|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectedu.udo.cs.yale.operator.Operator
edu.udo.cs.yale.operator.OperatorChain
edu.udo.cs.yale.operator.learner.meta.AbstractMetaLearner
edu.udo.cs.yale.operator.learner.meta.AdaBoost
public class AdaBoost
This AdaBoost implementation can be used with all learners available in YALE, not only the ones which originally are part of the Weka package.
Field Summary | |
---|---|
protected int |
currentIteration
|
static double |
MIN_ADVANTAGE
Discard models with an advantage of less than the specified value. |
static java.lang.String |
NUM_OF_ITERATIONS
Name of the variable specifying the maximal number of iterations of the learner. |
private double[] |
oldWeights
|
private double |
performance
|
Constructor Summary | |
---|---|
AdaBoost(OperatorDescription description)
Constructor. |
Method Summary | |
---|---|
int |
getNumberOfSteps()
Returns the number of steps performed by this chain. |
java.util.List<ParameterType> |
getParameterTypes()
Adds the parameters "number of iterations" and "model file". |
private boolean |
isModelUseful(AdaBoostPerformanceMeasures wp)
Helper method to decide whether a model improves the training error enough to be considered. |
Model |
learn(ExampleSet exampleSet)
Constructs a Model repeatedly running a weak learner,
reweighting the training example set accordingly, and combining the
hypothesis using the available weighted performance values. |
protected double |
prepareWeights(ExampleSet exampleSet)
Creates a weight attribute if not yet done. |
boolean |
supportsCapability(LearnerCapability lc)
Overrides the method of the super class. |
private AdaBoostModel |
trainBoostingModel(ExampleSet trainingSet)
Main method for training the ensemble classifier |
Methods inherited from class edu.udo.cs.yale.operator.learner.meta.AbstractMetaLearner |
---|
apply, applyInnerLearner, checkLearnerCapabilities, getEstimatedPerformance, getInnerOperatorCondition, getInputClasses, getInputDescription, getMaxNumberOfInnerOperators, getMinNumberOfInnerOperators, getOutputClasses, getWeights, shouldCalculateWeights, shouldEstimatePerformance, shouldReturnInnerOutput |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Methods inherited from interface edu.udo.cs.yale.operator.learner.Learner |
---|
getName |
Field Detail |
---|
public static final java.lang.String NUM_OF_ITERATIONS
public static final double MIN_ADVANTAGE
protected int currentIteration
private double performance
private double[] oldWeights
Constructor Detail |
---|
public AdaBoost(OperatorDescription description)
Method Detail |
---|
public boolean supportsCapability(LearnerCapability lc)
supportsCapability
in interface Learner
supportsCapability
in class AbstractMetaLearner
public int getNumberOfSteps()
OperatorChain
getNumberOfSteps
in class AbstractMetaLearner
OperatorChain.getNumberOfSteps()
public Model learn(ExampleSet exampleSet) throws OperatorException
Model
repeatedly running a weak learner,
reweighting the training example set accordingly, and combining the
hypothesis using the available weighted performance values.
OperatorException
protected double prepareWeights(ExampleSet exampleSet)
exampleSet
- the example set to be prepared
private AdaBoostModel trainBoostingModel(ExampleSet trainingSet) throws OperatorException
OperatorException
private boolean isModelUseful(AdaBoostPerformanceMeasures wp)
wp
- the advantage over the default classifier / random guessing
true
iff the advantage is high enough to consider
the model to be usefulpublic java.util.List<ParameterType> getParameterTypes()
getParameterTypes
in class Operator
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |