|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectedu.udo.cs.myGP.GPBase
edu.udo.cs.myGP.Regression
public class Regression
Gaussian Process Regression. REFERENCES: Lehel Csato. Gaussian Processes --- Iterative Sparse Approximations. PhD thesis, Aston University, Birmingham, UK, March 2002. TODO: - own Matrix implementation with SE-cholesky-decomposition and the ability to constrain matrix operation on sub matrices - CompositeKernel implementation for kernels based on finite basis functions
Nested Class Summary | |
---|---|
protected class |
Regression.Score
Used to hold a score value with an associated index |
Field Summary |
---|
Fields inherited from class edu.udo.cs.myGP.GPBase |
---|
model, parameter, problem |
Constructor Summary | |
---|---|
Regression(RegressionProblem problem,
Parameter parameter)
Constructor |
Method Summary | |
---|---|
private void |
deleteBV(Jama.Matrix alpha,
Jama.Matrix C,
Jama.Matrix Q,
double[][] basisVectors,
int d,
int index)
Delete the given BV from the BV set by adjusting the parametrisation of the GP using eqs. (3.19), (3.21) and (3.22): alpha_t+1 = alpha^{(r)} - alpha^star / (c^star + q^star) * (Q^star + C^star) C_t+1 = C^{(r)} + Q^star * Q^star^T / q^star - (Q^star + C^star) * (Q^star + C^star)^T / (q^star + c^star) Q_t+1 = Q^{(r)} - Q^star * Q^star^T / q^star |
private java.util.TreeSet |
getMinScoresGeometrical(Jama.Matrix alpha,
Jama.Matrix C,
Jama.Matrix Q,
int d)
Return the scores of all BVs. |
private java.util.TreeSet |
getMinScoresKLApprox(Jama.Matrix alpha,
Jama.Matrix C,
Jama.Matrix Q,
int d)
Return the scores of all BVs. |
Model |
learn()
The hard work is done here |
private double |
scalarProduct(double[][] x,
double[][] y,
int d)
Compute the (canonical) scalar product between x and y, using only the first d components of the vectors |
private void |
swapRowsAndColumns(double[][] A,
int i,
int j)
Swap the rows / columns of a symmetric n x n matrix, which is represented as a double[][]. |
java.lang.String |
toString()
Identify the GP |
Methods inherited from class edu.udo.cs.myGP.GPBase |
---|
getModel |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
---|
public Regression(RegressionProblem problem, Parameter parameter)
Method Detail |
---|
private double scalarProduct(double[][] x, double[][] y, int d) throws java.lang.Exception
java.lang.Exception
private void swapRowsAndColumns(double[][] A, int i, int j)
public Model learn() throws java.lang.Exception
learn
in class GPBase
java.lang.Exception
private java.util.TreeSet getMinScoresKLApprox(Jama.Matrix alpha, Jama.Matrix C, Jama.Matrix Q, int d)
private java.util.TreeSet getMinScoresGeometrical(Jama.Matrix alpha, Jama.Matrix C, Jama.Matrix Q, int d)
private void deleteBV(Jama.Matrix alpha, Jama.Matrix C, Jama.Matrix Q, double[][] basisVectors, int d, int index)
public java.lang.String toString()
toString
in class java.lang.Object
|
|||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | ||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |