|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectedu.udo.cs.yale.operator.Operator
edu.udo.cs.yale.operator.preprocessing.discretization.Discretization
edu.udo.cs.yale.operator.preprocessing.discretization.MinimalEntropyPartitioning
public class MinimalEntropyPartitioning
A filter that discretizes all numeric attributes in the dataset into nominal attributes. The discretization is performed by selecting a bin boundary minimizing the entropy in the induced partitions. The method is then applied recursively for both new partitions until the stopping criterion is reached. For Detail see a)Multi-interval discretization of continued-values attributes for classification learning(Fayyad,Irani) b)Supervised and Unsupervized Discretization(Dougherty,Kohavi,Sahami) Skips all special attributes including the label.
Constructor Summary | |
---|---|
MinimalEntropyPartitioning(OperatorDescription description)
|
Method Summary | |
---|---|
IOObject[] |
apply()
Implement this method in subclasses. |
java.lang.Class[] |
getInputClasses()
Returns the classes that are needed as input. |
private java.lang.Double |
getMinEntropySplitpoint(java.util.LinkedList<double[]> truncatedExamples,
Attribute label)
|
java.lang.Class[] |
getOutputClasses()
Returns the classes that are guaranteed to be returned by apply() as additional output. |
double[][] |
getRanges(ExampleSet exampleSet)
Delivers the maximum range thresholds for all attributes, i.e. the value getRanges()[a][b] is the b-th threshold for the a-th attribute. |
private java.util.ArrayList |
getSplitpoints(java.util.LinkedList<double[]> startPartition,
Attribute label)
|
double |
log2(double arg)
|
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
---|
public MinimalEntropyPartitioning(OperatorDescription description)
Method Detail |
---|
private java.lang.Double getMinEntropySplitpoint(java.util.LinkedList<double[]> truncatedExamples, Attribute label)
private java.util.ArrayList getSplitpoints(java.util.LinkedList<double[]> startPartition, Attribute label)
public double[][] getRanges(ExampleSet exampleSet)
getRanges
in class Discretization
public IOObject[] apply() throws OperatorException
Operator
apply
in class Discretization
OperatorException
public double log2(double arg)
public java.lang.Class[] getOutputClasses()
Operator
Operator.getInputDescription(Class)
and can be changed by
overwriting this method. Objects which are not consumed must not be
defined as additional output in this method. May be null or an empy array
(no additional output is produced).
getOutputClasses
in class Discretization
public java.lang.Class[] getInputClasses()
Operator
Operator.getOutputClasses()
and
Operator.apply()
if this is necessary. This default behavior can be
changed by overriding Operator.getInputDescription(Class)
. Subclasses
which implement this method should not make use of parameters since this
method is invoked by getParameterTypes(). Therefore, parameters are not
fully available at this point of time and this might lead to exceptions.
Please use InputDescriptions instead.
getInputClasses
in class Discretization
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |