edu.udo.cs.yale.operator.learner.kernel.evosvm
Class PSOSVMOptimization

java.lang.Object
  extended by edu.udo.cs.yale.tools.math.optimization.ec.pso.PSOOptimization
      extended by edu.udo.cs.yale.operator.learner.kernel.evosvm.PSOSVMOptimization
All Implemented Interfaces:
Optimization

public class PSOSVMOptimization
extends PSOOptimization

PSO approach for SVM optimization. Currently only classification problems are supported.

Version:
$Id: PSOSVMOptimization.java,v 1.3 2006/04/05 08:57:26 ingomierswa Exp $
Author:
Ingo Mierswa

Field Summary
private  double c
          This parameter indicates the weight of errors.
private  DataTable dataTable
           
private  double epsilon
          This parameter indicates the weight of errors for regression.
private  ExampleSet exampleSet
          The training example set.
private static double IS_ZERO
          Number smaller than this number are regarded as zero.
private  Kernel kernel
          The used kernel function.
private  OptimizationFunction optimizationFunction
          This function is to maximize.
private  SimplePlotterDialog plotter
           
private  boolean showPlot
          Indicates if a convergence plot should be drawn.
private  double[] ys
          The label values.
 
Constructor Summary
PSOSVMOptimization(ExampleSet exampleSet, Kernel kernel, double c, int maxIterations, int generationsWithoutImprovement, int popSize, double inertiaWeight, double localWeight, double globalWeight, boolean dynamicInertiaWeight, boolean showPlot, RandomGenerator random)
          Creates a new evolutionary SVM optimization.
 
Method Summary
 PerformanceVector evaluateIndividual(double[] individual)
          Evaluates the individuals of the given population.
 EvoSVMModel getModel(double[] alphas)
          Returns a model containing all support vectors, i.e. the examples with non-zerp alphas.
 void nextIteration()
          This method is invoked after each evaluation.
 
Methods inherited from class edu.udo.cs.yale.tools.math.optimization.ec.pso.PSOOptimization
createInitialPopulation, getBestFitnessEver, getBestFitnessInGeneration, getBestPerformanceEver, getBestValuesEver, getGeneration, optimize, setMaxValue, setMinValue
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

IS_ZERO

private static final double IS_ZERO
Number smaller than this number are regarded as zero.

See Also:
Constant Field Values


exampleSet

private ExampleSet exampleSet
The training example set.


kernel

private Kernel kernel
The used kernel function.


c

private double c
This parameter indicates the weight of errors.


epsilon

private double epsilon
This parameter indicates the weight of errors for regression.


ys

private double[] ys
The label values.


optimizationFunction

private OptimizationFunction optimizationFunction
This function is to maximize.


showPlot

private boolean showPlot
Indicates if a convergence plot should be drawn.


dataTable

private DataTable dataTable

plotter

private SimplePlotterDialog plotter
Constructor Detail

PSOSVMOptimization

public PSOSVMOptimization(ExampleSet exampleSet,
                          Kernel kernel,
                          double c,
                          int maxIterations,
                          int generationsWithoutImprovement,
                          int popSize,
                          double inertiaWeight,
                          double localWeight,
                          double globalWeight,
                          boolean dynamicInertiaWeight,
                          boolean showPlot,
                          RandomGenerator random)
Creates a new evolutionary SVM optimization.

Method Detail

nextIteration

public void nextIteration()
Description copied from class: PSOOptimization
This method is invoked after each evaluation. The default implementation does nothing but subclasses might implement this method to support online plotting or logging.

Overrides:
nextIteration in class PSOOptimization


evaluateIndividual

public PerformanceVector evaluateIndividual(double[] individual)
Evaluates the individuals of the given population.

Specified by:
evaluateIndividual in class PSOOptimization


getModel

public EvoSVMModel getModel(double[] alphas)
Returns a model containing all support vectors, i.e. the examples with non-zerp alphas.



Copyright © 2001-2006