returns the value of the corresponding parameter.
 
Methods inherited from class edu.udo.cs.yale.operator.learner.AbstractLearner
apply, checkLearnerCapabilities, getEstimatedPerformance, getInputClasses, getInputDescription, getOutputClasses, shouldEstimatePerformance
 
Methods inherited from class edu.udo.cs.yale.operator.Operator
addError, addValue, addWarning, apply, checkDeprecations, checkIO, checkProperties, clearErrorList, cloneOperator, createExperimentTree, createExperimentTree, createFromXML, createMarkedExperimentTree, delete, experimentFinished, experimentStarts, getAddOnlyAdditionalOutput, getApplyCount, getDeliveredOutputClasses, getDeprecationInfo, getDesiredInputClasses, getErrorList, getExperiment, getInnerOperatorsXML, getInput, getInput, getInput, getIOContainerForInApplyLoopBreakpoint, getName, getNumberOfSteps, getOperatorClassName, getOperatorDescription, getParameter, getParameterAsBoolean, getParameterAsColor, getParameterAsDouble, getParameterAsFile, getParameterAsInt, getParameterAsString, getParameterList, getParameters, getParameterType, getParent, getStartTime, getStatus, getUserDescription, getValue, getValues, getXML, hasBreakpoint, hasBreakpoint, hasInput, inApplyLoop, isEnabled, isParameterSet, logMessage, performAdditionalChecks, register, remove, rename, resume, setBreakpoint, setEnabled, setExperiment, setInput, setListParameter, setOperatorParameters, setParameter, setParameters, setParent, setUserDescription, toString, writeXML
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface edu.udo.cs.yale.operator.learner.Learner
getName, supportsCapability
 

Field Detail

KERNEL_TYPES

public static final java.lang.String[] KERNEL_TYPES
The kernels which can be used from Yale for the mySVM / myKLR.


KERNEL_DOT

public static final int KERNEL_DOT
Indicates a linear kernel.

See Also:
Constant Field Values


KERNEL_RADIAL

public static final int KERNEL_RADIAL
Indicates a rbf kernel.

See Also:
Constant Field Values


KERNEL_POLYNOMIAL

public static final int KERNEL_POLYNOMIAL
Indicates a polynomial kernel.

See Also:
Constant Field Values


KERNEL_NEURAL

public static final int KERNEL_NEURAL
Indicates a neural net kernel.

See Also:
Constant Field Values


KERNEL_EPANECHNIKOV

public static final int KERNEL_EPANECHNIKOV
Indicates a epanechnikov kernel.

See Also:
Constant Field Values


KERNEL_GAUSSIAN_COMBINATION

public static final int KERNEL_GAUSSIAN_COMBINATION
Indicates a gaussian combination kernel.

See Also:
Constant Field Values


KERNEL_MULTIQUADRIC

public static final int KERNEL_MULTIQUADRIC
Indicates a multiquadric kernel.

See Also:
Constant Field Values


svm

private SVMInterface svm
The SVM which is used for learning.


kernel

private Kernel kernel
The SVM kernel.


svmExamples

private ExampleSet svmExamples
The SVM example set.

Constructor Detail

AbstractMySVMLearner

public AbstractMySVMLearner(OperatorDescription description)
Method Detail

getKernel

protected Kernel getKernel()
Returns the kernel of this SVM.


getSVM

protected SVMInterface getSVM()
Returns the used SVM.


shouldDeliverOptimizationPerformance

public boolean shouldDeliverOptimizationPerformance()
Returns the value of the corresponding parameter.

Overrides:
shouldDeliverOptimizationPerformance in class AbstractLearner


getOptimizationPerformance

public PerformanceVector getOptimizationPerformance()
Returns the optimization performance of the best result. This method must be called after training, not before.

Overrides:
getOptimizationPerformance in class AbstractLearner


shouldCalculateWeights

public boolean shouldCalculateWeights()
Returns true if the user has specified that weights should be calculated.

Specified by:
shouldCalculateWeights in interface Learner
Overrides:
shouldCalculateWeights in class AbstractLearner


getWeights

public AttributeWeights getWeights(ExampleSet exampleSet)
                            throws OperatorException
Returns the weights for all features.

Specified by:
getWeights in interface Learner
Overrides:
getWeights in class AbstractLearner
Throws:
OperatorException


createSVM

public abstract SVMInterface createSVM(Attribute label,
                                       Kernel kernel,
                                       ExampleSet svmExamples,
                                       ExampleSet yaleExamples)
                                throws OperatorException
Creates a new SVM according to the given label.

Throws:
OperatorException


createSVMModel

public abstract AbstractMySVMModel createSVMModel(Attribute label,
                                                  ExampleSet svmExamples,
                                                  Kernel kernel,
                                                  int kernelType)
Creates a new SVM model from the given data.


learn

public Model learn(ExampleSet exampleSet)
            throws OperatorException
Description copied from interface: Learner
Trains a model. This method should be called by apply() and is implemented by subclasses.

Throws:
OperatorException


getFitness

private double getFitness(double[] alphas,
                          double[] ys,
                          Kernel kernel)

createKernel

public static Kernel createKernel(int kernelType)
Creates a new kernel of the given type. The kernel type has to be one out of KERNEL_DOT, KERNEL_RADIAL, KERNEL_POLYNOMIAL, KERNEL_NEURAL, KERNEL_EPANECHNIKOV, KERNEL_GAUSSIAN_COMBINATION, or KERNEL_MULTIQUADRIC.


getParameterTypes

public java.util.List<ParameterType> getParameterTypes()
Description copied from class: Operator
Returns a list of ParameterTypes describing the parameters of this operator. The default implementation returns an empty list if no input objects can be retained and special parameters for those input objects which can be prevented from being consumed.

Overrides:
getParameterTypes in class Operator



Copyright © 2001-2006