edu.udo.cs.yale.operator.learner.meta
Class SDEnsemble

java.lang.Object
  extended by edu.udo.cs.yale.operator.AbstractIOObject
      extended by edu.udo.cs.yale.operator.ResultObjectAdapter
          extended by edu.udo.cs.yale.operator.AbstractModel
              extended by edu.udo.cs.yale.operator.IOModel
                  extended by edu.udo.cs.yale.operator.learner.PredictionModel
                      extended by edu.udo.cs.yale.operator.learner.meta.SDEnsemble
All Implemented Interfaces:
IOObject, Model, ResultObject, Saveable

public class SDEnsemble
extends PredictionModel

A subgroup discovery model.

Version:
$Id: SDEnsemble.java,v 1.26 2006/09/30 00:05:30 ingomierswa Exp $
Author:
Martin Scholz

Field Summary
private  short combinationMethod
           
static java.lang.String ID
           
private static java.lang.String MAX_MODEL_NUMBER
           
private  int maxModelNumber
           
private  java.util.List modelInfo
           
private static java.lang.String PRED_TO_FILE
           
private  java.io.File predictionsFile
           
private  boolean print_to_stdout
           
private  double[] priors
           
static short RULE_COMBINE_ADDITIVE
           
static short RULE_COMBINE_MULTIPLY
           
 
Constructor Summary
SDEnsemble()
          Needed for creation of IOModel (when loading from file).
SDEnsemble(Attribute label)
          Needed for creation of IOModel (when loading from file).
SDEnsemble(Attribute label, java.util.List modelInfo, double[] priors, short combinationMethod)
           
 
Method Summary
protected  Attribute createPredictedLabel(ExampleSet exampleSet)
          Creates a predicted label with the given name.
 java.lang.String getIdentifier()
           
 PredictionModel getModel(int index)
          Getter method for embedded models
 int getNumberOfModels()
           
private  double getPriorOfClass(int classIndex)
          Getter method for prior class probabilities estimated as the relative frequencies in the training set.
private  double[] getWeightsForModel(int modelNr, int predicted)
          Gets weights for models in the case of general nominal class labels.
 void performPrediction(ExampleSet exampleSet, Attribute predictedLabelAttribute)
          Iterates over all models and returns the class with maximum likelihood.
 void readPredictionModelData(java.io.ObjectInputStream in)
          Reads all models from file.
 void setParameter(java.lang.String name, java.lang.String value)
          Setting the parameter MAX_MODEL_NUMBER allows to discard all but the first n models for specified n.
 java.lang.String toString()
           
 void writePredictionModelData(java.io.ObjectOutputStream out)
          Writes the models subsequently to the output stream.
 
Methods inherited from class edu.udo.cs.yale.operator.learner.PredictionModel
apply, getLabel, readData, removePredictedLabel, setLabel, writeData
 
Methods inherited from class edu.udo.cs.yale.operator.AbstractModel
equals, getExtension, getFileDescription, readModel, readModel, save, setParameter, writeModel, writeModel
 
Methods inherited from class edu.udo.cs.yale.operator.ResultObjectAdapter
addAction, getActions, getName, getVisualisationComponent, toHTML, toResultString
 
Methods inherited from class edu.udo.cs.yale.operator.AbstractIOObject
copy, read, read, read, write, write
 
Methods inherited from class java.lang.Object
clone, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface edu.udo.cs.yale.operator.ResultObject
getActions, getName, getVisualisationComponent, toResultString
 
Methods inherited from interface edu.udo.cs.yale.operator.IOObject
copy, write, write
 

Field Detail

ID

public static final java.lang.String ID
See Also:
Constant Field Values

RULE_COMBINE_ADDITIVE

public static final short RULE_COMBINE_ADDITIVE
See Also:
Constant Field Values

RULE_COMBINE_MULTIPLY

public static final short RULE_COMBINE_MULTIPLY
See Also:
Constant Field Values

combinationMethod

private short combinationMethod

modelInfo

private java.util.List modelInfo

maxModelNumber

private int maxModelNumber

MAX_MODEL_NUMBER

private static final java.lang.String MAX_MODEL_NUMBER
See Also:
Constant Field Values

PRED_TO_FILE

private static final java.lang.String PRED_TO_FILE
See Also:
Constant Field Values

predictionsFile

private java.io.File predictionsFile

print_to_stdout

private boolean print_to_stdout

priors

private double[] priors
Constructor Detail

SDEnsemble

public SDEnsemble()
Needed for creation of IOModel (when loading from file).


SDEnsemble

public SDEnsemble(Attribute label)
Needed for creation of IOModel (when loading from file).

Parameters:
label - the class label


SDEnsemble

public SDEnsemble(Attribute label,
                  java.util.List modelInfo,
                  double[] priors,
                  short combinationMethod)
Parameters:
label - the class label
modelInfo - a List of Object[2] arrays, each entry holding a model and a double[][] array containing weights for all prediction/label combinations.
priors - an array of the prior probabilities of labels
Method Detail

getIdentifier

public java.lang.String getIdentifier()
Returns:
the static class identifier of this model

readPredictionModelData

public void readPredictionModelData(java.io.ObjectInputStream in)
                             throws java.io.IOException
Reads all models from file.

Specified by:
readPredictionModelData in class PredictionModel
Throws:
java.io.IOException


writePredictionModelData

public void writePredictionModelData(java.io.ObjectOutputStream out)
                              throws java.io.IOException
Writes the models subsequently to the output stream.

Specified by:
writePredictionModelData in class PredictionModel
Throws:
java.io.IOException


toString

public java.lang.String toString()
Overrides:
toString in class PredictionModel
Returns:
a String representation of the ruleset.

setParameter

public void setParameter(java.lang.String name,
                         java.lang.String value)
                  throws OperatorException
Setting the parameter MAX_MODEL_NUMBER allows to discard all but the first n models for specified n. PRED_TO_FILE requires a filename on the local disk system the predictions of the single classifiers are written to. print_to_stdout prints some statistics about the base classifiers to the standard output.

Throws:
OperatorException


getNumberOfModels

public int getNumberOfModels()
Returns:
the number of embedded models

getWeightsForModel

private double[] getWeightsForModel(int modelNr,
                                    int predicted)
Gets weights for models in the case of general nominal class labels. The indices are not in YALE format, so add Attribute.FIRST_CLASS_INDEX before calling this method and before reading from the returned array.

Parameters:
modelNr - the number of the model
predicted - the predicted label
Returns:
a double[] object with the weights to be applied for each class if the corresponding rule yields predicted.


getPriorOfClass

private double getPriorOfClass(int classIndex)
Getter method for prior class probabilities estimated as the relative frequencies in the training set.

Parameters:
classIndex - the index of a class starting with 0 (not the internal YALE representation!)
Returns:
the prior probability of the specified class


getModel

public PredictionModel getModel(int index)
Getter method for embedded models

Parameters:
index - the number of a model part of this boost model
Returns:
binary or nominal decision model for the given classification index.


performPrediction

public void performPrediction(ExampleSet exampleSet,
                              Attribute predictedLabelAttribute)
                       throws OperatorException
Iterates over all models and returns the class with maximum likelihood.

Specified by:
performPrediction in class PredictionModel
Parameters:
exampleSet - the set of examples to be classified
Throws:
OperatorException


createPredictedLabel

protected Attribute createPredictedLabel(ExampleSet exampleSet)
Creates a predicted label with the given name. If name is null, the name "prediction(labelname)" is used.

Overrides:
createPredictedLabel in class PredictionModel



Copyright © 2001-2006