edu.udo.cs.yale.operator.learner.kernel
Class LibSVMLearner

java.lang.Object
  extended by edu.udo.cs.yale.operator.Operator
      extended by edu.udo.cs.yale.operator.learner.AbstractLearner
          extended by edu.udo.cs.yale.operator.learner.kernel.LibSVMLearner
All Implemented Interfaces:
ConfigurationListener, Learner

public class LibSVMLearner
extends AbstractLearner

Applies the libsvm learner by Chih-Chung Chang and Chih-Jen Lin. The SVM is a powerful method for both classification and regression. This operator supports the SVM types C-SVC and nu-SVC for classification tasks and epsilon-SVR and nu-SVR for regression tasks. Supports also multiclass learning and probability estimation based on Platt scaling for proper confidence values after applying the learned model on a classification data set.

Version:
$Id: LibSVMLearner.java,v 1.28 2006/09/30 00:05:31 ingomierswa Exp $
Author:
Ingo Mierswa
Keywords:
SVM

Field Summary
static java.lang.String[] KERNEL_TYPES
          The different kernel types implemented by the LibSVM package.
private  double lastFitness
          The fitness of the last learned model.
private  int lastNumberSV
          The number of SVs for the last learned model.
static java.lang.String[] SVM_TYPES
          The different SVM types implemented by the LibSVM package.
 
Constructor Summary
LibSVMLearner(OperatorDescription description)
           
 
Method Summary
private  double getFitness(double[] alphas, double[] ys, libsvm.Kernel kernel)
           
 PerformanceVector getOptimizationPerformance()
          Returns the optimization performance of the best result.
private  libsvm.svm_parameter getParameters(ExampleSet exampleSet)
          Creates a LibSVM parameter object based on the user defined parameters.
 java.util.List<ParameterType> getParameterTypes()
          Returns a list of ParameterTypes describing the parameters of this operator.
private  libsvm.svm_problem getProblem(ExampleSet exampleSet)
          Creates a support vector problem for the LibSVM.
 Model learn(ExampleSet exampleSet)
          Learns a new SVM model with the LibSVM package.
protected static libsvm.svm_node[] makeNodes(Example e, FastExample2SparseTransform ripper)
          Creates a data node row for the LibSVM (sparse format, i.e. each node keeps the index and the value if not default).
 boolean shouldDeliverOptimizationPerformance()
          Returns the value of the corresponding parameter.
 boolean supportsCapability(LearnerCapability lc)
          Checks for Learner capabilities.
 
Methods inherited from class edu.udo.cs.yale.operator.learner.AbstractLearner
apply, checkLearnerCapabilities, getEstimatedPerformance, getInputClasses, getInputDescription, getOutputClasses, getWeights, shouldCalculateWeights, shouldEstimatePerformance
 
Methods inherited from class edu.udo.cs.yale.operator.Operator
addError, addValue, addWarning, apply, checkDeprecations, checkIO, checkProperties, clearErrorList, cloneOperator, createExperimentTree, createExperimentTree, createFromXML, createMarkedExperimentTree, delete, experimentFinished, experimentStarts, getAddOnlyAdditionalOutput, getApplyCount, getDeliveredOutputClasses, getDeprecationInfo, getDesiredInputClasses, getErrorList, getExperiment, getInnerOperatorsXML, getInput, getInput, getInput, getIOContainerForInApplyLoopBreakpoint, getName, getNumberOfSteps, getOperatorClassName, getOperatorDescription, getParameter, getParameterAsBoolean, getParameterAsColor, getParameterAsDouble, getParameterAsFile, getParameterAsInt, getParameterAsString, getParameterList, getParameters, getParameterType, getParent, getStartTime, getStatus, getUserDescription, getValue, getValues, getXML, hasBreakpoint, hasBreakpoint, hasInput, inApplyLoop, isEnabled, isParameterSet, logMessage, performAdditionalChecks, register, remove, rename, resume, setBreakpoint, setEnabled, setExperiment, setInput, setListParameter, setOperatorParameters, setParameter, setParameters, setParent, setUserDescription, toString, writeXML
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface edu.udo.cs.yale.operator.learner.Learner
getName
 

Field Detail

SVM_TYPES

public static final java.lang.String[] SVM_TYPES
The different SVM types implemented by the LibSVM package.


KERNEL_TYPES

public static final java.lang.String[] KERNEL_TYPES
The different kernel types implemented by the LibSVM package.


lastFitness

private double lastFitness
The fitness of the last learned model.


lastNumberSV

private int lastNumberSV
The number of SVs for the last learned model.

Constructor Detail

LibSVMLearner

public LibSVMLearner(OperatorDescription description)
Method Detail

shouldDeliverOptimizationPerformance

public boolean shouldDeliverOptimizationPerformance()
Returns the value of the corresponding parameter.

Overrides:
shouldDeliverOptimizationPerformance in class AbstractLearner


getOptimizationPerformance

public PerformanceVector getOptimizationPerformance()
                                             throws OperatorException
Returns the optimization performance of the best result. This method must be called after training, not before.

Overrides:
getOptimizationPerformance in class AbstractLearner
Throws:
OperatorException


getFitness

private double getFitness(double[] alphas,
                          double[] ys,
                          libsvm.Kernel kernel)

supportsCapability

public boolean supportsCapability(LearnerCapability lc)
Description copied from interface: Learner
Checks for Learner capabilities. Should return true if the given capability is supported.


makeNodes

protected static libsvm.svm_node[] makeNodes(Example e,
                                             FastExample2SparseTransform ripper)
Creates a data node row for the LibSVM (sparse format, i.e. each node keeps the index and the value if not default).


getProblem

private libsvm.svm_problem getProblem(ExampleSet exampleSet)
Creates a support vector problem for the LibSVM.


getParameters

private libsvm.svm_parameter getParameters(ExampleSet exampleSet)
                                    throws UndefinedParameterError
Creates a LibSVM parameter object based on the user defined parameters. If gamma is set to zero, it will be overwritten by 1 divided by the number of attributes.

Throws:
UndefinedParameterError


learn

public Model learn(ExampleSet exampleSet)
            throws OperatorException
Learns a new SVM model with the LibSVM package.

Throws:
OperatorException


getParameterTypes

public java.util.List<ParameterType> getParameterTypes()
Description copied from class: Operator
Returns a list of ParameterTypes describing the parameters of this operator. The default implementation returns an empty list if no input objects can be retained and special parameters for those input objects which can be prevented from being consumed.

Overrides:
getParameterTypes in class Operator



Copyright © 2001-2006