edu.udo.cs.yale.operator.learner.meta
Class AdaBoost

java.lang.Object
  extended by edu.udo.cs.yale.operator.Operator
      extended by edu.udo.cs.yale.operator.OperatorChain
          extended by edu.udo.cs.yale.operator.learner.meta.AbstractMetaLearner
              extended by edu.udo.cs.yale.operator.learner.meta.AdaBoost
All Implemented Interfaces:
ConfigurationListener, Learner

public class AdaBoost
extends AbstractMetaLearner

This AdaBoost implementation can be used with all learners available in YALE, not only the ones which originally are part of the Weka package.

Version:
$Id: AdaBoost.java,v 1.13 2006/09/30 00:05:30 ingomierswa Exp $
Author:
Martin Scholz

Field Summary
protected  int currentIteration
           
static double MIN_ADVANTAGE
          Discard models with an advantage of less than the specified value.
static java.lang.String NUM_OF_ITERATIONS
          Name of the variable specifying the maximal number of iterations of the learner.
private  double[] oldWeights
           
private  double performance
           
 
Constructor Summary
AdaBoost(OperatorDescription description)
          Constructor.
 
Method Summary
 int getNumberOfSteps()
          Returns the number of steps performed by this chain.
 java.util.List<ParameterType> getParameterTypes()
          Adds the parameters "number of iterations" and "model file".
private  boolean isModelUseful(AdaBoostPerformanceMeasures wp)
          Helper method to decide whether a model improves the training error enough to be considered.
 Model learn(ExampleSet exampleSet)
          Constructs a Model repeatedly running a weak learner, reweighting the training example set accordingly, and combining the hypothesis using the available weighted performance values.
protected  double prepareWeights(ExampleSet exampleSet)
          Creates a weight attribute if not yet done.
 boolean supportsCapability(LearnerCapability lc)
          Overrides the method of the super class.
private  AdaBoostModel trainBoostingModel(ExampleSet trainingSet)
          Main method for training the ensemble classifier
 
Methods inherited from class edu.udo.cs.yale.operator.learner.meta.AbstractMetaLearner
apply, applyInnerLearner, checkLearnerCapabilities, getEstimatedPerformance, getInnerOperatorCondition, getInputClasses, getInputDescription, getMaxNumberOfInnerOperators, getMinNumberOfInnerOperators, getOutputClasses, getWeights, shouldCalculateWeights, shouldEstimatePerformance, shouldReturnInnerOutput
 
Methods inherited from class edu.udo.cs.yale.operator.OperatorChain
addAddListener, addOperator, addOperator, checkDeprecations, checkIO, checkNumberOfInnerOperators, checkProperties, clearErrorList, clearStepCounter, cloneOperator, countStep, createExperimentTree, delete, experimentFinished, experimentStarts, getAllInnerOperators, getCurrentStep, getIndexOfOperator, getInnerOperatorForName, getInnerOperatorsXML, getNumberOfAllOperators, getNumberOfChildrensSteps, getNumberOfOperators, getOperator, getOperatorFromAll, getOperators, isEnabled, performAdditionalChecks, removeAddListener, removeOperator, setEnabled, setExperiment
 
Methods inherited from class edu.udo.cs.yale.operator.Operator
addError, addValue, addWarning, apply, createExperimentTree, createFromXML, createMarkedExperimentTree, getAddOnlyAdditionalOutput, getApplyCount, getDeliveredOutputClasses, getDeprecationInfo, getDesiredInputClasses, getErrorList, getExperiment, getInput, getInput, getInput, getIOContainerForInApplyLoopBreakpoint, getName, getOperatorClassName, getOperatorDescription, getParameter, getParameterAsBoolean, getParameterAsColor, getParameterAsDouble, getParameterAsFile, getParameterAsInt, getParameterAsString, getParameterList, getParameters, getParameterType, getParent, getStartTime, getStatus, getUserDescription, getValue, getValues, getXML, hasBreakpoint, hasBreakpoint, hasInput, inApplyLoop, isParameterSet, logMessage, register, remove, rename, resume, setBreakpoint, setInput, setListParameter, setOperatorParameters, setParameter, setParameters, setParent, setUserDescription, toString, writeXML
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface edu.udo.cs.yale.operator.learner.Learner
getName
 

Field Detail

NUM_OF_ITERATIONS

public static final java.lang.String NUM_OF_ITERATIONS
Name of the variable specifying the maximal number of iterations of the learner.

See Also:
Constant Field Values


MIN_ADVANTAGE

public static final double MIN_ADVANTAGE
Discard models with an advantage of less than the specified value.

See Also:
Constant Field Values


currentIteration

protected int currentIteration

performance

private double performance

oldWeights

private double[] oldWeights
Constructor Detail

AdaBoost

public AdaBoost(OperatorDescription description)
Constructor.

Method Detail

supportsCapability

public boolean supportsCapability(LearnerCapability lc)
Overrides the method of the super class. Returns true for polynominal class.

Specified by:
supportsCapability in interface Learner
Overrides:
supportsCapability in class AbstractMetaLearner


getNumberOfSteps

public int getNumberOfSteps()
Description copied from class: OperatorChain
Returns the number of steps performed by this chain.

Overrides:
getNumberOfSteps in class AbstractMetaLearner
See Also:
OperatorChain.getNumberOfSteps()


learn

public Model learn(ExampleSet exampleSet)
            throws OperatorException
Constructs a Model repeatedly running a weak learner, reweighting the training example set accordingly, and combining the hypothesis using the available weighted performance values.

Throws:
OperatorException


prepareWeights

protected double prepareWeights(ExampleSet exampleSet)
Creates a weight attribute if not yet done. It either backs up the old weights for restoring them later, or it fills the newly created attribute with the initial value of 1.

Parameters:
exampleSet - the example set to be prepared
Returns:
the total weight


trainBoostingModel

private AdaBoostModel trainBoostingModel(ExampleSet trainingSet)
                                  throws OperatorException
Main method for training the ensemble classifier

Throws:
OperatorException


isModelUseful

private boolean isModelUseful(AdaBoostPerformanceMeasures wp)
Helper method to decide whether a model improves the training error enough to be considered.

Parameters:
wp - the advantage over the default classifier / random guessing
Returns:
true iff the advantage is high enough to consider the model to be useful


getParameterTypes

public java.util.List<ParameterType> getParameterTypes()
Adds the parameters "number of iterations" and "model file".

Overrides:
getParameterTypes in class Operator



Copyright © 2001-2006