edu.udo.cs.yale.operator.performance
Class SimpleCriterion

java.lang.Object
  extended by edu.udo.cs.yale.operator.AbstractIOObject
      extended by edu.udo.cs.yale.operator.ResultObjectAdapter
          extended by edu.udo.cs.yale.tools.math.Averagable
              extended by edu.udo.cs.yale.operator.performance.PerformanceCriterion
                  extended by edu.udo.cs.yale.operator.performance.MeasuredPerformance
                      extended by edu.udo.cs.yale.operator.performance.SimpleCriterion
All Implemented Interfaces:
IOObject, ResultObject, java.lang.Cloneable, java.lang.Comparable<Averagable>
Direct Known Subclasses:
AbsoluteError, RelativeError, RootMeanSquaredError, SimpleAccuracy, SquaredError

public abstract class SimpleCriterion
extends MeasuredPerformance

Simple criteria are those which error can be counted for each example and can be averaged by the number of examples. The fitness has a reciprocal value of the error. Subclasses might also want to implement the method transform(double) which applies a transformation on the value sum divided by the number of counted examples. This is for example usefull in case of root_means_squared error. All subclasses can be used for both regression and classification problems. In case of classification the confidence value for the desired true label is used as prediction.

Version:
$Id: SimpleCriterion.java,v 2.25 2006/08/03 14:39:30 ingomierswa Exp $
Author:
Ingo Mierswa, Simon Fischer

Field Summary
private  int exampleCount
           
private  Attribute labelAttribute
           
private  Attribute predictedAttribute
           
private  double squaresSum
           
private  double sum
           
 
Constructor Summary
SimpleCriterion()
           
 
Method Summary
 void buildSingleAverage(Averagable performance)
          This method should build the average of this and another averagables of the same type.
protected  void cloneAveragable(Averagable newAvg)
          Must be implemented by subclasses such that it copies all values of other to this.
protected  void countExample(double deviation)
           
protected abstract  double countExample(double label, double predictedLabel)
          Subclasses must count the example and return the value to sum up.
 void countExample(Example example)
          Invokes countExample(double, double) and counts the deviation.
 int getExampleCount()
          Returns the number of data points which was used to determine the criterion value.
 double getFitness()
          Returns the fitness depending on the value.
 double getMikroAverage()
          Returns the (current) value of the averagable (the average itself).
 double getMikroVariance()
          Returns the variance of the averagable.
 void readCriterionData(java.io.BufferedReader in)
          Reads the performance data from the given reader.
 void startCounting(ExampleSet eset)
          Initialises the criterion.
protected  double transform(double value)
          Simply returns the given value.
 void writeCriterionData(java.io.PrintWriter out)
          Writes the performance criterion into the given writer.
 
Methods inherited from class edu.udo.cs.yale.operator.performance.MeasuredPerformance
getDescription
 
Methods inherited from class edu.udo.cs.yale.operator.performance.PerformanceCriterion
compareTo, getMaxFitness, readPerformanceCriterion, writePerformanceCriterion
 
Methods inherited from class edu.udo.cs.yale.tools.math.Averagable
buildAverage, clone, formatDeviation, formatPercent, formatValue, getAverage, getMakroAverage, getMakroStandardDeviation, getMakroVariance, getMikroStandardDeviation, getName, getStandardDeviation, getVariance, toHTML, toString
 
Methods inherited from class edu.udo.cs.yale.operator.ResultObjectAdapter
addAction, getActions, getVisualisationComponent, toHTML, toResultString
 
Methods inherited from class edu.udo.cs.yale.operator.AbstractIOObject
copy, read, read, read, write, write
 
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 
Methods inherited from interface edu.udo.cs.yale.operator.IOObject
copy, write, write
 

Field Detail

predictedAttribute

private Attribute predictedAttribute

labelAttribute

private Attribute labelAttribute

sum

private double sum

squaresSum

private double squaresSum

exampleCount

private int exampleCount
Constructor Detail

SimpleCriterion

public SimpleCriterion()
Method Detail

writeCriterionData

public void writeCriterionData(java.io.PrintWriter out)
                        throws java.io.IOException
Description copied from class: PerformanceCriterion
Writes the performance criterion into the given writer. Please note that the criterion must be written in a human readable format!

Specified by:
writeCriterionData in class PerformanceCriterion
Throws:
java.io.IOException


readCriterionData

public void readCriterionData(java.io.BufferedReader in)
                       throws java.io.IOException
Description copied from class: PerformanceCriterion
Reads the performance data from the given reader.

Specified by:
readCriterionData in class PerformanceCriterion
Throws:
java.io.IOException


getExampleCount

public int getExampleCount()
Description copied from class: PerformanceCriterion
Returns the number of data points which was used to determine the criterion value.

Specified by:
getExampleCount in class PerformanceCriterion


countExample

public void countExample(Example example)
Invokes countExample(double, double) and counts the deviation. In case of a nominal label the confidence of the desired true label is used as prediction. For regression problems the usual predicted label is used.

Specified by:
countExample in class MeasuredPerformance


countExample

protected abstract double countExample(double label,
                                       double predictedLabel)
Subclasses must count the example and return the value to sum up.


transform

protected double transform(double value)
Simply returns the given value. Subclasses might apply a transformation on the error sum divided by the number of examples.


countExample

protected void countExample(double deviation)

getMikroAverage

public double getMikroAverage()
Description copied from class: Averagable
Returns the (current) value of the averagable (the average itself).

Specified by:
getMikroAverage in class Averagable


getMikroVariance

public double getMikroVariance()
Description copied from class: Averagable
Returns the variance of the averagable. The returned value must not be negative. If the averagable does not define a variance this method should return Double.NaN.

Specified by:
getMikroVariance in class Averagable


startCounting

public void startCounting(ExampleSet eset)
                   throws OperatorException
Description copied from class: MeasuredPerformance
Initialises the criterion. The default implementation does nothing.

Overrides:
startCounting in class MeasuredPerformance
Throws:
OperatorException


getFitness

public double getFitness()
Description copied from class: PerformanceCriterion
Returns the fitness depending on the value. Subclasses should use getAverage() instead of getValue() in this method since usually the makro average should be optmized instead of the mikro average. The mikro average should only be used in the (rare) cases where no makro average is available.

Specified by:
getFitness in class PerformanceCriterion


cloneAveragable

protected void cloneAveragable(Averagable newAvg)
Description copied from class: Averagable
Must be implemented by subclasses such that it copies all values of other to this. When this method is called, it is guaranteed, that other is a subclass of the class of the object it is called on.

Specified by:
cloneAveragable in class Averagable


buildSingleAverage

public void buildSingleAverage(Averagable performance)
Description copied from class: Averagable
This method should build the average of this and another averagables of the same type. The next invocation of getValue() should return the average of this and the given averagable. Please refer to SimpleCriterion for a simple implementation example.

Specified by:
buildSingleAverage in class Averagable



Copyright © 2001-2006